On Span Programs

M. Karchmer*

Department of Mathematics
Massachusetts Inst. of Technology
Cambridge, MA 02138

Abstract

We introduce a linear algebraic model of computa-
tion, the Span Program, and prove several upper and
lower bounds on it. These results yield the following
applications in complezity and cryptography:

e SL C ®L (a weak Logspace analogue of NP C
@P).

e The first super-linear size lower bounds on
branching programs that count.

o A broader class of functions which posses
information-theoretic secret sharing schemes.

The proof of the main connection, between span pro-
grams and counting branching programs, uses a vari-
ant of Razborov’s general approximation method.

1 Introduction

Giving a computational model the power to count
is an old and fruitful theme in complexity theory. One
such direction was to add mod m gates to unbounded
fan-in circuits. This resulted in the exponential lower
bounds of Razborov and Smolensky [15, 21] in the case
when m is a prime, and the frustrating question of the
power of ACC, when m is composite.

Another direction was to let nondeterministic poly-
nomial time Turing machines count the number of
accepting paths. For counting mod 2, this defines
([12, 6]) the class @P. Valiant and Vazirani [23] were
first to show the power of this model by giving a prob-
abilistic Turing reduction of NP to ®P. Toda [22]
used this technique to prove a much stronger result,
namely that the whole polynomial time hierarchy is
probabilisticly Turing reducible to &P. Moreover, the

*Partially supported by NSF grant CCR-9212184 and
DARPA contract N00014-92-J-1799.

A. Wigderson

Department of Computer Science
Hebrew University
Jerusalem, Israel 91904

same result can be obtained via the techniques used
for the constant-depth circuits mentioned above, as
shown by Allender [2].

Here we are interested in nondeterministic logspace
machines that count the number of accepting paths
(mod m). The analogues mod,, L of the polynomial
counting classes mod,,, P were defined and first studied
in [5]. In [5] it was shown that most natural problems
in linear algebra over GF(p), such as determinant,
rank and solving linear systems, are logspace complete
for the class mod, L. Still, very little is known about
the power of counting in logspace. For example, unlike
in the polynomial time case, no relationship between
NL and @L is known. Moreover, no nontrivial lower
bounds were known on the counting branching pro-
grams which capture these counting classes.

This paper makes progress on both of these ques-
tions. We show that the symmetric nondeterminis-
tic class SL is contained in mod,L for every prime
p (SL, symmetric logspace, is the class of all prob-
lems that are reducible in logspace to undirected st-
connectivity). Previously, it was only known that
SL C L/poly which follows from the results of [1].

We also prove the first nontrivial lower bounds on
branching programs that count mod 2. The most in-
teresting (though not the largest) is the slightly super-
linear (Q(nlogloglog™ n)) lower bound on the size of
such programs that compute the Majority function.
In fact, the proof characterizes those threshold func-
tions that admit linear size programs. The same
lower bound for Majority on nondeterministic branch-
ing programs was proved by Razborov [18], and in-
deed we use much of his machinery. In contrast, for
the weaker deterministic branching programs, the best
lower bound for Majority [3] is 2(nlogn/loglogn).

The route to both types of results goes through the
same device — the span program. The span program
(over any field K) is a linear algebraic model that
computes a function f on n variables as follows. Fix
a vector space W over K, a nonzero vector w € W

and let Xf (with 1 <n, e € {0,1}) be 2n subspaces of
W that correspond to the 2n literals of f. Any truth
assignment o to the variables makes exactly n literals
‘true’. We demand that the n associated subspaces
span the fixed vector w iff f(o) = 1. The size mea-
sure for this model is the sum of dimensions of the 2n
subspaces.

It is quite simple to see that span program size
is a lower bound on the size of symmetric branch-
ing programs. The important connection we prove is
that span program size is a lower bound on counting
branching programs. We then prove that span pro-
grams for Majority require super-linear size, implying
the afore mentioned lower bounds. We use linear alge-
bra, and duality in particular, to develop a notion of
canonical span programs. These are as strong as the
general model, but for which lower bounds are easier
to obtain. The canonical model is also useful in estab-
lishing that span program size is a natural complexity
measure for Boolean functions, in that it cannot in-
crease when applying restrictions. Note that this is
not obvious from the definition.

We also study the monotone version of span pro-
grams, in which we assign subspaces only to the n
positive literals. This model is interesting for several
reasons. First, note that it computes only monotone
functions, but that computation itself entails non-
monotone operations, namely linear algebra over fi-
nite fields. Second, we obtained tight bounds for the
size of monotone span programs for threshold func-
tions, and discovered that in this model (unlike any
other) all these functions (other than AND, OR) are
equivalent: Majority, Threshold-2 and all the rest re-
quire size exactly ©(nlogn). Third, we show that
this model captures in a natural way information the-
oretic secret sharing in the sense of Shamir [20]. It
enables us to extend the result of Rudich [19], and
enlarge the class of functions for which such efficient
secret sharing schemes exists. In the other direction,
existing schemes can provide upper bounds for span
programs, and indeed the O(nlogn) upper bound for
Majority was inspired by Shamir’s construction.

Finally we describe the evolution of the idea to use
span programs for lower bounds. It was inspired by
the papers [18] and [9], both of which have as a com-
mon ancestor the paper [16]. In [16], Razborov in-
troduced his generalized approximation method. He
showed how to assign to every Boolean function f a
set cover problem (Apn(f),Sar(f)). Here Ap(f) is
the universe to be covered, and Sy;(f) is a family of
its subsets from which a cover should be constructed.
The subscript M refers to the fact that this universe is

(essentially) all Monotone functionals on the the zero
set of f. He proved that the minimum cover number,
drm(f), is a lower bound on the Boolean circuit size
for f. Moreover, this number is tight up to polyno-
mial factor, and can thus be used to characterize P.
While no super-linear circuit size was proved yet by
this (or any other) method, Razborov successfully ap-
plied this general approximation method to branch-
ing programs. In [18] he defined a cover problem
(An(f), S (f)), with the same universe but with
a smaller family of subsets. He showed that the cover
number 8/5;(f) exactly equals the size of nondeter-
ministic branching programs for f (and thus charac-
terizes N'L). Finally he was able to prove a super-
linear lower bound on 67y (Majority) which implied
the lower bound mentioned above.

In [9] we proposed a variant to the approximation
method in which the universe to be covered is the set
of all Linear functionals on the set of zeros of f. We
proved that the associated cover number ¢ (f) of the
cover problem (Ar(f),S.(f)), lower bounds non- de-
terministic circuit size, and can be used to charac-
terize N'P. By combining the ideas in [18] and [9],
we got a restricted cover number that lower bounds
the size of Counting Branching Programs. Moreover,
the restricted cover problem (Ap(f),S/(f)) simpli-
fies, after linear algebra manipulations, to our primary
model: the Span Program.

2 Background

We define all models nonuniformly. This makes the
lower bounds stronger. On the other hand, all up-
per bounds will be easily seen to be logspace-uniform.
When using asymptotic notation we think as usual of
a family of functions parameterized by n.

Definition 1 A Branching Program is a directed
acyclic labeled graph G(V,E,u) with two specified
nodes s,t € V and a labeling p: E — {x5|i € [n], e =
0,1} U {1} (where we use ' = x and 2° = z). The
size of G, s(QG), is defined as the number of edges not
labeled 1. We say that a Branching Program is deter-
ministic if G is restricted to have exactly two outgoing
edges from every vertex (but t), labeled by complemen-
tary literals.

For every (input) sequence o € {0,1}" define
G,(V, E,) to be the (unlabeled) subgraph of G with
e € E, iff either pu(e) =1, or p(e) = z§ and 0; = e.

The table in figure 1 gives several accepting crite-
ria, restrictions on the program, the notation for the

Accepting Criteria | Restriction on BP | Program size | Complexity Class
1 (mod 2) none ®BP(f) aL

1 (mod m) none mod,,, BP(f) mod,, £

>0 none NBP(f) NL

>0 G undirected SBP(f) SL

>0 deterministic BP(f) L

Figure 1: The different complexity classes

smallest size of a Branching Program with the given
criteria and restrictions and the class defined by al-
lowing polynomial complexity. The accepting criteria
of an input o € {0,1}" are in terms of the number of
s —t paths in G,.

The classes NL, SL and £ are called non-
deterministic, symmetric and deterministic logspace
respectively. It is clear that £ is contained in all four
other classes, and that SL C N L. No other nontrivial
relationships were known. Later we will prove that S£
is contained in ®L. We will denote by mN L, mSL
and m.L the monotone analogues of N'£, SL and £ de-
fined by allowing only positive literals to label edges
of the branching programs.

There are no lower bounds known for alge-
braic branching programs. Neciporuk [11] pre-
sented a method which yields lower bounds of the
form Q((n/logn)?) for deterministic branching pro-
grams. Pudldk [13] observed that the method yields
lower bounds of the form Q(n®?/logn) for non-
deterministic branching programs. Here we observe
that Pudlak’s idea carries over to the algebraic model:

Fix a partition of the variable set [n] into k dis-
joint subsets A;, i € [k]. For every i € [k] let ¢;(f) be
the number of distinct subfunctions of f on the vari-
ables A; obtained by fixing the remaining variables to
constants in all possible ways.

Theorem 1 With the notation of the above paragraph,

®BP(f) > % > Viogai(f)

i€[k]

Proof: The idea is very simple. If G(V, E,) is the
given program (nondeterministic or GF(2)) comput-
ing f, any fixing of the variables outside A; to con-
stants results in a reduced branching program for the
resulting subfunction. Let E; be the edges of F which
u labels by literals from A;, and let V; be the vertices
touched by these edges. Then without loss of general-
ity the reduced program uses only the vertices V;, on
which we have the edges E; and perhaps some extra

edges labeled 1 that resulted from fixing values. But
there are at most 2/V¢I* different possible programs,
and as |V;| < 2|E;| and the size of M is 2iem | Eil,
the bound follows. [|

Let ED, be the function which receives n num-
bers in the range {1,---,n?} and decides whether all
n numbers are distinct.

Corollary 1 ®BP(ED,) = Q(n*?/logn).

Proof: The element distinctness function ED,, is a
canonical example of a function having many subfunc-
tions (see [4]). The partition of variables is the nat-
ural one, a part for each integer (2logn bits). The
number k of parts is n/(2logn), and for every part
ci(ED,,) =29,]

3 The basic model: Span Programs

We first need some notation. Let K be a field! and
W a vector space over K. We implicitly fix a basis
for W, and denote by 1 (0) the vector in W all of
whose entries are 1 (0). For vectors w,z € W we let
w - z denote their inner product. The dimension of
a subspace Z C W is denoted dim(Z), and the affine
dimension of an affine subspace Z is denoted adim(Z2).

Let M be a matrix over K, and s,t vectors over K.
Then sM and Mt denote left and right multiplication
with M, where we always assume that the dimensions
“match”, and do not bother distinguishing between
row and column vectors. The span of M, denoted
span(M) is the subspace generated by the rows of M,
i.e. all vectors of the form sM.

Definition 2 Fiz a field K. A span program over K
is a labeled matriz M (M, p) where M is a matriz over
K and p : rows(M) — {z|i € [n],e = 0,1}. The
size ofM is the number of rows in M.

1An extension to arbitrary rings is possible, but we avoid it
here.

For every input sequence o € {0,1}" define the
submatrix M, of M by keeping only rows r such that
p(r) = ¢ and 0; = e. We say that M accepts o iff
1 € span(My,).

REMARK: Note that the vector 1 in the definition
can be replaced by any fixed nonzero vector (as will
sometimes be convenient) via a change of basis.

Observe that this definition of a span program is
equivalent to the one given in the introduction, and
in particular we will denote by X the subspace gen-
erated by the rows associated with z{. In this way,
S(N) = ¥, . dim(XE).

We denote by SPx(f) the size of the smallest
span program computing f (over K) and by PSPg
the class of all languages for which this size mea-
sure is polynomial. When K = GF(p) we abbreviate
PSPGF(p) by PSPP

A span program M (M, p) is called monotone if the
image of p is only the positive literals {x1, ..., z,, }. It is
evident that M computes a monotone function, and it
is an easy exercise to see that every monotone function
can be computed by a monotone span program. Define
mSPk(f) to be the smallest size of a monotone span
program for f, and by mPSP g the complexity class
of languages for which this measure is polynomial.

The connection between this model and counting
branching programs can be established using the re-
sults of [5]. They show that testing linear dependence
(as well as most other natural linear algebra problems
like computing rank and determinant) is a complete
(under logspace reductions) problem for the counting
programs.

Theorem 2 For every prime p, PSP, = mod,L.

Proof: Follows from the arguments of [5]. [|

Note that, as there is a polynomial loss in the sim-
ulation between the two models, it does not suffice to
prove super-linear bounds. For this purpose we prove
the much tighter connection for programs over GF(2):

Theorem 3 For every function f, SP(f) < 2@
BP(f).

Proof: Let G(V, E, i) be a branching program (over
GF(2)), with s,t € V its source and sink respectively.

We shall be interested in all intermediate functions
computed by the branching program. For every vertex
a € V (resp. edge e € E) we define the functions f,
(resp. fe) computed at that vertex (resp. edge) in
the natural way: for every o € {0,1}", fu,(0) =1
(resp. fe(o) = 1) iff there is an odd number of paths
in G, from s ending in the vertex a (resp. the edge

e). We have the following relations (denoted (x) for
later use) between these functions, which capture the
local computation in this model.

1. If e is an edge whose tail is the vertex a, then
fe = fa A M(e)'

2. If B C F is the set of all edges whose head is the
vertex b € V then f, = ®ecpfe

Let f = f; be the function computed by G, and
U = f71(0) be the zero set of f. Let 2V = {h :
U — {0,1}} be the set of all Boolean functions on
U, which we identify with the vector space GF(2)V of
all binary vectors indexed by U. The functions &, A
act on 2V in the natural way, i.e. component-wise.
In what follows, we will restrict functions to U so that
two functions will be rendered as equal if they agree on
U. For a function g, we will denote by g its restriction
to U. We will abuse notation and look at g as both
an element of 2V and of GF(2)V. Note that the local
conditions () are still satisfied by the functions f,
and f,. Also, note that f, =1 and f, = 0.

We will work with the set R of all odd vectors in
GF(2)V (having an odd number of 1’s). We shall view
members 7 of R as linear functionals on GF(2)V, act-
ing by inner product r - h. Every such vector r € R
defines an input o(r) € {0,1}" by o(r); = r - x,.
(Note that since r is odd the complements o(r); are
consistently defined by 7 - x0.) We say that r € R is
consistent if for every edge e = (a,b) € E it satisfies
the condition:

if u(e) = af then (r- f) A (r-xf) = r-(f, Nxs).

Claim 1 For every o € {0,1}", f(o) = 0 iff there
exists a consistent r € R such that o(r) = 0.

Proof: We prove both implications.

(=) Assume f(o) =0, thus o € U. Define r to be
the characteristic vector of {c} (i.e. r(u) =1 iff u =
o). Clearly, r € R. Also, for such r and any function
h we have r - h = h(c). Therefore, the conditions (x)
imply the consistency of r.

(<) Assume r € R is consistent, and let o = o(r).
We shall prove that for all @ € V|, e € E we have
falo) =r- f, and f.(0) = r- f.. This is proved by
induction on the topological ordering of G. It clearly
holds for the source s, as for odd r, r- f, = r-1=
1 = fs(o). For the induction step we have two cases,
as in (x).

1. If e € E has its tail in vertex a, and p(e) = 1, then
because r is odd and by the inductive hypothesis

we have r- (£, A1) = (r-f) A(r1) = fu(o) =
fe(o).

2. If e € E has its tail in vertex a, and u(e) = xf,
then by consistency of r and the inductive hy-
pothesis we have r- (f,Ax§) = (r-f)N (r-x§) =
falo) Nof = fe(o).

3. If B C F is the subset of edges with their head in
vertex b then, by linearity of the action of r and
the inductive hypothesis, we have 7+ (®eepf.) =

@eeB(r- o) = Beenfe(o) = fi(o).

Finally, f(o) = fi(oc) = r- f; = r-0= 0, which
concludes the proof. [|

Next we show that testing the consistency of r on
any edge e requires only two linear tests.

Claim 2 Given r € R and o = o(r), r is consistent
on e = (a,b) with u(e) = x5 iff

0;=0 — r(foAz})=0and g; =1 — r-(f,Axd) =0

Proof: By inspection.]

The above claims suggests the following construc-
tion of a span program that computes f, and has
size (number of rows) which is twice as large as the
size of G. Construct M (M, p) such that for every
e = (a,b) € E with p(e) = zf there are two rows
in M: one is f, A x; which p labels by z¥ and the
second is f, Az which p labels by x}.

Finally, we have to show that the program M just
defined computes f. First observe that by Claim 2,
any vector 7 € R is consistent iff M, (,)r = 0. This ma-
trix vector product is just a concise way of simultane-
ously checking the test of Claim 2 for every edge. Sec-
ond, by Claim 1, it follows that for every o € {0,1}",
f(o) = 0 iff there exists an r € R with o(r) = o and
M,r = 0. Third, since r is odd, by duality the condi-
tion M,r = 0 holds iff 1¢& span(M,). It now follows
from the definition of computation by span programs
that M computes f-]

4 Symmetric vs. Counting Logspace

As stated in the introduction, no relationship is
known between the classes NL and ©L. In this sub-
section we will show that uniform symmetric logspace
is contained in uniform mod,L for all p. Note that
SL C L/poly follows from the results of [1].

Theorem 4 For every p, SL C mod, L.

The theorem will follow from theorem 2 together
with the following theorem.

Theorem 5 For every field K, SL C PSPg. Also,
mSL C mPSPk.

Proof: The proof follows simply from the fact that a
graphic matroid can be represented as a regular ma-
troid over any field K. This will yield a small span
program for any function in SL. We briefly review
the construction.

Let G(V, E, 1) be a symmetric branching program
for a function f, with s,t € V its special vertices.
Recall that G is an undirected graph, and that f(o) =
1 iff there is an st-path in G,. Fix a field K, and a
basis {v, : a € V'} for the vector space K.

The span program M (M, p) is constructed as fol-
lows. For every edge e = (a,b) € E add the row v, — vy
to M and label this row by p(e). It is immediate that
there is an st-path in G iff M, spans the vector vs—uvy.
Therefore M computes f, and its size is | E]. [|

5 Canonical Span Programs

The results in this section are stated for span pro-
grams over GF'(2), but can be easily extended to pro-
grams over any field K. We show that, for purposes
of lower bounds, it suffices to consider span programs
of a special form.

Definition 3 Let M(M, p) be a span program com-
puting f. We say that M is canonical if the columns
of M are in 1 — 1 correspondence with the zeros U of
f, and for every u € U, the column corresponding to
u in M, is 0.

Note that the span program constructed in the
proof of theorem 3 is canonical.

Theorem 6 Every span program can be converted to
a canonical span program of the same complexity and
computing the same function. Moreover, the conversion
preserves monotonicity.

Proof: Given a span program M (M, p) computing f
we construct a canonical span program N (N, p) for f
with the same row labeling p (and in particular the
same number of rows) as follows. Fix v € U. By
definition 1¢ span(M,,) and thus by duality there ex-
ists an odd vector r(u) (whose length is the same as
a row in M) satisfying M,r(u) = 0. Define the col-
umn corresponding to u in N to be Mr(u). Doing this
for all u € U defines N and guarantees that it rejects
every u. To see that N accepts all ones of f, fix o
with f(c) = 1, and let w(o) be the linear combina-
tion such that w(o)M, = 1. But since r(u) is odd for

every u € U, then w(o)M,r(u) = 1-r(u) = 1. We get
w(o)N, = 1 as required.

Note that since p is preserved, if M was monotone
than so is N. []

An important application of Theorem 6 is that the
size measure S P, is monotone under restrictions. Say
that g is a restriction of f if g is the result of giving
a truth assignment to a subset of the variables of f
(g will be a function of the remaining variables). It is
natural to demand from any complexity measure ¢ on
Boolean functions that ¢(g) < ¢(f) in this case. For
measures like circuit size and depth this is immediate.
However note that from the definition of span pro-
grams it is not clear whether such a relation holds for
SP,. The problem is that, if M computes f, there is
no obvious way of getting rid of the rows correspond-
ing to the literals that were set to “true”. Still, using
Theorem 6 we can prove

Theorem 7 If g is a restriction of f, then SPy(g) <
SPy(f). Moreover, if f is monotone, then also
mSPy(g) < mSPy(f).

Proof: It will clearly suffice to prove the theorem
when ¢ is obtained from f by setting the variable z;
to 1. Let]\Z(M7 p) be a canonical span program for f
of size SPy(f). Define the span program N(N, pl) as
follows. Let Uy be the subset of U of zeros of f whose
first coordinate (corresponding to x1) is 1. Then the
matrix IV is the submatrix of M on the rows p labels by
literals other than z1, 29, and columns corresponding
to U;. The labeling p/ is the same as p on the rows of
N.

Now we show that N computes g. The zero set
of g is simply all vectors in U; with first coordinate
removed, and clearly N rejects all of them. To see
that N accepts all ones of g it suffices to note that,
since M is canonical, every coordinate in M whose
row was labeled 1 and whose column is from Uy is 0.
If g(o) = 1, also f(1o) = 1 and 1€ span(Mi,), but by
this observation, in the columns Uy, the rows labeled
x1 were of no use for this span, and so 1€ span(N,)
as well.

Again note that this construction leaves a mono-
tone span program monotone. |

6 Lower bounds on Span Programs

6.1 Affine dimension

We start by giving a lower bound on the size of a
span program for a function f in terms of the affine

dimension of a graph associated with f. This algebraic
measure has been proposed as a source of lower bounds
for formulae and Boolean branching programs, and
has been studied in [14, 17].

Fix a field K and fix a partition of the variables of
f into two sets A, B. Thus every sequence o € {0,1}"
decomposes in a natural way into o € {0,1}* and
o8B € {0,1}® such that ¢ = 6 0 0® (o denotes con-
catenation). A representation y of f in a vector space
W (over K) assigns to every sequence 7 € {0,1}4 U
{0,1}7 an affine subspace x(7) of W such that for
every o € {0,1}", f(o) = 0 iff x(c?) N x(cB) = 0.
Define adimg (f) to be the smallest dimension of a
vector space W for which such a representation exists.

Theorem 8 For every field K and every function f,
adimg (f) < SPk(f)

Proof: Fix a field K, and let M(M, p) be a span
program for f. Let [n] = AU B be a partition of the
variables of f.

The underlying vector space we will use to represent
f is the span of all rows of M. To any sequence o €
{0, 1} assign the closure of the union of the subspaces
{Xf : i€ Aand e = 0}, To every o? € {0,1}8
assign the affine subspace obtained by adding 1 to
all vectors in the closure of the subspaces {X{ : i €
B and € = 0P}. This defines the required mapping
x. It is easy to check that for every o = ¢4 o 0P,
1 € span(M,) iff x(a?) N x(cB) #£ 0. [

6.2 A lower bound for Majority

We now proof a lower bound for the size of any
Span Program for Majority. Let M AJ, be the func-
tion which returns 1 if strictly more than half the in-
puts are one.

Theorem 9 SP2(MAJ,) = Q(nlogloglog™ n).

Proof: Let J\Z(M7 p) be a canonical span program
that computes M AJs, of size nh. An easy argument
shows that at most n variables are associated with no
more than h rows each. Fix the rest of the variables
arbitrarily with n—s+2d zeros and s—2d ones where s
and d are parameters to be specified later. By theorem
7, there is a span program N (N, p) that computes this
particular restriction of Majority and it is easy to show
that in N every variable is associated with at most h
rows. Also, it is easy to see that N accepts all vectors
with n — s + 3d ones but rejects all vectors with only
n — s + d ones.

We will show that any span program N where each
positive literal is associated with h rows and which

rejects all vectors with n — s + d ones, rejects a vector
with n — s + 3d ones as well. This will give us the
desired lower bound. Note that the number of rows
in N associated with negative literals is inmaterial for
the argument.

We will use the following Ramsey-like combina-
torial statement. A similar statement is implicitely
proved in [18]. We will use [n]* to denote all k subsets
of [n]. Let q = 2".

Proposition 1 Let the parameters ¢, d, s, n satisfy d =
(2¢)!, 4dg+d < s < 0.1log"n. Let x; : [n]*~¢ — [q]
be a collection of colorings, one for every i € [n]. Then
there exists a set A € [n]® and three disjoint d-subsets
of A, By, By, Bs, such that the three sets (in [n]*~¢)
C, = A\By, | € Z3 = {0, 1,2} satisfy the following?: For
every | € Z3 and for every i € B; we have x;(Cjy1) =
Xi(Ci42).

We will defer the proof of the proposition for later
and finish the proof of the theorem.

Recall that N is a cannonical span program that re-
jects all vectors with n — s + d ones. We shall restrict
our attention to the columns of N associated with
these vectors. Furthermore, we will associate these
vectors with elements in [n]*~? by complementation.
Let yi : [n]*~¢ + {0,1}" be defined as follows: x;(S)
is the restriction of the column associated with S to
the rows labelled by z;. Clearly, x; can be looked at
as functions whose range is [q] (recall that ¢ = 2").

Let A and By, C; for | € Z3 be the sets guaranteed
by proposition 1. Let u; be the characterisitic vector
of the complement of C; for i € Z3 and v = u; PusPus
(it is easy to see that v = u; V us V ug as well). Note
that each of the vectors u; have n — s + d ones and v
has n — s + 3d ones. We will show that N rejects v.
Consider the vector r» which has a 1 in the positions
indexed by the vectors u; and 0 elsewhere. We will
show that N,r = 0 and, hence, by duality we have
that 1 & span(N,).

Recall that by definition of N the column corre-
sponding to u; in N,, is 0 for ¢ € Z3. Also note that
multiplication by r simply adds these three columns,
but that we look only at rows whose label is set to
‘true’ by the assignment v. Consider a row associated
with a literal y. We distinguish three cases:

oy = x?. In this case, each u; have a 0 in position
7 so that each of the three columns have a zero in
this row. Hence the sum in this coordinate will
also be zero.

2We choose the indices from Z3 as we shall perform on them
addition modulo 3.

oy = x; with 7 ¢ A. Again, all three vectors u;
have a 1 in position j so that each of the three
columns have a zero in this row. Hence the sum
in this coordinate will also be zero.

oy = le with j € B; for some i € Z3. Then u;
have a 1 in position j and therefore its associated
column have a 0 in position j. For the other two
columns, we are guaranteed by the proposition
that the value of this coordinate is the same in
both. Thus also here the sum of the three columns
in this coordinate is zero.

Choosing the largest possible value for s (as a func-
tion of n) in Proposition 1 and computing from it
maximum values for the other parameters, we get the
desired bound.]
Proof:[of Proposition 1] The proof given here follows
the ideas in [18], together with a simplification sug-
gested to us by A. Razborov.

Define the coloring 9 : [n]*~% [¢]*~? as follows:
if ¢ = {il,ig, cee ,Z'S,d} with 47 < .-+ < i5_g4, then
BH(C) = (xir (C), X6 (€)1, 4 (C)).

It follows from Ramsey’s Theorem (see e.g. [7]) that
there exists a subset A € [n]® and a vector v € [g]*~¢
such that every subset C' C A, |C] = s — d satisfies
Y(C) =v.

Now assume without loss of generality that A = [s].
To specify the subsets B, it suffices to give a coloring
¢ : [s] = {0,1,2, %} so that exactly d elements from [s]
are mapped to each of the colors 0,1, 2 (representing
the sets By, B1, Ba resp.). Think of ¢ as a vector in
{0,1,2, *}[5] and let QAS be the vector that we get from
é by deleting all *’s (a vector in {0,1,2}39). Call ¢
regular if it satisfies ¢ = (071727)%/" for some r < 2¢
(note that r divides d = (2¢)!).

For any regular ¢, the definition of ¢ and the choice
of A guarantees that if ¢ € By then by regularity the
rank, k, of ¢ in both C; and Cj is the same (it is
|[] \ B1| = [[i] \ Bz|) and thus x;(C1) = xi(C2) = vg.
An identical argument holds for every i € Bs.

To handle the remaining case, ¢ € Bj, notice that
by regularity the rank of ¢ in Cy and Cy differs by
r exactly. Therefore, we will choose a regular ¢ for
which every i € By satisfies vy = Vpp(i)4r, Where
rk(i) = |[i] \ Bo| is the rank of i in Cy. That such a
choice is possible follows immediately from the follow-
ing claim.

Claim: For every vector v € [q]*~¢ there exists
r < ¢ and a set of positions K C [s — d] of cardinality
|K| = (s—d)/4q such that for every k € K, vi, = vgtr.
Proof:[of claim] Mark each position k € [s — d + 1]
with an integer r(k) < 2¢ which is the smallest integer

for which vy = vgqr(k), or set 7(k) = BIG if there is
no such integer. By the pigeonhole principle at most
half the positions can be marked BIG, and so for some
r < 2q at least (s — d)/4q of the positions (which we
choose as the set K) satisfy r(k) = r. [|

Let us see how to use this claim to construct ¢. Go
through the elements of A = [s] in order. Color the
first » with color 0, then the next available r elements
of K with color 1, then the next r elements with color
2, and repeat this process d/r times. Color all the
skipped elements *. By the claim |K| > (s — d)/4q
which is larger than 3d. Therefore, the process will
terminmate succesfully.]

Corollary 2 ®BP(MAJ,) = Q(nlogloglog™ n).

Corollary 3 ©BP(TF) = O(n) iff either k = O(1) or
n—k=0(1).

7 Monotone Span Programs

Monotone analogues of Boolean complexity classes
are studied in [8]. We will adopt their notation of mC
to denote the monotone analogue of the class C. Re-
call that a branching program is monotone if we use
only positive literals to label its edges. For the alge-
braic computation model of branching programs this
restriction is clearly useless, as the model still com-
putes nonmonotone functions. However, it is interest-
ing to study monotone span programs. Recall that a
span program M (M, p) is called monotone if the image
of p is only the positive literals {z1, ...,z }

A curious thing about this model is that it uses
nonmonotone operations (linear algebra over a field)
to compute monotone functions. Thus, for example
we don’t even know if mPSPy; C mP. In studying
the complexity of threshold functions in this mono-
tone model we reveal another curious property unique
to this model: except the trivial AND and OR, all
threshold functions are equivalent. For 0 < k < n
define T to be the Boolean function which accepts
vectors with at least k ones.

Theorem 10 For k € {1,n}, mSP,(T*) = n. For
1<k <n, mSP(TF) = ©(nlogn).

This theorem follows from the following two theo-
rems.

Theorem 11 mSP(T?) > nlogn.

Proof: The proof is an algebraic variation on the
nlogn lower bound on the formula size for T2 [10].

Let M (M, p) be a monotone span program for T2.
Let t be the number of columns in M, and R the
set of odd vectors in GF(2)!. Clearly |R| = 2!71.
Let d; = dim(X}). For a subspace V of GF(2)!, its
orthogonal complement, V=L, is defined as the set of
vectors orthogonal to every vector in V.

For every i € [n] let R; = RN (X})L. Since M
rejects vectors of weight one, 1 ¢ X}, and so for every
1, |Rz| =2t—1-d:

We now claim that R;NR; = (). To see this, observe
that for every pair i # j we must have that the vector
1 is in the closure of X} and le (as M accepts the
vector with ones in positions ¢ and j). Therefore, for
some u; € X and u; € Xj, u; ® u; = 1. If there
exist a vector r € R; N R;, then r-1 =1 while r-u; =
r-u; = 0, a contradiction.

We finish the proof by noticing that the previous
two paragraphs imply that 37, ot=1-di < 9t=1 and
by Jensen’s inequality Eie[n] d; > nlogn.]

Theorem 12 mSP(TF) = O(nlogn).

Proof: The proof will be derived from a simple con-
struction showing mSPk(TX) = n whenever |K| >
n+ 1, which in turn is based on the same idea behind
Shamir’s secret sharing scheme for threshold func-
tions [20]. We will choose K = GF(2!) with [the
smallest integer > logn. It will be easy to see that
a similar proof will work for any characteristic p and
yield mSP,(MAJ,) = O(nlog,n).

Let a; for 0 < i < n be n 4+ 1 distinct nonzero
elements of GF(2'). For 0 < i < n define the vec-
tors v; = (a2, al,---,a¥™1) in GF(2Y)*. Clearly every
k such vectors are linearly independent over GF(2).
This suggests the following span program M (M, p)
over GF(2)!. M is an n x k matrix whose ith row
is v; and is labeled z;. It follows that for every subset
S C [n], vo € span(Ms) iff |S| > k, and thus M com-
putes 7. A change of basis can be used to replace
the spanned vector vy with the vector 1.

To derive from M a span program over GF(2) for
Tk, fix a representation of the elements of GF(2!) as
vectors in GF(2)! in the usual way (i.e. these vectors
are degree ! polynomials over GF'(2) with addition and
multiplication performed modulo a fixed irreducible
polynomial). For a € GF(2') denote its representation
by @ = (ag,a1,---,a;_1) € GF(2)!. Similarly, any
vector v € GF(2Y)* can be viewed as a vector v €
GF(2)k.

The important property we use is that multiplica-
tion in this representation is a bilinear operator. Thus,
there are | x [matrices A;, 0 < j <1 —1 such that if

a,b € GF(2!) then for every j, (ab); = aA;b. Now we

can “encode” every element b € GF(2') by an [x [ma-
trix whose jth column is AjB. Then multiplication by
b (over GF(2!)) becomes vector product over GF(2)
by the encoding matrix.

This leads to the construction of the span program
N(N, pt) over GF(2). Simply replace every element in
M by its [x I encoding, which makes IV of dimensions
nl x kl. For every row in M labeled z; by p, each of
the corresponding ! rows in N will be labeled z; by pr.
It is now routine to check that Ng spans the vector
7o iff Mg spans vy, and thus N computes Tff as well.
The size of M is nl < 2n log n as required. |

8 Monotone Span Programs and secret
sharing

It turns out that our monotone model captures in
an elegant way secret sharing schemes in the infor-
mation theoretic model. Informally, a secret sharing
scheme for a monotone function f prescribes a way for
a “sender” having a secret s € K to “break it” into n
parts s; € K% satisfying the following: Let T € [n] be
a subset of the pieces, and denote by f(T") the function
f evaluated on the characteristic vector of T'. Then if
f(T) =1 the pieces {s; : ¢ € T} determine s, while if
f(T) = 0 these pieces give no information whatsoever
about s. The size of such scheme is Eie[n] d;. Such a
scheme was first described to us by Rudich [19].

Theorem 13 For every prime p, every monotone func-
tion has a secret sharing scheme (over GF(p)) of size
mSE,(f)

Proof: Fix a prime p, set K = GF(p) and let
M (M, p) be a monotone span program for a mono-
tone function f. Let d; be the number of rows labeled
x; by p, and M; the submatrix of M consisting of these
rows. Let ¢ be the number of columns in M.

Let s € K be the secret, and let W = {w € K :
w-1= s}. Let w € W be chosen uniformly at random,
and define the “random pieces 7 q; € K% for every
i € [n] by g; = M;w. Further, for any subset T C [n)]
let gr = Mprw, where Mp is the matrix associated
with the characteriztic vector of T. Note that qr is
just the concatenation of the vectors {gq; : i € T}.
The theorem follows from the following claim:

Claim 3 If f(T) = 1 then s can be efficiently deter-
mined from qr. Conversely, If f(T) = 0 then for
everya € K, P[s=al|qr] =1/p.

To prove the first part, assume that f(7) = 1.
Then, by definition, there is a vector v such that

vMp = 1 (and this vector can be easily computed
from M). Then s = 1w = vMprw = vqr.

To prove the second part, assume f(T) = 0. By
duality, there is a vector z € K such that Mpz = 0,
but 1.z # 0. Then for any ¢, to any w such that
Mrw = q we can associate the p vectors w; = w +
jz, j € Zp. Note that Mrw; = ¢ as well, but the
values 1 -w; are all distinct and exhaust GF(p). This
breaks up the probability space {w : Mprw = ¢} into
p equiprobable classes, each giving s a different value,
which concludes the proof of the claim.]

The function f is efficiently sharable if there is a
polynomial size sharing scheme, and all computation
involved in encoding and decoding is in polynomial
time. We have proved:

Corollary 4 All functions in mPSP,, are efficiently
sharable (over GF'(p)).

This result is a generalization of a result of
Rudich [19] who showed that all functions in mSL are
efficiently sharable. Recall that by Theorem 5 (see
subsection 4) mSL C mPSP g for every K. It is not
clear how tight the upper bound in Theorem 13 is. It
seems that by appropriately defining linear schemes
by restricting all functions used in construction and
decoding to be K-linear over the secret and the ran-
dom strings, this theorem should become tight. In
fact, the upper bound of Theorem 12 was inspired by
Shamir’s secret sharing scheme for threshold functions
[20]. Tt seems that we should be able to use existing
linear schemes to give complexity upper bounds. We
have not tried to formalize this yet.

Acknowledgments

We are very grateful to A. Razborov for his obser-
vations which lead us to a simpler proof of proposi-
tion 1. We are also grateful to P. Pudlak for helpful
comments.

References

[1] R. Aleluinas, R. M. Karp, R. J. Lipton, R. J.
Lovasz, and C. Rackoff. Random walks, univer-
sal sequences and the complexity of maze prob-
lems. In Proceedings of the 20th IEEE Symposium
on Foundations of Computer Science, pages 218—
223, 1979.

[2] E. Allender. A note on the power of threshold
circuts. In Proceedings of the 30th IEEE Sympo-

sium on Foundations of Computer Science, pages
580-584, 1989.

3]

[10]

L. Babai, P. Pudldk, V. Rédl, and E. Sze-
meredi. Lower bounds in complexity of symmet-
ric Boolean functions. Theoretical Computer Sci-
ence, pages 313-323, 1988.

R. B. Boppana and M. Sipser. The complex-
ity of finite functions. In Jan van Leeuwen, ed-
itor, Handbook of Theoretical Computer Science,
vol. A (Algorithms and Complexity), chapter 14,
pages 757-804. Elsevier Science Publishers B.V.
and The MIT Press, 1990.

G. Buntrock, C. Damm, H. Hertrampf, and
C. Meinel. Structure and importance of the
logspace-mod class. Math. Systems Theory,
25:223-237, 1992.

L. Goldschlager and I. Parberry. On the construc-
tion of parallel computers from various bases of
boolean functions. TCS, 43:43-58, 1986.

R. L. Graham and B. L. Rothchild and J.
H. Spencer. Ramsey Theory Wiley-Interscience,
1980.

M. Grigni and M. Sipser. Monotone complexity.
In M. Paterson, editor, Proceedings of LMS work-
shop on Boolean function complexity, Durham.
Cambridge University Press, 1990.

M. Karchmer and A. Wigderson. Characteriz-
ing non-deterministic circuit size, To appear in

STOC’93.

R. E. Krichevskii. Complexity of contact cir-
cuits realizing a function of logical algebra. Dok-
lady of the Academy of Sciences of the USSR,
151(4):803-806 (in Russian), 1963. English trans-
lation in Soviet Physics Doklady 7:4, pages 770—
772 (1964).

E. I. Nec¢iporuk. On a Boolean function. Dok-
lady of the Academy of Sciences of the USSR,
169(4):765-766 (in Russian), 1966. English trans-
lation in Soviet Mathematics Doklady 7:4, pages
999-1000.

C. Papadimitriou and S. Zachos. Two remarks on
the power of counting. In Proceedings of the 6th
GI conference on Theoretical Computer Science,
Lecture Notes in Computer Science, 145, pages
269-276, Berlin, 1983. Springer-Verlag.

P. Pudldk. Private communication.

P. Pudldk and V. Rédl. A combinatorial approach
to complexity. Combinatorica, 12:221-226, 1992.

[15]

[16]

[17]

[18]

[22]

[23]

A. Razborov. Lower bounds on the size of
bounded-depth networks over a complete basis
with logical addition. Mathematical Notes of the
Academy of Sciences of the USSR, 41(4):598-607,
1987. English translation in 41:4, pages 333-338.

A. Razborov. On the method of approximation.
In Proceedings of the 21st ACM Symposium on
Theory of Computing, pages 167-176, 1989.

A. Razborov. Applications of matrix methods to
the theory of lower bounds in computational com-
plexity. Combinatorica, 10(1):81-93, 1990.

A. Razborov. Lower bounds on the size of
switching-and-rectifier networks for symmetric
Boolean functions. Mathematical Notes of the
Academy of Sciences of the USSR, 48(6):79-91,
1990.

S. Rudich. Private communication.

A. Shamir. How to share a secret. CACM, 22:612—
613, 1979.

R. Smolensky. Algebraic methods in the theory
of lower bounds for Boolean circuit complexity.
In Proceedings of the 19th ACM Symposium on
Theory of Computing, pages 77-82, 1987.

S. Toda. On the computational power of PP and
@®P. In Proceedings of the 30th IEEE Symposium
on Foundations of Computer Science, pages 514—
519, 1989.

L.G. Valiant and V.V. Vazirani. NP is as easy as
detecting unique solutions. Theoretical Computer

Science, 47:85-93, 1986.

