
Foundations and Trends Rchar∞∋ in
sample
Vol. xx, No xx (xxxx) 1–138

cchar∞∋ xxxx xxxxxxxxx

DOI: xxxxxx

Partial Derivatives in Arithmetic Complexity
(and beyond)

Xi Chen1, Neeraj Kayal2 and Avi Wigderson3

1 Columbia University, New York 10027, USA, xichen@cs.columbia.edu
2 Microsoft Research, Bangalore 560080, India, neeraka@microsoft.com
3 IAS, Princeton 08540, USA, avi@ias.edu

Abstract

How complex is a given multivariate polynomial? The main point of

this survey is that one can learn a great deal about the structure and

complexity of polynomials by studying (some of) their partial deriva-

tives. The bulk of the survey shows that partial derivatives provide

essential ingredients in proving both upper and lower bounds for com-

puting polynomials by a variety of natural arithmetic models. We will

also see applications which go beyond computational complexity, where

partial derivatives provide a wealth of structural information about

polynomials (including their number of roots, reducibility and internal

symmetries), and help us solve various number theoretic, geometric,

and combinatorial problems.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Arithmetic circuits . 4

1.3 Formal derivatives and their properties 9

Part I: Structure 13

2 Symmetries of a polynomial 16

3 Algebraic independence 25

4 Polynomials with high arithmetic complexity 30

5 Bezout’s theorem 34

6 Algebraic extractors and the Jacobian conjecture 46

6.1 The Jacobian conjecture 47

7 The “Joints conjecture” resolved 49

8 The Stepanov method 51

8.1 Weil’s theorem on rational points on curves 52

8.2 A high-level description of the Stepanov method 58

8.3 Formal proof of Weil’s theorem 62

8.4 The Heath-Brown and Mit’kin estimates 66

i

ii CONTENTS

Part II: Lower Bounds 69

9 General arithmetic circuits 71

10 Sums of powers of linear forms 81

11 Depth-3 arithmetic circuits 86

12 Arithmetic formulae 90

12.1 Cover sets and measure functions 92

12.2 A constant-depth lower bound 93

13 Projections of Determinant to Permanent 98

Part III: Algorithms 104

14 Identity testing 106

15 Absolute irreducibility testing 113

16 Polynomial equivalence testing 118

16.1 Algorithm for minimizing the number of variables 121

16.2 Equivalence to a sum of powers 123

16.3 Equivalence to an elementary symmetric polynomial . . 125

Acknowledgements 132

References 133

1

Introduction

1.1 Motivation

Polynomials are perhaps the most important family of functions in

mathematics. They feature in celebrated results from both antiquity

and modern times, like the unsolvability by radicals of polynomials

of degree ≥ 5 of Abel and Galois, and Wiles’ proof of Fermat’s “last

theorem”. In computer science they feature in, e.g., error-correcting

codes and probabilistic proofs, among many applications. The manip-

ulation of polynomials is essential in numerous applications of linear

algebra and symbolic computation. This survey is devoted mainly to

the study of polynomials from a computational perspective. The books

[BCS97, BM75, vzGG99] provide wide coverage of the area.

Given a polynomial over a field, a natural question to ask is how

complex it is? A natural way to compute polynomials is via a sequence

of arithmetic operations, e.g., by an arithmetic circuit, as shown in

Figure 1.1 (formal definitions will be given in Section 1.2). One defi-

nition of how complex a polynomial is can be the size of the smallest

arithmetic circuit computing it. A weaker model, often employed by

mathematicians, is that of a formula (in which the underlying circuit

1

2 Introduction

structure must be a tree), and another definition of complexity may be

the formula size.

There are many ways to compute a given polynomial. For example,

f(x1, x2) = x1 × (x1 + x2) + x2 × (x1 + x2) = (x1 + x2)× (x1 + x2)

are two formulae for the same polynomial f , the first requiring 5 oper-

ations and the second only 3 operations. Finding the optimal circuit or

formula computing a given polynomial is a challenging task, and even

estimating that minimum size by giving upper and lower bounds is

very difficult. Of course, the same is also true for the study of Boolean

functions and their complexity (with respect to Boolean circuits and

formulae, or Turing machines), but in the Boolean case we have a better

understanding of that difficulty (via results on relativization by Baker,

Gill and Solovay [BGS75], natural proofs due to Razborov and Rudich

[RR94] and algebrization due to Aaronson and Wigderson [AW09]). For

the arithmetic setting, which is anyway more structured, there seem to

be more hope for progress.

Proving lower bounds for the complexity of polynomials has been

one of the most challenging problems in theoretical computer science.

Although it has received much attention in the past few decades, the

progress of this field is slow. The best lower bound known in the gen-

eral arithmetic circuit setting is still the classical Ω(n log d) result by

Baur and Strassen [BS83] (for some natural degree-d polynomials over

n variables). Even for some very restricted models (e.g., constant-depth

arithmetic circuits or multilinear formulae), a lot of interesting prob-

lems remain widely open. In this survey, we focus on the use of partial

derivatives in this effort.

The study of upper bounds — constructing small circuits for com-

puting important polynomials — is of course important for practical ap-

plications, and there are many non-trivial examples of such algorithms

(e.g., Strassen’s matrix multiplication algorithm [Str69], Berkowitz’s

algorithm for the determinant [Ber84] 1 and Kaltofen’s black-box poly-

1The first NC algorithm for the determinant, based on Leverier’s method, was given by
Csanky in 1976 [Csa76]. However, Csanky’s algorithm used divisions and was unsuitable
for arbitrary fields. Around 1984, Berkowitz [Ber84] and independently, Chistov [Chi85]

1.1. Motivation 3

nomial factorization algorithm [Kal89]). As we focus here on the uses

of partial derivatives, we will see relatively few upper bounds, but we

are certain that there is room for more, faster algorithms that use the

partial derivatives of a polynomial when computing it.

The task of understanding arithmetic circuits and formulae nat-

urally leads to the task of understanding the basic algebraic proper-

ties of the polynomials computed by such circuits and formulae. One

such question is the following: given an arithmetic circuit, determine

whether the polynomial computed by it is the identically zero polyno-

mial or not. It turns out that besides being a natural scientific question,

this question is also closely related to proving arithmetic circuit lower

bounds, as shown by Impagliazzo and Kabanets [KI04]. Other natural

structural questions relate to the symmetries of polynomials, the alge-

braic independence of systems of polynomials and more. Again, we will

demonstrate the power of partial derivatives to help understand such

structural questions.

Organization

The rest of this chapter is devoted to formal definitions of the compu-

tational models (arithmetic circuits and formulae, and their complexity

measures), and of partial derivatives.

In Part One, we demonstrate how partial derivatives can be used

to probe the structure of polynomials, via a list of very different ex-

amples. In particular, we will see how to use them to prove that alge-

braic independence has matroid structure, and to determine the sym-

metries of a given family of polynomials. Along the way we will see

that “most” polynomials have high arithmetic complexity. We will use

partial derivatives to derive simple linear algebraic proofs to some im-

portant results on the number of solutions of polynomial equations

whose initial proofs used algebraic geometry. (These will include Woo-

ley’s proof of Bezout’s theorem and Stepanov’s proof of Weil’s theo-

rem). We will also see the power of partial derivatives in resolving a

long-standing problem in combinatorial geometry [GK08, KSS10].

came up with polylogarithmic depth arithmetic circuits for computing the determinant
(and therefore also an NC algorithm for the determinant over arbitrary fields.)

4 Introduction

In Part Two, we will review some of the most elegant lower bound

proofs in the field, which use partial derivatives as a basic tool. Other

than the Ω(n log d) lower bound by Baur and Strassen for general ari-

thmetic circuits, we will also be looking at some very restricted models

of computation. The simplest one is based on the observation that ev-

ery polynomial of degree d can be expressed as the sum of d-th powers

of affine linear forms. We will see that partial derivatives allow us to

prove pretty sharp lower bounds in this model. We will also use partial

derivatives to derive lower bounds for depth-3 arithmetic circuits and

multilinear formulae. Another model of computation is based on the

observation that every polynomial can be expressed as the determi-

nant of a square matrix whose entries are affine linear forms. We will

show how the second-order partial derivatives can be used to prove a

quadratic lower bound for the permanent polynomial in this model.

Finally, in Part Three we will see how partial derivatives help in

deriving upper bounds for various algebraic problems related to arith-

metic circuits, such as identity testing, irreducibility testing and equiv-

alence testing.

Many of the chapters in these three parts can be read independently.

For the few which need background from previous chapters, we specify

it in the abstract.

1.2 Arithmetic circuits

In this section, we define arithmetic circuits.

Let F be a field. Most of the time, it is safe to assume that F is of

characteristic 0 or has a very large characteristic, e.g., char(F) is much

larger than the degree of any relevant polynomial. We will point out

explicitly when the results also hold for fields of small characteristic.

The underlying structure of an arithmetic circuit C is a directed

acyclic graph G = (V,E). We use u, v and w to denote vertices in V ,

and uv to denote a directed edge in E. The role of a vertex v ∈ V falls

into one of the following cases:

(1) If the in-degree of v is 0, then v is called an input of the

arithmetic circuit;

1.2. Arithmetic circuits 5

2
 3
 2
1
1
 3
 1
 1

1

3

2

x
1
 x
2
 x
3
 1
 x
1
 1
 x
1
 1

Fig. 1.1 A depth-3 Arithmetic Circuit over F[x1, x2, x3]

(2) Otherwise, v is called a gate. In particular, if the out-degree

of v is 0, then v is called an output (gate) of the circuit.

For most of the time, we will only discuss arithmetic circuits that com-

pute one polynomial and have a single output gate. In this case, we

will denote it by outC ∈ V (or simply out ∈ V).

Every input vertex in V is labeled with either one of the variables

x1, . . . , xn or one of the elements in the field F. Every gate is labeled

with either “+” or “×”, which are called plus gates and product gates

respectively. Each edge uv ∈ E entering a plus gate is also labeled with

an element cuv in F (so plus gates perform “weighted addition” or in

other words linear combinations of their inputs with field coefficients).

See Figure 1.1 for an example.

Given an arithmetic circuit C, we associate with each vertex v ∈ V

a polynomial Cv, as the polynomial computed by C at v. Let N+(v)

denote the set of successors and N−(v) denote the set of predecessors

of v, then we define Cv inductively as follows: If v is an input, then Cv
is exactly the label of v. Otherwise (since G is acyclic, when defining

Cv, we may assume the Cu’s, u ∈ N−(v), have already been defined):

(1) If v is a plus gate, then

Cv =
∑

u∈N−(v)

cuv · Cu, where cuv ∈ F is the label of uv ∈ E;

6 Introduction

(2) If v is a product gate, then

Cv =
∏

u∈N−(v)

Cu.

In particular, the polynomial Cout associated with the output gate

out is the polynomial computed by C. We sometimes use C(x1, . . . , xn)
to denote the polynomial Cout for short. We also need the notion of

the formal degree of an arithmetic circuit, which is defined inductively

using the following two basic rules:

(1) If v ∈ V is a plus gate, then the formal degree of v is the

maximum of the formal degrees of the vertices u ∈ N−(v);

(2) If v ∈ V is a product gate, then the formal degree of v is

the sum of the formal degrees of the vertices u ∈ N−(v).

Definition 1.1. The size of an arithmetic circuit, denoted by S(C), is
the number of edges of its underlying graph.

Given a polynomial f , we let S(f) denote the size of the smallest

arithmetic circuit computing f , that is,

S(f)
def
= min

C: Cout=f
S(C).

The second way to define an arithmetic circuit (often referred to as

a “straight-line program”), which is more convenient in certain situa-

tions, is to view it as a sequence of “+” and “×” operations:

C = (g1, . . . , gn, . . . , gm),

in which gi = xi for all i ∈ [n] = {1, . . . , n}. For each k > n, either

gk =
∑
i∈S

ci · gi + c or gk =
∏
i∈S

gi,

where c, ci ∈ F and S is a subset of [k − 1]. Similarly, we can define a

polynomial Ci for each gi and the polynomial computed by C is Cm.

As a warm up, we take a brief look at the polynomials of the sim-

plest form: univariate polynomials.

1.2. Arithmetic circuits 7

Example 1.2. S(xd) = Θ(log d). This is done via “repeated squaring”.

Note that in an arithmetic circuit, the out-degree of a gate could be

larger than 1 and there could be parallel edges.

Example 1.3. For every polynomial f ∈ F[x] of degree d, we have

S(f) = O(d). For example, we can write f = 3x4+4x3+x2+2x+5 as

f = x (x (x (3x+ 4) + 1) + 2) + 5.

Although the two bounds above (the lower bound in Example 1.2

and the upper bound in Example 1.3) hold for every univariate polyno-

mial, there is an exponential gap between them. It turns out that even

for univariate polynomials, we do not have strong enough techniques

for proving general size lower bounds.

Open Problem 1.4. Find an explicit family of polynomials{
fi
}
i∈Z+ ⊂ F[x], where fi has degree i,

such that S(fn) ̸= (log n)O(1).

See Chapter 4 for some more discussion and clarification of what

the word “explicit” means in the open problem above. We also provide

a possible candidate for this open problem:

Conjecture 1.5. S
(
(x+ 1)(x+ 2) · · · (x+ n)

)
̸= (log n)O(1).

This conjecture has a surprising connection to the (Boolean!) com-

plexity of factoring integers.

Exercise 1.6. If Conjecture 1.5 is false, then Factoring can be com-

puted by polynomial size Boolean circuits.

8 Introduction

As we go from univariate polynomials to multivariate polynomials,

we encounter more algebraic structures, and the flavor of problems also

changes. As Example 1.3 shows, every univariate polynomial of degree

n can always be computed by an arithmetic circuit of size O(n). In

contrast, the smallest arithmetic circuit for an n-variate polynomial of

degree n can potentially be exponential in n. However, no such explicit

family of polynomials is known at present.

Let us say that a family of n-variate polynomials {fn}n∈Z+ has low

degree if the degree of fn is nO(1). A large part of this survey is devoted

to understanding families of low-degree polynomials. We will use partial

derivatives as a tool to probe the structure of low-degree polynomials,

and to prove lower bounds for them.

Open Problem 1.7. Find an explicit family of low-degree polynomi-

als {fn}n∈Z+ , fn ∈ F[x1, . . . , xn], such that S(fn) ̸= nO(1).

For multivariate polynomials, it even makes sense to study families

of constant-degree polynomials. The challenge is the following:

Open Problem 1.8. Find an explicit family of constant-degree

polynomials {fn}n∈Z+ , fn ∈ F[x1, . . . , xn], such that S(fn) ̸= O(n).

In other words, we want to find an explicit family of constant-degree

polynomials for which the arithmetic complexity is superlinear, in the

number of variables. Below we give a specific family of cubic (degree-

3) polynomials for which resolving the above question is of significant

practical importance. Let fn be the following polynomial in 3n2 vari-

ables (xij)1≤i,j≤n, (yij)1≤i,j≤n and (zij)1≤i,j≤n:

fn
def
=

∑
i,j∈[n]×[n]

zij

∑
k∈[n]

xik · ykj

 .

Exercise 1.9. For any ω ≥ 2, show that the product of two n × n

matrices can be computed by arithmetic circuits of size O(nω) if and

only if S(fn) = O(nω).

1.3. Formal derivatives and their properties 9

1.3 Formal derivatives and their properties

Univariate polynomials.

Let F denote a field, e.g., the set of real numbers R. F could be

finite but we normally assume its characteristic is large enough, e.g.,

much larger than the degree of any relevant polynomial. Let F[x] denote
the set of univariate polynomials in x over F. Every f ∈ F[x] can be

expressed as

f = amxm + am−1x
m−1 + . . .+ a1x+ a0,

where m ∈ Z≥0 and ai ∈ F for all 0 ≤ i ≤ m. The formal derivative of

f with respect to x is defined as

∂f

∂x

def
= (mam)xm−1 +

(
(m− 1)am−1

)
xm−2 + . . .+ 2a2x+ a1.

It is called the formal derivative of f because it does not depend on

the concept of limit.

Multivariate polynomials.

Let F[x1, . . . , xn], abbreviated as F[X], denote the set of n-variate

polynomials over F, then every f ∈ F[X] is a finite sum of monomials

with coefficients in F. For example,

f = x21x
3
2x3 + 2x41x

2
3

is a polynomial in F[x1, x2, x3]. Similarly we can define the formal par-

tial derivative of f with respect to xi. To this end, we write f as

f(x1, . . . , xn) = gmxmi + gm−1x
m−1
i + . . .+ g1xi + g0,

where gi ∈ F[x1, . . . , xi−1, xi+1, . . . , xn] for all 0 ≤ i ≤ m. Then

∂f

∂xi

def
= (mgm)xm−1

i +
(
(m− 1)gm−1

)
xm−2
i + . . .+ (2g2)xi + g1.

We use ∂xi(f) as a shorthand for ∂f
∂xi

. When the name of the variables

is clear from the context, we shorten this further to simply ∂i(f).

Furthermore, we can take higher-order derivatives of f . Let xi1 , xi2 ,

. . . , xit be a sequence of t variables. Then we can take the t-th order

derivative of f :

10 Introduction

∂

∂xit

(
. . .

(
∂

∂xi1

(
f
)))

∈ F[X],

which we write compactly as ∂it . . . ∂i1(f). Just like in calculus, it can

be shown that the t-th order derivatives do not depend on the sequence

but only depend on the multiset of variables {xi1 , . . . , xit}.
Let f = (f1, . . . , fk) be a sequence of k polynomials, where f1, . . . ,

fk ∈ F[X]. We define the Jacobian matrix of f as follows. For f ∈ F[X]

we use ∂(f) to denote the n-dimensional vector:

∂(f)
def
=

∂x1(f)
...

∂xn(f)

 .

Then the Jacobian matrix J(f) of f is the following n× k matrix:

J(f)
def
=
(
∂xi(fj)

)
i∈[n], j∈[k] =

(
∂(f1) ∂(f2) · · · ∂(fk)

)
.

Exercise 1.10. Show that given an arithmetic circuit C of size s, one

can efficiently compute another arithmetic circuit of size O(s · n) with
n outputs, the outputs being the polynomials ∂xi(C(X)) for i ∈ [n].

In [BS83], Baur and Strassen showed that these first-order partial

derivatives of C(X) can actually be computed by an arithmetic circuit

of size O(s). We will see a proof in Chapter 9.

Substitution maps.

Consider now a univariate polynomial

f = amxm + am−1x
m−1 + . . .+ a1x+ a0

and its derivative

∂f

∂x
= (mam)xm−1 +

(
(m− 1)am−1

)
xm−2 + . . .+ 2a2x+ a1.

Knowing ∂x(f) alone is not enough to determine f itself, but observe

that knowing ∂x(f) and the value f(α) of f at any point α ∈ F, we can
recover the polynomial f . More generally, for an n-variate polynomial

1.3. Formal derivatives and their properties 11

f , we can determine f completely if we know all its first-order partial

derivatives and the value f(α) for any point α ∈ Fn. This means that

knowing the partial derivatives of f and a substitution of f is sufficient

to determine all the properties of f , including its complexity. In some

of the results presented in the survey, we will combine the use of partial

derivatives with carefully chosen substitutions in order to enhance our

understanding of a given polynomial f .

The substitution that is most natural and occurs frequently is the

one where we substitute some of the variables to zero. For a polynomial

f ∈ F[X], we denote by σi(f) the polynomial obtained by setting xi
to zero. For example, for f = x21x

3
2x3 + 2x41x

2
3, we have that σ1(f) = 0

and σ2(f) = 2x41x
2
3.

Exercise 1.11. Let f ∈ F[x] be a univariate polynomial of degree at

most d. Show that f is the identically zero polynomial if and only if

σ(∂i(f)) = 0 for all 0 ≤ i ≤ d.

Properties.

The following properties of derivatives and substitution maps are

easy to verify.

Property 1.12. For any f, g ∈ F[X], α, β ∈ F and i ∈ [n]:

• Linearity of derivatives. ∂i(αf + βg) = α · ∂i(f) + β · ∂i(g).
• Derivative of product. ∂i(f · g) = ∂i(f) · g + f · ∂i(g).
• Linearity of substitution. σi(αf + βg) = α · σi(f)+ β · σi(g).
• Substitution preserves multiplication. σi(f ·g) = σi(f) ·σi(g).

We also need the counterpart of the chain rule in calculus.

Let g ∈ F[z1, . . . , zk] = F[Z], and f = (f1, . . . , fk) be a tuple where

each fi is a polynomial in F[X]. The composition g ◦ f of g and f is a

polynomial in F[X] where

g ◦ f(X) = g
(
f1(X), f2(X), . . . , fk(X)

)
.

12 Introduction

Property 1.13 (The Chain Rule). For every i ∈ [n], we have

∂xi

(
g ◦ f

)
=

k∑
j=1

∂fj (g) · ∂xi(fj),

where we use ∂fj (g) to denote ∂zj (g) ◦ f ∈ F[X] for all j ∈ [k].

In the rest of this survey, unless mentioned otherwise, we will assume

the underlying field F to be C, the field of complex numbers. A notable

exception is chapter 8, where we will work with finite fields. This is all

that we need for now. We will introduce some shorthand notation later

as needed.

Part I: Structure

13

14 Introduction

Overview

Examining the partial derivatives can sometimes provide useful infor-

mation about a polynomial f that is far from being apparent if we just

view f as a list of coefficients. This is useful in understanding polyno-

mials and collections of polynomials. In the first part of this survey, we

will see some examples of this phenomenon. While the set of applica-

tions and their contexts are diverse, in almost all examples here a key

part is a construction, usually via a dimension argument, of an auxil-

iary polynomial F which vanishes on a chosen set of points, sometimes

to high multiplicity. The power of this idea goes beyond the examples

presented here, and we note, e.g., its applications to other areas, such

as decoding, list-decoding and local decoding of error-correcting codes,

as e.g. in Sudan [Sud97], Guruswami and Sudan [GS99] and Kopparty,

Saraf and Yekhanin [KSY11]. Partial derivatives, especially the Jaco-

bian, play various and sometimes multiple roles in these results. We

now describe the structural applications discussed in this part.

In chapter 2, we will see how the partial derivatives can help us

determine completely the symmetries of certain polynomials.

In chapter 3, we turn to algebraic independence of families of poly-

nomials. Here we use partial derivatives to obtain the somewhat sur-

prising fact that, like linear independence, algebraic independence is a

matroid. The Jacobian of the family of polynomials (the matrix of all

their first-order partial derivatives) plays a crucial role here.

In chapter 4, we use the notion of “annihilating polynomial” from

the previous chapter to give a combinatorial proof that “most” poly-

nomials have high arithmetic circuit complexity.

In chapter 5, we return to the Jacobian, and define and prove an

affine version of Bezout’s theorem (a form convenient especially to com-

puter scientists and analytic number theorists). Here we follow an el-

ementary proof of Wooley, again using an “annihilating polynomial”,

which works also over finite fields (and even some rings) in the same

way it works over algebraically closed fields. In this proof we will see

the role of the Jacobian in “Hensel Lifting”, a procedure analogous to

“Newton Iteration”, but over finite fields.

In chapter 6, we bring two other aspects of the Jacobian. First

1.3. Formal derivatives and their properties 15

we describe its use in the construction of polynomial maps that are

“algebraic extractors”. Then we describe the “Jacobian conjecture”, a

central long-standing problem about it.

In chapter 7, we show the usefulness of this approach of annihi-

lating polynomials and partial derivatives for combinatorial geometry,

explaining the solution of the “Joints conjecture”.

In chapter 8, we will explain the Stepanov method for bounding the

number of common zeros of a pair of univariate polynomials. We will

demonstrate it on two examples — a special case of the Weil bound

on Fp-rational points on curves (Stepanov’s original application), and

a polynomial arising in the study of the Heilbronn exponential sum,

due to Heath-Brown and Mit’kin.

2

Symmetries of a polynomial

Examining the partial derivatives can sometimes provide

useful information about a polynomial f that is far from

being apparent if we just view f as a list of coefficients. In

this chapter we look at symmetries of a polynomial, i.e. the

set of all invertible linear transformations on a polynomi-

al which keep it fixed. We will see how partial derivatives

help us determine completely the set of symmetries of some

polynomials. We will also the introduce the reader to the

Hessian, a matrix of second-order partial derivatives that

will be used for proving lower bounds in chapter 13.

The symmetries of an n-variate polynomial f ∈ F[x1, . . . , xn] is the set
of all invertible linear transformations A ∈ GLn(F) such that

f(A ·X) = f(X).

That is, the symmetries of f is the set of all invertible n× n matrices

A = (aij)n×n such that

f(X) = f(a11x1 + . . .+ a1nxn, . . . , an1x1 + . . .+ annxn).

The symmetries of f clearly form a subgroup of GLn(F). This group
is sometimes called the automorphism group of f . Understanding the

16

17

symmetries can sometimes provide valuable insights into the structure

of f . Consider for example the n-variate power symmetric polynomial

P d
n(x1, x2, . . . , xn)

def
= xd1 + xd2 + . . .+ xdn.

Note that if we swap any two variables, say x1 and x2, we get back the

same polynomial:

P d
n(x2, x1, x3, . . . , xn) = P d

n(x1, x2, x3, . . . , xn).

Let ω be a primitive d-th root of unity. Over the field C of complex

numbers one can take ω to be e2πi/d. For the polynomial P d
n above, we

also have the following symmetry:

P d
n(ωx1, x2, . . . , xn) = P d

n(x1, x2, . . . , xn).

Applying these symmetries repeatedly, we get a large group of symme-

tries of the above polynomial P d
n consisting of permuting the variables

and multiplying them by powers of ω. Besides these symmetries, are

there others that we might have missed? As we will see shortly, for

d ≥ 3, these are actually all the symmetries of P d
n and there are no

more. The above discussion is summarized in the following lemma:

Lemma 2.1. Let us denote by G the subgroup of GLn(F), which is

generated by the set of permutation matrices and by diagonal matrices

of the form 
ωi1 0 . . . 0

0 ωi2 . . . 0
...

...
. . .

...

0 0 . . . ωin

 .

Then for d ≥ 3 the automorphism group of P d
n = xd1 + xd2 + . . .+ xdn is

precisely the group G above.

Before proving Lemma 2.1, we give some more special properties of the

family of power symmetric polynomials. Our discussion below will also

set the stage for some of the lower bound proofs to be discussed in Part

Two.

First, the power symmetric polynomial P d
n has a quite exceptional

property — it is completely characterized by its symmetries:

18 Symmetries of a polynomial

Exercise 2.2 (Characterization by symmetries property).

If the automorphism group of an n-variate homogeneous polynomial f

of degree d contains the group G as defined in Lemma 2.1, then f is

precisely the polynomial

c · (xd1 + xd2 + . . .+ xdn)

for some constant c ∈ F.

There are at least three other families of polynomials known to have

this remarkable property that the polynomials are completely charac-

terized by their symmetries. They are the determinant, the permanent,

and the sum-product polynomials defined below:

Sn
m

def
=

m∑
i=1

n∏
j=1

xij .

Exercise 2.3 (Characterization by symmetries property).

Let G be the automorphism group of Sn
m. Show that if the automor-

phism group of a homogeneous polynomial of degree n in mn variables

contains G as a subgroup, then it must be a scalar multiple of Sn
m.

Second, these four families of polynomials — the power symmetric

polynomials, the sum-product polynomials, the determinant, and the

permanent — also share the following nice property. Let P denote any

of these four families. Then every polynomial f can be expressed as a

‘projection’ of a (possibly larger) polynomial from P. A polynomial f

is said to be a projection of another polynomial g if f can be obtained

by replacing each variable of g by an affine form in the variables of f .

Let us illustrate this for the power symmetric polynomials using the

following lemma due to Ellison [Ell69].

Lemma 2.4. Every polynomial f ∈ C[y1, . . . , ym] of degree d can be

obtained by replacing each variable of P d
n , for some n, with an affine

19

form in y1, . . . , ym. That is, given any polynomial f ∈ C[y1, . . . , ym] of

degree d, there exist an integer n and a set{
αij : i ∈ [n], j ∈ [0 : m]

}
⊂ C

such that

f(y1, . . . , ym) = P d
n

(
ℓ1, ℓ2, . . . , ℓn

)
,

where ℓi = αi0 + αi1y1 + . . .+ αimym for any i ∈ [n].

The proof is short and elegant, and we reproduce it at the end of this

chapter. Analogous statements also hold for the other three families of

polynomials. The projections of a sum-product polynomial correspond

to depth-3 arithmetic circuits (see Chapter 11) for computing the pro-

jected polynomials. The projections of the determinant roughly corre-

spond to formulae for computing the projected polynomials.

For concreteness, let us fix our attention on the determinant in the

discussion that follows. Analogous statements can be made for any of

the four families above. It turns out that even though any polynomial

f can be expressed as a projection of the determinant, it might well

be that f is a projection only of an exponentially large determinant. It

therefore makes sense to ask the following question:

Given a polynomial f , what is the smallest value of n

such that f can be expressed as a projection of the

n-by-n determinant.

This is a particularly interesting question because it is known that the

smallest value of n above roughly corresponds to the size of the smallest

formula for computing f (cf. Valiant [Val79a]).

Our present state of knowledge is such that we do not know of any

explicit family of polynomials which cannot be expressed as a projec-

tion of determinants of polynomial sized matrices. It is conjectured that

the permanent is such a family. This problem is commonly referred to

as the determinant versus permanent problem. There is an approach

to this problem, which uses some exceptional properties of the deter-

minant and permanent to translate the determinant versus permanent

question into a problem in the representation theory of groups. This

20 Symmetries of a polynomial

approach pursued by Mulmuley and Sohoni is now referred to as the

Geometric Complexity Theory, and the reader is referred to the survey

articles [Mul09b, Mul09a] and to the series of papers beginning with

[Mul99, MS01, MS08]. In Chapter 13, we will give a quadratic lower

bound for the determinant versus permanent problem due to Mignon

and Ressayre [MR04].

The analogous question for the family of sum-product polynomials

is also particularly interesting. The smallest m such that f is a pro-

jection of Sd
m corresponds to its depth-3 arithmetic circuit complexity.

The construction of an explicit family of polynomials which cannot be

expressed as projections of polynomial-sized sum-product polynomials

(equivalently, polynomials which cannot be computed by polynomial-

sized depth-3 arithmetic circuits) remains a very tantalizing open pro-

blem. Some of the partial results in this direction will be discussed in

Part Two.

Even though we have not made much progress and most of the qu-

estions posed above are still widely open, the situation for the power-

symmetric polynomials is quite good. In chapter 10, we will see an ex-

plicit family of polynomials that can only be expressed as projections of

exponential-sized power-symmetric polynomials. In chapter 9, we will

also see an optimal lower bound for the arithmetic circuit complexity

of the power-symmetric polynomials themselves.

Proof of lemma 2.1

We now prove Lemma 2.1 as promised. The key idea involved here is

to use the Hessian matrix.

Definition 2.5. Given an n-variate polynomial f(X) ∈ F[X], the Hes-

sian matrix Hf (X) ∈ (F[X])n×n is defined as follows:

Hf (X)
def
=


∂2f

∂x1·∂x1
. . . ∂2f

∂x1·∂xn

...
. . .

...

∂2f
∂xn·∂x1

. . . ∂2f
∂xn·∂xn

 .

21

The most interesting property of the Hessian matrix of a polynomial f

is the effect that a linear transformation of the variables has on it.

Lemma 2.6. Let f(X) ∈ F[X] be an n-variate polynomial and A ∈
Fn×n be a linear transformation. Let

F (X)
def
= f(A ·X).

Then we have

HF (X) = AT ·Hf (A ·X) ·A.

In particular, Det
(
HF (X)

)
= Det(A)2 ·Det

(
Hf (A ·X)

)
.

Proof. By the chain rule for differentiation, we have for all 1 ≤ i ≤ n:

∂F

∂xi
=

n∑
k=1

aki ·
∂f

∂xk

(
A ·X

)
.

Therefore for all 1 ≤ i, j ≤ n:

∂2F

∂xi · ∂xj
=

n∑
k=1

aki ·

(
n∑

ℓ=1

aℓj ·
∂2f

∂xk · ∂xℓ
(
A ·X

))

=
∑

k,ℓ∈[n]

aki ·
∂2f

∂xk · ∂xℓ
(
A ·X

)
· aℓj .

Putting these equations into matrix form gives us the lemma.

Lemma 2.6 above has a very useful generalization that we give be-

low. We leave the proof as an exercise. In Chapter 13, we will see how

to use this generalization to prove a lower bound on the determinental

complexity of the permanent.

Lemma 2.7. Generalization of Lemma 2.6. Let f(x1, . . . , xm) be

an m-variate polynomial. Let A ∈ Fm×n be a matrix and b ∈ Fm be a

vector. Let F (y) ∈ F[y] be an n-variate polynomial such that

F (y) = f(A · y + b).

22 Symmetries of a polynomial

In other words, the polynomial F is obtained from f by replacing the

i-th variable of f by the affine form

(ai1y1 + ai2y2 + . . .+ ainyn + bi).

Then we have

HF (y) = AT ·Hf (A · y + b) ·A

We now apply Lemma 2.6 to the power-symmetric polynomial P d
n

and take A ∈ GLn(F) to be an automorphism of P d
n . We then have

Det
(
HP d

n
(X)

)
= Det(A)2 ·Det

(
HP d

n
(A ·X)

)
.

For the power-symmetric polynomial, the Hessian matrix is a diagonal

matrix with the (i, i)-th entry being d(d− 1)xd−2
i . Thus

Det
(
HP d

n
(X)

)
=

n∏
i=1

d(d− 1)xd−2
i .

The above equation then yields

n∏
i=1

xd−2
i = Det(A)2 ·

n∏
i=1

 n∑
j=1

aijxj

d−2

, (2.1)

where the aij ’s are the entries of the automorphism A. By unique fac-

torization we get that each
∑

j∈[n] aijxj is a scalar multiple of some xk.

Put differently, applying unique factorization to equation (2.1) yields

that the matrix A is the product of a permutation matrix with a diag-

onal matrix. We already know that any permutation of the xi’s is an

automorphism of P d
n , so let us look at the diagonal part. Note that if

(λ1x1)
d + . . .+ (λnxn)

d = xd1 + . . .+ xdn,

then each λi, i ∈ [n], is a d-th root of unity. This means that the matrix

A must be a product of a permutation matrix with a diagonal matrix

consisting of d-th roots of unity on the diagonal. This completes the

proof of Lemma 2.1. �

The Hessian matrix can also be used to deduce the automorphisms

of sum-product polynomials.

23

Exercise 2.8. The automorphism group of the sum-product polyno-

mial Sn
m is generated by the following three kinds of automorphisms:

• Let σ ∈ Sm be a permutation on m elements. The automor-

phism Aσ which sends xij to xσ(i)j ;

• Let π ∈ Sn be a permutation on n elements. The automor-

phism Aπ which sends xij to xiπ(j);

• Let λ ∈ F∗ be a nonzero field element. The automorphism

Aλ defined as follows:

Aλ :


x11 7→ λx11

x12 7→ λ−1x12

xij 7→ xij if (i, j) /∈ {(1, 1), (1, 2)}

In general, computing the automorphism group of a given polyno-

mial is a very difficult task, and no efficient algorithm is known even for

cubic polynomials. The following exercise suggests an explanation by

showing that this problem is at least as hard as Graph Automorphism.

Exercise 2.9. Show that computing the symmetries of a given cubic

polynomial f is at least as hard as the problem of computing the au-

tomorphisms of a given graph.

(Hint: Let G = (V,E) be a graph. Consider the following polynomial∑
i∈[|V |] x

3
i +

∑
{i,j}∈E xixj

over variables x1, . . . , x|V |.)
1

In chapter 4 we will see how to use partial derivatives to determine

the symmetries of some other interesting families of polynomials.

1The exercise can be modified slightly to show that the problem of deciding whether two
cubic polynomials are equivalent or not is at least as difficult as Graph Isomorphism. This
gives a different proof of a slightly weaker form of a theorem due to Agrawal and Saxena
[AS06].

24 Symmetries of a polynomial

Proof of lemma 2.4

Proof. It is sufficient to prove that every monomial of degree d can be

expressed as a sum of the d-th powers of linear forms. Let xα1
1 . . . xαn

n

be a monomial of total degree d. Indeed, it suffices to prove it for the

case when n = 2, because if we have this case then

xα1
1 xα2

2 =
∑
i

ℓα1+α2
i (x1, x2)

and

xα1
1 xα2

2 xα3
3 =

∑
i

ℓα1+α2
i (x1, x2) · xα3

3 .

By the case of n = 2,

ℓα1+α2
i · xα3

3 =
∑
j

mα1+α2+α3
j (x1, x2, x3)

and thus, we have the cases of n = 3, 4, . . . by induction (both the ℓi’s

and the mj ’s above are linear forms).

The case of n = 2. Note that since we are working over the complex

numbers, it suffices to show that for every α1, α2 ∈ Z≥0, we can express

the monomial xα1
1 xα2

2 in the following way:

xα1
1 xα2

2 =

α1+α2∑
i=0

βi · (x1 + ix2)
α1+α2

In other words, it suffices to show that the following d+1 polynomials:{
(x1 + ix2)

d : i ∈ [0 : d]
}

are linearly independent when viewed as vectors in Cd+1, which follows

directly from the invertibility of the Vandermonde matrix ((ij))0≤i,j≤d.

This completes the proof of Lemma 2.4.

3

Algebraic independence

In this chapter, we introduce the reader to the notion of al-

gebraic independence and show that it shares the matroid

structure of linear independence. In doing so we use the Ja-

cobian matrix, a matrix consisting of partial derivatives that

helps us decide whether a set of polynomials is algebraically

independent or not.

In this chapter, we will see how partial derivatives help in deciding

whether a set of polynomials is algebraically independent or not. Alge-

braic independence is a significant, non-linear generalization of linear

independence. However, by using partial derivatives we will show that

the basic matroid structure of linear independence is also shared by

algebraic independence [ER93, Oxl06]. This was observed by van der

Waerden in his “Moderne Algebra” [vdW37].

Definition 3.1. Let f1, f2, . . . , fk be k polynomials in F[x1, . . . , xn] =
F[X]. They are said to be algebraically dependent if there is a nonzero

g ∈ F[z1, . . . , zk] = F[Z] such that g ◦ f ≡ 0, where f := (f1, . . . , fk).

Otherwise, f1, . . . , fk are algebraically independent. We call a nonzero

polynomial g an annihilating polynomial of f if g ◦ f ≡ 0.

25

26 Algebraic independence

We will use the following fact without a proof and leave its simplest

case as an exercise. A hint is to count the degrees of freedom in

f i1
1 · · · f ik

k , where i1 · deg(f1) + · · ·+ ik · deg(fk) ≤ D

for large enough D.

Fact 3.2. If k > n, then f1, . . . , fk are algebraically dependent.

Exercise 3.3. Show that for any f1 and f2 ∈ F[x], there must exist a

nonzero g ∈ F[z1, z2] such that g ◦ (f1, f2) ≡ 0.

Algebraic independence is a generalization of linear independence

(over field F) since f1, . . . , fk are linearly independent over F iff there

is a linear form g =
∑k

i=1 cizi ∈ F[Z] such that g ◦ f ≡ 0. As we know,

linear independence has the following extension property :

Suppose f1, . . . , fk are linearly independent and f ′
1, . . . , f

′
k+1

are also linearly independent. Then one can always find an

f ′
i from the latter collection and move it to the former, so

that f1, . . . , fk, f
′
i are still linearly independent.

This is the defining property of matroids, a combinatorial extension of

linear independence [Oxl06]. Indeed we will prove that it also holds for

algebraic independence. We will show that f1, . . . , fk are algebraically

independent if and only if the k vectors ∂(f1), . . . , ∂(fk) are linearly

independent over the polynomial ring F[X]. (The definition of ∂(fi)

and J(f1, . . . , fn) can be found in Section 1.3.)

Theorem 3.4. The polynomials f1, . . . , fn ∈ F[X] are algebraically

independent if and only if J(f1, . . . , fn) has full rank over F[X] (which

means that if

J(f1, . . . , fn) ·

g1
...

gn

 ≡ 0

for g1, . . . , gn ∈ F[X], then g1 ≡ . . . ≡ gn ≡ 0).

27

Before proving this theorem, note that it implies the following ex-

tension property.

Corollary 3.5. The polynomials f1, . . . , fk ∈ F[X] are algebraically

independent iff k ≤ n and J(f1, . . . , fk) has rank k over F[X].

Corollary 3.6. Suppose both f1, . . . , fk and f ′
1, . . . , f

′
k, f

′
k+1 are alge-

braically independent, then there exists an i ∈ [k + 1] such that f1,

. . . , fk, f
′
i are still algebraically independent.

Proof. [Proof of Theorem 3.4] We use f to denote (f1, . . . , fn), and J

to denote the Jacobian matrix J(f).

(⇐) Suppose J has full rank but there exists a nonzero g such that

g ◦ f ≡ 0. Let g be one of such polynomials of minimum degree. Since

g ◦ f ≡ 0, we have

0 =

∂x1(g ◦ f)
...

∂xn(g ◦ f)

 = J ·

∂f1(g)
...

∂fn(g)

 .

However, since J has full rank, we have ∂fi(g) = ∂zi(g) ◦ f ≡ 0 for all

i ∈ [n]. Note that the degree of ∂zi(g) ∈ F[Z] is smaller than that of g.

Due to the assumption on g, we have ∂zi(g) ≡ 0 for all i ∈ [n]. As we

assumed F to be C, g must be the identically zero polynomial, which

contradicts with our assumption that g is nonzero.

(⇒) Suppose f1, . . . , fn are algebraically independent. We will find

an n×n matrix J∗ such that J ·J∗ is a diagonal matrix and every dia-

gonal entry is nonzero. As a result, J has full rank. First let h1 ∈ F[X]

be h1(X) = x1 (Here we use h1, instead of using x1 directly, to make

the presentation easier to follow). Then by Fact 3.2 there must exist

a nonzero g1 ∈ F[z1, . . . , zn+1] such that g1(f1, . . . , fn, h1) ≡ 0. Again,

we assume g1 to be one of such polynomials of minimum degree. Using

the chain rule, we have

28 Algebraic independence

0 = ∂
(
g1 (f1, . . . , fn, h1)

)
=

J(f1, . . . , fn)


1

0
...

0

0






∂f1(g1)

∂f2(g1)
...

∂fn(g1)

∂h1(g1)

 .

After rearrangement, we get

J(f1, . . . , fn)


∂f1(g1)

∂f2(g1)
...

∂fn(g1)

 =


−∂h1(g1)

0
...

0


Note that ∂h1(g1) = ∂zn+1(g1) ◦ (f1, . . . , fn, h1) ∈ F[X] cannot be zero.

This is because, if ∂h1(g1) ≡ 0, then we must have ∂zn+1(g1) ≡ 0 due

to the assumption that g1 is of the minimum degree. It then implies

that g1 is independent of zn+1 and thus, f1, f2, . . . , fn are algebraically

dependent, contradicting with our assumption.

We repeat the process above for every hi(X) = xi, i ∈ [2 : n]. For

each hi, we use gi to denote one of the polynomials of minimum degree

such that gi(f1, . . . , fn, hi) ≡ 0. Combining all the equations, we have

J ·


∂f1(g1) ∂f1(g2) · · · ∂f1(gn)

∂f2(g1) ∂f2(g2) · · · ∂f2(gn)
...

...
. . .

...

∂fn(g1) ∂fn(g2) · · · ∂fn(gn)



= (−1)


∂h1(g1) 0 · · · 0

0 ∂h2(g2) · · · 0
...

...
. . .

...

0 0 · · · ∂hn(gn)

 ,

and ∂hi
(gi) ̸≡ 0 for all i ∈ [n]. As a result, J must have full rank.

29

Exercise 3.7. Given arithmetic circuits C1, . . . , Ck in variables x1,

. . . , xn, show that the problem of testing if the polynomials they com-

pute are algebraically independent is in RP.

Open Problem 3.8. Is there a deterministic polynomial-time algo-

rithm for testing algebraic independence?

In [Kay09], Kayal has given an explicit set of quadratic polynomials

f1, f2, . . . , fn ∈ F[x1, . . . , xn] which are algebraically dependent but the

smallest polynomial g such that g ◦ (f1, f2, . . . , fn) = 0 has degree 2n.

Moreover, there also exist algebraically dependent quadratic polyno-

mials so that any polynomial g satisfying g ◦ (f1, f2, . . . , fn) = 0 has

superpolynomial arithmetic circuit size (unless the polynomial hierar-

chy collapses). Our exposition above shows that partial derivatives can

help us decide the existence of such a g even though the polynomial g

itself may be too complex to write down explicitly.

4

Polynomials with high arithmetic complexity

How complex is a random n-variate polynomial of degree d?

In this chapter, we use the notion of algebraic independence

introduced in chapter 3 to give an answer to this question.

In this chapter, we use the notion of algebraic dependence to show

that there exist polynomials of small degree which have very high arith-

metic complexity. It is a folklore result. In fact, like in the Boolean

world, “most” polynomials have high arithmetic complexity. And just

like in the Boolean world, we do not know any explicit family of poly-

nomials having high complexity.

Lemma 4.1. Let F be a field and f1(X), . . . , fm(X) ∈ F[x1, . . . , xn]
be algebraically dependent polynomials, then there exists (α1, . . . , αm)

∈ Fm such that the system of equations

f1(X) = α1

f2(X) = α2
...

...

fm(X) = αm

(4.1)

has no common solution in Fn.

30

31

Proof. Since the fi’s are algebraically dependent, there exists a nonzero

polynomial A(z1, . . . , zm) ∈ F[z1, . . . , zm] such that

A
(
f1(X), . . . , fm(X)

)
= 0. (4.2)

Since A(z) is nonzero, there exists (α1, . . . , αm) ∈ Fm such that

A(α1, . . . , αm) ̸= 0.

By the Schwartz-Zippel Lemma, “most” choices of (α1, . . . , αm) ∈ Fm

will in fact have this property. It is now easily verified that with such

a choice of the αi’s, the system (4.1) has no common solution.

We use the lemma above to show that there exist polynomials

with high arithmetic complexity. Analogous statements hold in Boolean

complexity where it is known that a random Boolean function has ex-

ponential Boolean complexity.

Theorem 4.2. Let F be a field and let d, n be any two natural num-

bers. There exists a polynomial f(X) ∈ F[x1, . . . , xn] of degree d with

S(f) = Ω

(√(
n+ d

d

))

Proof. Consider an arithmetic straight-line program which evaluates

f(X) using s multiplications. For i ∈ [k], let Mi denote the result of

the i-th multiplication in the program. Since the program can do only

linear combinations between computing Mi and Mi+1, we have

Mi+1 =

βi01 +
∑
j∈[n]

βij1xj +
∑
j∈[i]

αij1Mj


×

βi02 +
∑
j∈[n]

βij2xj +
∑
j∈[i]

αij2Mj

 ,

where the αijk’s and the βijk’s are elements from the field F. The co-

efficients of the output polynomial f(X) are therefore polynomials in

the set of variables

32 Polynomials with high arithmetic complexity

V
def
=
{
αijk : i ∈ [s], j ∈ [i], k ∈ [2]

} ∪ {
βijk : i ∈ [s], j ∈ [0 : n], k ∈ [2]

}
The coefficients of the output polynomial f(X), thought of as polyno-

mials over V , are algebraically dependent when their number exceeds

|V |. By Lemma 4.1, if |V | is less than the number of coefficients then

“most” coefficient vectors do not satisfy this dependence and hence the

corresponding polynomials cannot be computed by circuits of size s.

We have |V | = O(s2) + O(n2), while the number of coefficients of

a degree d polynomial in n variables is
(
n+d
d

)
. Thus “most” n-variate

degree d polynomials f have

S(f) = Ω

(√(
n+ d

d

))
Indeed one can bound the degree of the annihilating polynomial A

and the absolute values of the coefficients so as to obtain an “explicit”

polynomial having exponential arithmetic complexity.

Corollary 4.3. Any arithmetic circuit (with arbitrary, unbounded co-

efficients) for computing the following polynomial f(x) ∈ C[x]:

f(x)
def
=

d∑
i=0

22
2i
xi

has size at least Ω(2
d
2).

The real challenge however is to come up with explicit polynomials

with “small” (poly(d) bit-length) coefficients that have large arithmetic

complexity. The following result of Hrubes and Yehudayoff [HY09]

shows that there exist polynomials with 0-1 coefficients which have ari-

thmetic complexity pretty much like that of a random polynomial.

Theorem 4.4. Let F be a field and let d, n be any two natural num-

bers. Then there exists a polynomial f(X) ∈ F[x1, . . . , xn] of degree d

with 0-1 coefficients such that

S(f) = Ω

(√(
n+ d

d

))
.

33

The proof is a much more refined version of the proof of Theorem 4.2

above. It remains a big challenge to find such polynomials explicitly.

There appears to be a quadratic gap in our understanding of upper

and lower bounds for arbitrary polynomials. The argument above shows

that there are n-variate polynomials of degree d requiring arithmetic

circuits with at least

Ω

(√(
n+ d

d

))
multiplication gates. On the other hand, every n-variate polynomial of

degree d can be computed by a circuit with

O

(
1

n

(
n+ d

d

))
multiplication gates.

Open Problem 4.5. Can every n-variate polynomial of degree d over

C be computed by an arithmetic circuit with just

O

(√(
n+ d

d

))
multiplication gates (an arbitrary number of additions and scalar mul-

tiplications with constants from C are allowed)?

Very recently, Shachar Lovett [Lov11] has made progress on this

question by showing that every n-variate polynomial of degree d over

C can indeed be computed by an arithmetic circuit with just

O

(√(
n+ d

d

))
· poly(nd)

multiplication gates.

5

Bezout’s theorem

Given a set of n-variate polynomials of degree d, what is the

maximum number of common zeroes that this set of poly-

nomials can have? In this chapter, we will use the Jacobian

matrix introduced in chapter 3 to give an upper bound for

this number. We will follow the proof of Wooley’s theorem,

which works over finite fields and rings as well as algebraical-

ly closed fields.

In chapter 3, we have seen how the Jacobian matrix, representing

the first-order partial derivatives of a collection of polynomials, reduces

non-linear questions like algebraic independence to linear algebra. In

this chapter we continue demonstrating this, giving a linear algebraic

proof of Bezout’s theorem.

Bezout’s theorem [Har77, I.7, Thm.7.7] is one of the most basic and

useful results in algebraic geometry (which we shall meet and use later

in chapter 9). It bounds the number of common zeros of a system of

polynomials in terms of their degrees. It is usually stated and proved

in geometric terms (number of components of the associated variety),

and in projective space over fields of characteristic zero. Moreover, in

order to apply Bezout’s theorem, one needs to ensure that there are

34

35

no components of dimension one or higher for otherwise the number of

common zeroes may not even be finite. Computing the dimensions of

the various components is in itself a difficult algorithmic task. A useful

version of the theorem was proved by Wooley [Woo96], whose proof

uses only linear algebra. We consider the following setting.

Let F be a field. Let f = (f1, f2, . . . , fn) be a vector of polynomials

in F[x1, x2, . . . , xn]. Let the degree of the i-th polynomial fi be di. We

look at the common solutions to the following system of equations:

f1(X) = f2(X) = . . . = fn(X) = 0, (5.1)

abbreviated simply as f(X) = 0.

A crucial definition is that of isolated roots of the system of equations.

Definition 5.1. An assignment a ∈ Fn to the n variables is an isolated

root if f(a) = 0 and det(J(f)(a)) ̸= 0.

(Note that for such roots to exist the polynomials must be algebraically

independent.) With this definition, Wooley proves an analog of Bezout’s

theorem in finite fields Fp and also over finite rings Z/pkZ. We will state

and prove this theorem later. We first state Bezout’s theorem in this

form (using isolated roots) for the case F = R, the field of real numbers,

and then adapt Wooley’s proof to this simpler situation. In the reals,

the concept of isolated roots has very natural geometric intuition which

will guide the proof. After that, we will see what is needed to convert

it to the finite field and ring setting.

Theorem 5.2. Assume F = R. The number of isolated roots a ∈ Rn

to the system f(X) = 0 is at most (d1 · d2 · . . . · dn).

A Property of Isolated Roots

We now characterize isolated roots of (5.1). Intuitively, they are the

roots which contain no other root in their neighborhood. How do we

make this intuition precise? A nice way to formalize this intuition is that

if we perturb the (free terms of the) polynomials by a very small amount

then every isolated root of the original system of equations has a unique

36 Bezout’s theorem

neighbor which is a root of the perturbed system of equations. Let us

introduce some terminology. For a point a ∈ Rn, the ϵ-neighborhood

of a is the set of all points b ∈ Rn such that |b− a| < ϵ. We will

say that an n-tuple of polynomials g = (g1(X), g2(X), . . . , gn(X)) is a

δ-perturbation of f if for every i ∈ [n]:

gi(X)− fi(X) = δi,

for some δi ∈ R with |δi| < δ. We need a technical lemma to justify

this intuition.

Lemma 5.3. Let a ∈ Rn be a root of the equation f(X) = 0. If a

is an isolated root, then for every small enough ϵ > 0 there exists a

δ (depending on ϵ) such that for any δ-perturbation g of f , there is a

unique root b of g(X) = 0 in the ϵ-neighborhood of a.

We first show how to use this lemma to prove Bezout’s theorem while

deferring its proof to a later point.

Proof of Theorem 5.2

We will denote by Af ⊂ Rn the set of isolated solutions to (5.1) and by

Nf the cardinality of this set. We denote by D the integer
∏

i∈[n] di.

Step One: Reduction to counting only the projection of Af on

the first coordinate. Replace x1 by a random linear combination of

all the n variables. This ensures that if we had more than D solutions,

we will get more than D projections which will lead to a contradiction.

Step Two: Using an elimination polynomial.

The idea is the following. We look for a nonzero polynomial

H(y1, y2, . . . , yn, z)

with the following properties:

(P1). H(f1, f2, . . . , fn, x1) = 0 identically.

(P2). The degree of z in H is small (say B).

(P3). h(x1) = H(0, 0, . . . , 0, x1) is a nonzero polynomial.

37

The idea is that every a = (a1, a2, . . . an) ∈ Af must satisfy h(a1) = 0

so that Nf ≤ B. We will be able to show that such a polynomial H

satisfying properties (P1) and (P2) exists with B = D. However, if

(P3) is not satisfied we can replace it with:

(P3′). h(x1) = H(δ1, δ2, . . . , δn, x1) is a nonzero polynomial, for

δi’s being ‘very small’.

This happens for some choice of δi’s — indeed very small random ones

will do since H is nonzero. By lemma 5.3, every isolated solution a of

f = 0 has a unique neighbour b ∈ Rn such that

f(b) = (δ1, δ2, . . . , δn). (5.2)

So we have

Nf ≤ Number of solutions of (5.2)

≤ degx1
(H(δ1, . . . , δn, x1))

= B

= D

Step Three: Constructing the elimination polynomial.

Consider the vector space V of all polynomials in R[y1, . . . , yn, z] with
the degree with respect to z being at most B, such that when evaluated

at (f1, . . . , fn, x1) have total degree at most K in the xi’s. Now consider

an arbitrary polynomial H in V . H(f1, . . . , fn, x1) will be a polynomial

in the xi’s of degree at most K so that in general H will have

M0 :=

(
n+K

n

)
monomials whose coefficients are homogeneous linear combinations of

the undetermined coefficients ofH. This means that once the dimension

of V exceeds M0, we are guaranteed that a nonzero H in V exists

such that H(f1, . . . , fn, x1) = 0. The dimension of V is the number

of monomials in y1, . . . , yn, z whose appropriate weighted degree is at

most K. A monomial yk11 · yk22 · . . . yknn · zb is in V if b ≤ B and

d1 · k1 + d2 · k2 + . . .+ dn · kn + b ≤ K. (5.3)

38 Bezout’s theorem

How many such monomials are there? We use the following estimate

from below.

Fact 5.4. The number of tuples (k1, k2, . . . , kn) ∈ Zn
≥0 satisfying (5.3)

is at least
1

d1 · d2 · . . . · dn

(
n+K − b

n

)
.

Summing over b ∈ {0, 1, . . . , B} and taking K large enough, the di-

mension of V is [
B + 1

D

]
M0

(
1−O

(
Bn

K

))
,

which for large K is greater than M0 for the choice B = D. So we have

H satisfying (P1) and (P2).

To guarantee (P3) or (P3′), we first note that if we take H to be

a polynomial of the lowest degree that satisfies (P1) and (P2), then

it must depend on the variable z. This argument resembles ones we

have seen in chapter 3 on algebraic independence. Assume H does not

depend on z, then ∂H
∂z = 0. Now differentiating the identity

H(f1, f2, . . . , fn, x1) = 0

with respect to each variable xi, we have

J ·


∂1H(f , x1)

∂2H(f , x1)
...

∂nH(f , x1)

 = 0,

where ∂iH is a shorthand for ∂H
∂yi

. Since J(X) is nonsingular we have

∂iH(f , x1) = 0 for each i ∈ [n]. One of the (∂iH)’s must be a nonzero

polynomial so that we get a polynomial of lower degree satisfying (P1)

and (P2), a contradiction.

Thus H depends on z and so must have the form

H = H0(y) +H1(y) · z + . . .+Hr(y) · zr,

withHr(y) nonzero. Finally, we pick a set of “very small” δi’s satisfying

Hr(δ1, δ2, . . . , δn) ̸= 0.

39

This ensures that either (P3) or (P3′) is also satisfied. This completes

the proof of Theorem 5.2.

Proof of lemma 5.3.

To complete the presentation, we now give the proof of lemma 5.3. A

simpler proof can be found in [Kud01] using the implicit function theo-

rem, but here we present a more direct (but longer) proof. Intuitively,

the nonvanishing of the Jacobian on the root a means that f can be

well approximated by a linear map in a small ϵ-neighborhood of a. If

f were indeed a linear map, it would be clear how to change a to a

root b of the perturbed system g. In the general case, the same change

only gets us closer to the unique root, and so iterating it converges to

the unique nearby root b of g. This is Newton’s iteration, an iterative

process which we now describe formally.

We start from b0 = a and converges to b. For the iterative step let

bi+1
def
= bi − Jg(bi)

−1 · g(bi). (5.4)

The unique point in Rn to which this iterative process converges is the

unique neighbor of a which is an isolated zero of the perturbed system

g(X) = 0. Let us first make sure that the iterative step is well-defined,

i.e. Jg(bi)
−1 exists for each i. For the starting point:

Jg(b0)
−1

exists because

∆ := det(Jg(b0))

= det(Jf (a))

̸= 0

By continuity, there is a ϵ-neighborhood of a within which the Jacobian

determinant is between say ∆
2 and 2∆. We will choose δ small enough

to make sure that the bi’s that we generate in this iterative process

stay within the ϵ-neighborhood of a. This will ensure that Jg(bi)
−1

exists so that the iteration is well-defined. It now suffices to prove the

following claim:

40 Bezout’s theorem

Claim 5.5. Convergence of Newton Iteration There exist con-

stants C0, C1, C2 such that for all δ < C0 and for all i ≥ 0 we have:

(1) |bi+1 − bi| < C1 · δi+1 and

(2) |g(bi)| < C2 · δi+1 and

(3) |bi+1 − a| < ϵ

Proof of Claim 5.5: We prove this claim by induction. We prove it

only for the case n = 1. The proof below generalizes in a very natural

way for higher values of n. We specify the choices of the constants C0, C1

and C2 — they all depend on another constant C3 which bounds the

size of the error term in the Taylor expansion of f around a (truncating

after the linear part).

C0 := min

(
1

4
, ϵ,

2C3

∆
ϵ

)
C1 :=

∆

4C3

C2 :=
∆2

8C3

where

C3 := max
k≥2

max
|y−a|≤ϵ

∣∣∣∣∂kg(y − a)

k!

∣∣∣∣ .
We leave it to the reader to verify that with the choice of parameters

above, the claim can be proved by induction on i. �

Bezout’s theorem over finite fields and rings

Observe that the same proof can essentially be carried out over some

other fields of characteristic zero such as Q and C. Indeed, as long as

we have a norm on our field which satisfies the natural conditions (like

subadditivity under addition and multiplication) it defines a metric on

41

the field that enables the proof to go through. It may seem that con-

cepts of distance, ϵ-neighborhood and convergence are meaningless for

finite field Fp. Remarkably, there is a way to mimic the proof above

over Fp and even rings Z/pkZ. The appropriate “p-adic” norm and

metric was developed by Hensel to enable analytic techniques in num-

ber theoretic problems. In particular, we will see the “Hensel lifting”

technique which allows to perform the analog of “Newton iteration” in

this setting. All polynomials we deal with in this subsection will have

integer coefficients. This is convenient as integer coefficients can be tak-

en modulo p or modulo pk and we get the associated polynomials over

these finite fields and rings. We note however that even when working

modulo pk for k > 1 the notion of isolated roots will require that the

Jacobian does not vanish modulo p.

We first state Wooley’s theorem.

Theorem 5.6. Let f1(X), . . . , fn(X) ∈ Z[x1, . . . , xn] with deg(fi) =

di. Let p be a prime, and k be any integer. The number of solutions

with entries in {0, 1, · · · , pk − 1} to

f(X) = 0 (mod pk) subject to det(J)(X) ̸= 0 (mod p)

is at most D =
∏

i di.

We outline the main ideas involved in this process of translating the

proof over the reals to this setting. It would be interesting to describe

the proof even in the special case k = 1, namely when we seek to solve

the system in the finite field Fp. But even for this special case, as we

shall see, we will need to pass through residues modulo pk for all k,

including k = ∞. In other words, we will need the p-adic numbers, to

which we first give a brief introduction.

A brief introduction to the p-adic numbers, norm and metric

If p is a fixed prime number, then any positive integer can be written

uniquely in a base p expansion in the form

n∑
i=0

aip
i, (5.5)

42 Bezout’s theorem

where the ai’s are integers in {0, 1, 2, . . . , p − 1}. If we now consider

formal infinite sums of the form

∞∑
i=0

aip
i, where each ai ∈ {0, 1, . . . , p− 1} (5.6)

we obtain the p-adic integers that we denote by Zp. In other words Zp

is the set of all infinite formal sums of the form (5.6) above. Intuitively,

addition and multiplication of elements are carried out in the same

as we would have if the sequences were finite (treating p as a formal

variable). More concretely the first k terms of the sum (respectively

the product) of two sequences

∞∑
i=0

aip
i and

∞∑
i=0

bip
i

is obtained as follows: truncate the two sequences to their first k terms

to obtain two integers

A =

k−1∑
i=0

aip
i and B =

k−1∑
i=0

bip
i.

The first k terms of the sum (respectively the product) are the k least

significant ‘digits’ in the base-p expansion of A+B (respectively A ·B).

Notice that finite sequences of the form (5.5) do not have additive

inverses because they correspond to positive integers. But once we go

to infinite sequences of the form (5.6), additive inverses appear and the

set Zp forms a group under addition. For example

−1 =

∞∑
i=0

(p− 1) · pi.

The set Zp is in fact almost a field: if a0 is different from 0 then∑
i≥0

aip
i

has an inverse in Zp as well. For example for p = 3,

2−1 = 2 + 1 · 3 + 1 · 32 + 1 · 33 + . . .

43

However Zp is not a field. For example the inverse of the element p =

0 + 1 · p+ 0 · p2 + 0 · p3 + . . . does not exist in Zp. Luckily this can be

fixed by slightly extending the Zp. We consider all infinite sequences of

the form
∞∑
i=k

aip
i, (5.7)

where k is some (not necessarily positive) integer and as before each ai
is in {0, 1, 2, . . . , p− 1}. 1 The set of formal sums of the form (5.7) we

denote by Qp. Qp forms a field and we call it the field of p-adic numbers.

One very useful property of the p-adics is that it comes equipped with

a useful notion of absolute value of an element (an absolute value for

Qp is a map from Qp to R). Let

α =

∞∑
i=k

aip
i (5.8)

be an arbitary element in Qp. Let the smallest i for which ai is nonzero

be t. Then the p-adic absolute value of α, denoted |α|p, is defined to be

the real number p−t. Finally, this metric satisfies the following useful

properties: for all a, b, c ∈ Qp

|a+ b|p ≤ max(|a|p , |b|p) (5.9)

|a · b|p = |a|p · |b|p (5.10)

|a− b|p ≤ |a− c|+ |c− b| (triangle inequality) (5.11)

Sketch of proof of theorem 5.6

With this description of the p-adic numbers in place we proceed to

outline a proof of theorem 5.6. Consider a polynomial f(X) with integer

coefficients. Note that the integers form a subset of Zp which is in turn

a subset of Qp so that f(X), which has integer coefficients can also be

thought of as a polynomial with coefficients in Qp. At the same time, by

reducing each coefficient of f(X) modulo p, we can also view f(X) as a

polynomial over the finite field Z/(pZ) = Fp. In this way we will think

1For those aware of the terminology: Zp is an integral domain, i.e. if the product of two
elements of Zp is zero then each of those elements must be zero. Qp can alternatively be
obtained as the field of fractions of this integral domain.

44 Bezout’s theorem

of polynomials with integer coefficients simultaneously as polynomials

over Z, Qp and Fp. The proof involves two steps. In the first step, we

will see that every isolated root of f(X) = 0 over Fp can be lifted up

to a unique isolated root over Qp. In the second step we will see that

theorem 5.2 holds true with F = Qp, the field of p-adic numbers, i.e.

we obtain an upper bound on the number of isolated roots over Qp.

Theorem 5.6 then follows.

The first step: Lifting solutions modulo p to solutions in Qp.

It is based on the following lemma.

Lemma 5.7. Hensel Lifting. Assume that for some a ∈ Zn

(1) f(a) = 0 (mod pk).

(2) det(Jf)(a) ̸= 0 (mod p).

Then for every m > k, there is a unique b ∈ (Z/pmZ)n such that

(1) b = a (mod pk).

(2) f(b) = 0 (mod pm).

The proof is a modification of Newton iteration, done in the p-adic

metric. More concretely, this linearization process (say for m = k + 1,

which can then be iterated for larger m) is made explicit as follows.

For polynomial maps the “Taylor expansion” is a polynomial identity,

and truncating it after the first term gives

f(b) = f(a) + J(f)(a) · (b− a) (mod pk+1).

In doing this truncation we use the fact that

b− a = 0 (mod pk)

so that

(b− a)2 = 0 (mod pk+1)

and therefore, the higher order terms in the Taylor expansion vanish

modulo pk+1. Then

b = a− Jf (a)
−1 · f(a) (mod pk+1)

45

satisfies the properties claimed in the lemma. Now if we take m = ∞
in the lemma above, the sequence of b’s so obtained “converges” in the

p-adic metric to some unique point in Zn
p . In other words, we get that

corresponding to every isolated root a ∈ Fp there is a unique b ∈ Zn
p ,

the ring of p-adic integers such that b is an isolated solution of f = 0.

The second step: Proving Bezout over Qp.

This step mimics the proof over the reals. We give the key facts one

needs to do this mimicry. Qp is a field and hence the number of roots

of any univariate polynomial is bounded by its degree. Furthermore,

Qp comes equipped with the p-adic metric |·|p mentioned above, which

allows us to talk about the neighborhood of a point. These properties

of Qp and its accompanying “valuation” suffice to mimic the proof

over reals in a relatively straightforward way. We omit the details and

leave the proof of theorem 5.6 as an exercise for the interested reader .

This completes our description of Wooley’s proof of Bezout’s theo-

rem.

6

Algebraic extractors and the Jacobian conjecture

A collection of n polynomials f1, . . . , fn in n variables over

the field F can be viewed as a map Ψ from the vector space

Fn to itself in the natural way:

Ψ : (x1, . . . , xn) 7→ (f1, . . . , fn).

A fundamental question is: is the map Ψ a bijection? We

will describe a well-known open problem in algebra called

the Jacobian conjecture which seeks to characterize such

bijective maps. It involves the Jacobian matrix introduced

in chapter 3. Before that we outline some recent results on

how to condense the output of a map while retaining the

algebraic rank.

The material in the first part of this chapter is taken from Dvir,

Gabizon and Wigderson [DGW09]. The paper deals with the extraction

of randomness from sources sampled by polynomial maps over large

finite fields. However, as a preliminary result of independent interest for

us here we describe the so-called “rank-extractors”, which is a natural

object from an algebraic standpoint.

Consider k polynomials f = (f1, f2, . . . , fk) in F[x1, x2, . . . , xn] each

46

6.1. The Jacobian conjecture 47

of degree at most d, and assume that the rank of the Jacobian J(f) is r

(note that r is at most the minimum of k and n). So there are some r

algebraically independent polynomials among the fi’s. Is there a general

way to “extract” this much algebraic independence from them? This

question is formalized as follows.

Definition 6.1. A vector of polynomials g = (g1, g2, . . . , gr) in

F[z1, z2, . . . , zk] is a (k, n, d)-rank extractor, if for every system f as

above, the composition g ◦ f are algebraically independent. A rank ex-

tractor g is explicit if all gi have arithmetic circuit of size polynomial

in k, n, d, and their degree bounded by a polynomial in k, n, d.

Theorem 6.2. For every k, n, d, there is an explicit g which is a

(k, n, d)-rank extractor for every field F of characteristic zero or larger

than (knd)3.

The Construction. We give the construction of the rank extractor

here while omitting the proof of its correctness. Let s2 = dn + 1 and

s1 = (2dk + 1)s2. Let lij = i · (s1 + js2). Define for each 1 ≤ i ≤ r

gi(z1, . . . , zk) :=
∑
j∈[k]

1

lij + 1
z
lij+1
j

The proof of correctness of the construction above by Dvir, Gabizon

and Wigderson [DGW09] heavily uses the matroid structure of alge-

braic independence and the chain rule for partial derivatives underly-

ing the Jacobian, which we met in Chapter 3. These rank-extractors

serve as a starting point for the construction of randomness extractors

for polynomial sources, and Wooley’s theorem of the previous chapter

guarantees that such sources have high enough “min-entropy”.

6.1 The Jacobian conjecture

Here we describe (only for dimension 2) the famous Jacobian conjec-

ture which attempts to characterize bijective polynomial maps over the

complex numbers.

48 Algebraic extractors and the Jacobian conjecture

Let us consider a pair of bivariate polynomials: f(x, y) and g(x, y) ∈
C[x, y]. This pair of polynomials naturally represents a map ϕ : C2 7→
C2, with (x, y) 7→ (f(x, y), g(x, y)). The question that we are interested

in is whether this map is a bijection or not.

The following conjecture (generalized to n polynomials in n vari-

ables, known as the Jacobian conjecture), says that the bijectivity of

this map ϕ is captured by the determinant of the Jacobian matrix.

Conjecture 6.3. The map (x, y) 7→ (f(x, y), g(x, y)) is a bijection if

and only if

Det

 ∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

 = c,

for some nonzero constant c ∈ C.

[Kel39, Wri81, Yu95] is a partial list of references on this conjecture.

7

The “Joints conjecture” resolved

Combinatorial geometry studies configurations of points

and lines (and other geometric objects) in space satisfy-

ing certain properties. How do we reason about such a col-

lection of points and lines? A simple and useful idea is to

interpolate a polynomial through the set of points! In this

chapter, we will see an application of an extension of this

idea wherein partial derivatives of the interpolated polyno-

mial will help us prove the Joints conjecture.

Here we briefly describe an application of polynomials and their

partial derivatives to a problem in combinatorial geometry. This is only

one instance of a recent slew of results of this type, starting with Dvir’s

resolution of the finite-field Kakeya problem [Dvi09b]. A survey of these

results is in [Dvi09a].

We will work over Euclidean space Rd, although with some care all

definitions and results apply over finite fields as well. We shall think of

d as fixed. Now assume we have a set L of lines in this space. A joint

is the intersection of d lines from L, of linearly independent directions.

What is the largest number of joints that can be spanned by n lines?

The regular lattice in d dimensions, with side about n1/(d−1), shows

49

50 The “Joints conjecture” resolved

that we can have Ω(nd/(d−1)) joints. The “Joints Conjecture” was that

this is asymptotically tight. The conjecture was open for many years,

even for dimension 3. This case was finally resolved by Guth and Katz

[GK08], and their proof was simplified and extended to all dimensions

by Kaplan, Sharir and Shustin [KSS10].

Theorem 7.1. n lines in Rd span at most O((nd/(d−1)) joints (the

implied constant depends only on d).

Proof. Let L be the set of n lines, and P be the set of joints they

span. Without loss of generality we can assume that every line passes

through at least |P |/2n joints (otherwise we can remove the other lines,

losing only at most half the joints). Now assume for contradiction that

|P | ≥ Cnd/(d−1) for a constant C to be determined later. Let P ′ be a

subset of P of cardinality exactly |P ′| = Cnd/(d−1).

Let f be a non-zero d-variate polynomial of minimal degree passing

through all joints in P ′. Note that the degree r of f can be chosen to

be O(n1/(d−1)) (This is by standard interpolation — we have enough

degrees of freedom in a linear system of equations determining the

coefficients of f). The constant C is chosen such that r < |P ′|/2n. The
choice of C and the assumption that every line passes through more

than r joints ensure that f vanishes identically on every line in L.

Now consider the gradient ∂(f), the d-dimensional vector of first-

order partial derivatives ∂xi(f). Since f is nonzero, one of these deriva-

tives, say g = ∂x1(f) is nonzero as well, and has degree lower than f .

The contradiction will follow by proving below that all these partial

derivatives pass through all joints in P ′ as well.

Consider evaluating ∂(f) at any joint p ∈ P ′. Let v1, v2, . . . , vd be

the d linearly independent directions of the lines defining p as a joint.

Since f vanishes on these lines, we have that the vector ∂(f)(p) has

inner product zero with all vi. But since the vi’s span Rd, ∂(f)(p) must

be identically zero, namely all partials vanish on p. But this argument

holds for all p ∈ P ′ and we are done.

8

The Stepanov method

A univariate polynomial of degree d over any field has at

most d zeroes. Now consider a bivariate polynomial f(x, y)

over a finite field Fp. How many zeroes can it have? In

other words, how many points (a, b) are there in Fp × Fp

such that f(a, b) = 0? In this chapter we will see how

derivatives are useful in addressing this question. We will

follow the “Stepanov method”, and illustrate its power for

such bounds and related exponential sums, of Weil, Heath-

Brown and Mit’kin.

This chapter will have four parts. In Section 8.1, we give the back-

ground for one of the important achievements of algebraic geometry

— Weil’s bound on the number of rational points on curves, name-

ly bivariate polynomials. We will explain in a special case (relevant

to the commonly used Weil’s exponential sum bound) the reduction

to bounding the number of roots of univariate polynomials. This will

motivate the first problem to be attacked by Stepanov’s method: how

many times a polynomial h of the form h = fn can attain any particu-

lar value. The challenge is getting a bound which is much smaller than

the degree of h.

51

52 The Stepanov method

In Section 8.2 we will first explain the intuition behind Stepanov’s

method; the use of an auxiliary polynomial which vanishes to large

multiplicity on the roots of h− a, and the special differential structure

of h’s for which this method is effective.

We then give the details of how the method applies to polynomi-

als of the form h = fn in Section 8.3. In Section 8.4 we explain a

result of Heath-Brown and Mit’kin, bounding the number of roots of

a “transcendental-looking” polynomial, which follows the same recipe,

but requires completely different choices of parameters and uses other

properties of the given polynomial.

8.1 Weil’s theorem on rational points on curves

Let p be a prime, and g(x, y) ∈ Fp[x, y] be a bivariate polynomial of

degree d. Denote by Ag ⊆ Fp×Fp the set of Fp-zeroes of the polynomial

g(x, y) = 0, i.e. {
(a, b) ∈ Fp × Fp : g(a, b) = 0

}
,

The set Ag is also called the set of Fp-rational points of the polynomial

g. We tackle the following question: what is the size of the set Ag?

When p is much larger than d, say p = Ω(d5), very good estimates for

this quantity are known. Let the factorization of g(x, y) over Fp be

g(x, y) = g1(x, y)
e1 · g2(x, y)e2 · . . . · gk(x, y)ek .

To answer the question posed above, we need a definition. Let us call a

polynomial in Fp[x, y] absolutely irreducible if it is irreducible over the

algebraic closure Fp of Fp.

Example 8.1. For example, (y2 − x3) ∈ F7[x, y] is absolutely irre-

ducible whereas (y2 + x2) ∈ F7[x, y] is irreducible over F7 but factors

into (y +
√
−1x)(y −

√
−1x) over the extension F72 = F7(

√
−1) and

hence is not absolutely irreducible over F7.

Going back to the question posed above, let the number of distinct ab-

solutely irreducible factors of g(x, y) be t. Then the number of rational

points is approximately p · t. More precisely, this number |Ag| satisfies

8.1. Weil’s theorem on rational points on curves 53

the following upper and lower bounds:

pt−O
(
d2
√
p
)
≤ |Ag| ≤ pt+O

(
d2
√
p
)

(8.1)

This chapter is devoted to presenting a proof of the above bound for a

certain illustrative special case. We refer the reader to Schmidt’s book

[Sch04] for the general case. Our presentation is also based on this text.

Historical Notes. The bound given by (8.1) was first conjectured

by Emil Artin in 1924. 1 In 1948, Andre Weil published the proof of

Artin’s conjecture. This was a landmark in both number theory and

algebraic geometry. Subsequently, in 1949, Weil proposed far reaching

generalizations of Artin’s conjecture. Later, Grothendieck and Deligne

employed profound innovations in algebraic geometry to carry Weil’s

work much further.

In what came as a surpise to the mathematics community, Sergei

Stepanov gave elementary proofs of many of Weil’s most significant

results in a series of papers published between 1969 and 1974. Proofs

of Weil’s result in full generality, based on Stepanov’s ideas were given

independently by Wolfgang Schmidt and Enrico Bombieri in 1973. The

text by Schmidt [Sch04] contains a very nice exposition of both meth-

ods. The presentation here is based on the first chapter of Schmidt’s

book.

In the next section, we first show that in order to prove (8.1), it

suffices to prove the appropriate bound for a single absolutely irre-

ducible polynomial. We do not prove the bound (8.1) for all absolutely

irreducible polynomials but rather just for polynomials of the form

g(x, y) = yr − f(x),

with r being a prime not dividing deg(f(x)).

Reduction to the case of a single absolutely irreducible

polynomial

Let the factorization of g(x, y) over Fp be

g(x, y) = g1(x, y)
e1 · g2(x, y)e2 · . . . · gk(x, y)ek

1The conjecture of Emil Artin was formulated somewhat differently and is a little stronger
than what is given here.

54 The Stepanov method

Clearly, we can assume without loss of generality that the ei’s are all

1 (as this does not change Ag and decreases the degree) i.e.

g(x, y) = g1(x, y) · g2(x, y) · . . . · gk(x, y),

where the gi(x, y)’s are distinct Fp-irreducible polynomials. Let us also

assume without loss of generality that the first t factors: g1, g2, . . . , gt
are absolutely irreducible while the rest are not. Let Agi be the set of

Fp-rational points of gi(x, y). By the inclusion-exclusion principle,∑
1≤i≤k

|Agi | −
∑

1≤i<j≤k

∣∣∣Agi

∩
Agj

∣∣∣ ≤ |Ag| ≤
∑

1≤i≤k

|Agi | (8.2)

Any point P = (a, b) in Agi

∩
Agj is a multiple point on the curve

g(x, y) = 0 and therefore simultaneously satisfies the equations

g(x, y) =
∂g

∂x
=

∂g

∂y
= 0. (8.3)

Furthermore it can be shown that if gi(x, y) is Fp-irreducible but not

absolutely irreducible then any Fp-rational point on gi(x, y) is also a

multiple point of the curve g(x, y) = 0 and therefore satisfies equation

(8.3) as well. We leave the proof of this as an exercise for the reader. We

now use the squarefreeness of g to upper bound the number of multiple

points on the curve g(x, y) = 0 by O(d2).

Lemma 8.2. The number of solutions to (8.3) is at most d2.

Proof. By making a suitable invertible linear transformation of the

variables if necessary, we can assume without loss of generality that the

leading term with respect to x of the polynomial g(x, y) is an element

in F∗
p. Then since g(x, y) is squarefree, we have that gcd(g, ∂g∂x) = 1.

We now apply Bezout’s theorem to g(x, y) and ∂g
∂x . Bezout’s theorem

states that the number of common zeroes of two coprime polyomials is

at most the product of the degrees of the two polynomials. Applying

Bezout’s theorem to g(x, y) and ∂g
∂x , we get that the number of common

zeroes and hence also the number of multiple points of g is at most

d(d− 1) < d2.

8.1. Weil’s theorem on rational points on curves 55

Thus, we can now refine (8.2) to obtain:∑
1≤i≤t

|Agi | −O(d2) ≤ |Ag| ≤
∑
1≤i≤t

|Agi |+O(d2) (8.4)

Note that in this estimate we are summing up only over the absolutely

irreducible factors of g. Thus in order to prove the bound (8.1), it

suffices to prove the following:

Theorem 8.3. (Weil’s Theorem, also known as “Riemann Hy-

pothesis for curves over finite fields”.) Let g(x, y) ∈ Fp[x, y] be an

absolutely irreducible polynomial of degree d. Then the number |Ag| of
Fp-rational points on the curve g(x, y) satisfies∣∣|Ag| − p

∣∣ ≤ O(d2)
√
p.

If the i-th absolutely irreducible polynomial gi(x, y) has degree di, we

use the fact that
∑

i d
2
i ≤ (

∑
i di)

2 to derive the estimate (8.1) from

the above theorem.

We now discuss Stepanov’s proof of a significant special case of this

theorem — when the polynomial g(x, y) is of the form yr − f(x), r a

prime not dividing deg(f). Here we also sacrifice some accuracy in order

to improve clarity — the “error term” in our proof shall be O(d
7
2)
√
p

instead of O(d2)
√
p as stated above.

Preliminary Observations

For the rest of this chapter we will fix g(x, y) to be yr − f(x). All the

proofs presented here have a relatively straightforward generalization

even if r is not prime but so long as gcd(r,deg(f(x))) = 1. For the sake

of ease of presentation we deal only with the case that r is a prime and

does not divide deg(f). For a univariate polynomial f(x) we will denote

its (first) derivative simply by f ′ and denote its ℓ-th order derivative,

namely dℓf
dxℓ , by f (ℓ). We begin with a proposition assuring us that in

our situation, yr − f(x) is absolutely irreducible.

56 The Stepanov method

Proposition 8.4. The bivariate polynomial g(x, y) = yr − f(x) is re-

ducible over the algebraic closure Fp iff f(x) is a perfect r-th power.

We leave the proof as an exercise for the reader. (Hint: If h(x, y)

divides yr− f(x) then so does h(x, ωy), where ω ∈ Fp satisfies ωr = 1.)

This means that yr − f(x) is absolutely irreducible if f(x) is not a

perfect r-th power. The following observation obtains some elementary

properties of the rational points of yr − f(x). It follows easily from the

fact that the group of units F∗
p is cyclic.

Fact 8.5. The zeroes of yr − f(x) are characterized as follows:

• Case I: r does not divide p− 1. In this case, every element

in Fp has a unique r-th root inside Fp so that the number of

zeroes of yr − f(x) is exactly p.

• Case II: r divides p− 1. Then there exists a primitive r-th

root of unity ω ∈ Fp. For any a ∈ Fp, we have that either

f(a) = 0 or

f(a)
p−1
r ∈

{
1, ω, ω2, . . . , ωr−1

}
Furthermore, there exists a b satisfying br = f(a) iff

f(a)
p−1
r = 0 or 1.

Lastly, if (a, b) is a rational point then so is (a, ωi · b) for all
i ∈ [r].

If r does not divide p − 1, then we are done by the above lemma.

For the remainder of this chapter, we will assume that r is a prime that

divides p− 1.

Theorem 8.6. Upper bound on the number of zeroes of cer-

tain univariate polynomials. Let f be a polynomial of degree m,

and let r be a prime which divides p − 1 but does not divide m. Let

8.1. Weil’s theorem on rational points on curves 57

θ ∈ Fp be any element of Fp, then the number of Fp-zeroes of the

univariate polynomial

f(x)
p−1
r − θ

is at most p
r +O(mr

1
2 p

1
2).

Again, we stress that the upper bound on the number of roots given

is far smaller than the degree. The ideas of how this magic happens is

explained at high level in section 8.2, and then elaborated for this

important case in section 8.3. Before turning to it, we explain how

it yields Weil’s theorem for these curves, and how it yields the (very

useful) Weil’s exponential sum bound.

The upper bound of the above theorem allows us to deduce both

upper bounds as well as lower bounds on the number of Fp-solutions to

the bivariate equation under consideration.

Corollary 8.7. Converting upper bounds into lower bounds.

The number of Fp-zeroes of the equation yr − f(x) = 0 is at least

p−O
(
mr

5
2 p

1
2

)

Proof. Let ω ∈ Fp be a primitive r-th root of unity. By the theorem

above, there are at most

(r − 1) ·
(p
r
+O

(
mr

1
2 p

1
2

))
elements a in Fp such that

f(a)
p−1
r ∈ {ω, ω2, . . . , ωr−1}

For any a ∈ Fp

f(a)
p−1
r ∈ {1, ω, ω2, . . . , ωr−1}

so that there are at least

p−
(
(r − 1) ·

(p
r
+O

(
mr

1
2 p

1
2

)))
=

p

r
−O

(
mr

3
2 p

1
2

)

58 The Stepanov method

elements a ∈ Fp for which f(a)
p−1
r = 1. Then by Fact 8.5, each such a

yields r different b’s satisfying br − f(a) = 0. Therefore, the number of

rational points is at least

r ·
(p
r
−O

(
mr

3
2 p

1
2

))
= p−O

(
mr

5
2 p

1
2

)
.

As this point we note that Theorem 8.6 and its corollary above have

an alternative statement in terms of exponential sums.

Exercise 8.8. Let χ : F∗
p 7→ C be a multiplicative character of order

r, i.e. χ is a nontrivial homomorphism from the group of units F∗
p to

the r-th roots of unity in C with

χ(0)
def
= 0.

Let f(x) ∈ Fp[x] be a polynomial of degree m coprime to r, then 8.6 is

equivalent to the estimate:∣∣∣∣∣∣
∑
a∈Fp∗

χ(f(a))

∣∣∣∣∣∣ = O
(
mr

5
2 p

1
2

)
.

8.2 A high-level description of the Stepanov method

The Stepanov method is applied to the task of showing that for a given

polynomial h(x), the number of Fp-zeroes of the univariate polynomial

h(x) − θ is small for every θ ∈ Fp. Theorem 8.6 states this for h(x) =

f(x)
p−1
r . We shall explain the intuition for this special case, but we try

to have as much as the discussion apply to a general h, so as to build

intuition on the structure required to carry the argument through.

Fix θ, and let P denote the set of Fp-zeroes of the univariate poly-

nomial h(x)−θ. The crux of the proof involves the construction (partly

via interpolation) of a nonzero polynomial F (x) of relatively low de-

gree (say D) which vanishes on every point of P with high multiplicity

(say M). It will then follow that |P | ≤ D
M . We make this more precise

below, summarizing the important properties of F (x) while postponing

the actual construction for a bit.

8.2. A high-level description of the Stepanov method 59

Lemma 8.9. There exists a polynomial F (x) ∈ Fp[x] with the follow-

ing properties:

(1) F (x) is nonzero as a polynomial.

(2) F (x) vanishes with multiplicity at least

M = Θ

(
p1/2

r1/2

)
at all points in P .

(3) D
def
= deg(F (x)) ≤ p

r ·M +Θ(p ·m).

The upper bound of Theorem 8.6 then follows easily from this con-

struction.

Proof of Theorem 8.6

The number of zeroes of a polynomial counted with multiplicity cannot

exceed its degree so that we have

|P | ·M ≤ deg(F (x)) ≤ p

r
M +Θ(pm)

Thus

|P | ≤ p

r
+

Θ(pm)

M
≤ p

r
+Θ

(
mr

1
2 p

1
2

)
Construction of the Polynomial F (x).

Overview. We now look at the construction of the polynomial F (x)

of Lemma 8.9 as given by Stepanov. This is the core of Stepanov’s

method. Let us give some intuition before describing the actual con-

struction. In all interesting cases, such as this one, the degree of the

polynomial h(x)−θ, is much larger than the upper bound for the num-

ber of its Fp-roots that we seek to prove. Let us first get an “algebraic

characterization” of the elements of P .

60 The Stepanov method

Fact 8.10. The elements of P are precisely the roots of

gcd
(
h(x)− θ, xp − x

)
.

In particular, |P | = deg(gcd(h(x)− θ, xp − x)).

This means that any polynomial F (x) which vanishes at every point

of P must be a multiple of gcd(h(x) − θ, xp − x). This in turn means

F must be of the form

F (x) = u(x)
(
h(x)− θ

)
+ v(x)

(
xp − x

)
, (8.5)

because the gcd is of the above form. Conversely, any F of the form

(8.5) above vanishes on all points of P . If M = 1, we can choose say

u(x) = v(x) = 1 and obtain deg(F) = max(deg(h), p). We can do even

somewhat better and obtain u(x) and v(x) such that F (x) has degree

min(deg(h), p) but it is not clear how to choose u(x) and v(x) so that

the expression (8.5) has a much smaller degree.

How can we gain by using multiplicity? The answer is “amortized

analysis” combined with the fact that both polynomials h(x) − θ and

xp − x satisfy “nice differential equations”. We need to satisfy

F (ℓ)(α) = 0, for every α ∈ P and every 0 ≤ ℓ ≤ M − 1.

If it happens that imposing any additional derivative to vanish is cheap

(requires much smaller than deg(h) linear constraints), then we are in

business. At a very high level the following will happen. Recall that D

is the degree of F . The first step of making F vanish on P will require

only D′ ≪ D linear constraints. Moreover, in every differentiation step

of F this parameter D′ will increase only by m, the maximum degree

of the polynomials u(x), v(x) above. This will make the total “cost” (in

terms of linear constraints) of making M derivatives of F vanish on P

only MD′ +mM2, far smaller than the trivial MD.

Now what is the source of this magic? It comes from the following

two differential equations, satisfied by h(x)− θ and xp − x:(
h(x)− θ

)′
=

p− 1

r
· h(x) · f

′(x)

f(x)
and (xp − x)′ = −1 (8.6)

8.2. A high-level description of the Stepanov method 61

We use them to differentiate (8.5). We get

F ′ = u′(h− θ) + u · h′ + v′(xp − x) + v(xp − x)′

=
(
u′(h− θ) + v′(xp − x)

)
+

(
(p− 1) · u · h · f ′

r · f
− v

)
Now the first summand vanishes on P so that we must only make

sure that the second one does too. We want

(p− 1) · u(α) · h(α) · f ′(α)− r · v(α) · f(α) = 0, ∀α ∈ P.

Since h(α) = θ for each α ∈ P we want that

−θ · u(α) · f ′(α)− r · v(α) · f(α) = 0, ∀α ∈ P

The equation above suggests a natural choice of u and v. Lets choose

u(x) = r ·f(x) and v(x) = −θ ·f ′(x). This ensures that −θ ·u(z)f ′(z)−
r · v(z)f(z) is identically zero(!) and therefore, the last equation holds

for all α ∈ P . Substituting these choices of u and v back into equation

(8.5), we get

F = r · f · (h− θ)− θ · f ′ · (xp − x)

so that deg(F) ≤ m+max(deg(h), p). We have thus ensured the van-

ishing of the first derivative by paying an additive cost of just m to the

degree of F .

At this point, a delicate but important issue crops up — we must

ensure that the polynomial F obtained in this way, is not identically

zero. Often the most difficult part of this kind of arguments is to make

sure that F is nonzero. This is also the place where the absolute ir-

reducibility of the polynomial yr − f(x) is crucially used. In our case,

it suffices to ensure that the degrees of the two summands of F are

distinct in order to ensure that F is nonzero. We have

deg(u · (h− θ))− deg(v · (xp − x)) = m+m · p− 1

r
− ((m− 1) + p)

=
p− 1

r
(m− r),

which is nonzero. This shows that

|P | ≤ 1

2

(
m+max

(
p,m · p− 1

r

))
,

62 The Stepanov method

a tiny improvement on max(p,m · p−1
r). Of course, in order to derive

the maximum benefit, we have to keep applying this reasoning for all

derivatives, not just the first. Let us now see these ideas in action with

full detail.

8.3 Formal proof of Weil’s theorem

The polynomial F (x) that we construct will be chosen from an appro-

priate linear space L of polynomials in Fp[x]. The vanishing of its first

M derivatives will be guaranteed by homogeneous linear constraints

on L. Let the linear space L(A,B,C) be defined as all polynomials in

Fp[x, y, z] with degree at most A in x, B in y and C in z. We will pick

a nonzero polynomial G in L and set

F (x) = f(x)MG(x, h(x), xp).

Using this equation, the chain rule and the differential equations (8.6),

we see that

F ′(x) = f(x)M−1G1(x, h(x), x
p),

where G1 is in L(A + m,B,C). Hence we can repeat the process of

taking derivatives, getting that

F (k) = f(x)M−kGk(x, h(x), x
p),

with Gk in L(A+mk,B,C), for all k ≤ M . Moreover, the coefficients

of Gk are linear combinations of the coefficients of G!

Furthermore, if we have any G∗ in L(A∗, B,C) and set

F ∗ = f∗ ·G∗(x, h(x), xp)

(for any polynomial f∗), we can ensure that F ∗(α) = 0 for all α ∈ P

simultaneously by imposing only A∗+C homogeneous linear constraints

(for this we use the fact that for all α ∈ P , h(α) = θ and αp = α).

Doing so for all Gk, we need to impose (A+ C)M +mM2 constraints

in total. To make sure the initial G is nonzero we need that the initial

space L(A,B,C) has large enough dimension, namely

ABC > (A+ C)M +mM2 (8.7)

8.3. Formal proof of Weil’s theorem 63

The degree of F is Mm + A + deg(h) · B + pC which gives an upper

bound on the size of the set P

|P | < 1

M
·
(
mM +A+ deg(h) ·B + pC

)
(8.8)

Finally, the fact that G is nonzero does not imply that F is nonzero!

Indeed, often this is the hardest thing to arrange and usually leads to

further conditions on the parameters A, B and C. Once all are set, we

optimize the value of M to yield the best possible upper bound on |P |.
Let us now instantiate this approach and specify the best choice of the

various parameters.

The Actual Construction and Choice of Parameters. We choose

the precise values of the parameter M of Lemma 8.9, and the parame-

ters A, B and C as follows:

M =

√
2p

r
− 3 (8.9)

A =
p

r
−m

B = r − 1

C =
M

r
+

m+ 1

r
(8.10)

Thus the polynomial G is of the form

G(x, y, z) =

 ∑
0≤i≤A

∑
0≤j≤B

∑
0≤k≤C

aijk · xi · yj · zk
 ,

so that the polynomial F (x) takes the form

F (x) = f(x)M ·

 ∑
0≤i≤A

∑
0≤j≤B

∑
0≤k≤C

aijk · xi · h(x)j · xpk
 , (8.11)

where the aijk’s are unknowns that we will ultimately determine by

solving an appropriate system of homogeneous linear equations.

We now prove the three properties of F from lemma 8.9.

First Property. Any nontrivial choice of F (x) of the form given by

(8.11) above is nonzero:

64 The Stepanov method

Proposition 8.11. If G(x, y, z) is nonzero then F (x) is nonzero.

Proof. A typical summand of F (x) is of the form

Hijk(x) = aijk · xi · h(x)j · xpk.

It suffices to show that the degrees of the nonzero summands are all

distinct. If r = 1 then this fact would be trivial — for larger r it will

follow from the fact that r and m are relatively prime, as follows.

deg(Hijk(x)) = i+ j · p− 1

r
·m+ pk =

p

r
(rk + jm) + i− j

r
m

whence by the choice of A and B,

p

r
(rk + jm)−m < deg(Hijk) ≤ p

r
(rk + jm) +

p

r
−m

Hence we need only verify that for pairs (j, k) ̸= (j′, k′), we have

(rk + jm) ̸= (rk′ + j′m).

So suppose

rk + jm = rk′ + j′m

Then

mj ≡ mj′ (mod r)

So since r is a prime not dividing m we have

j ≡ j′ (mod r)

But 0 ≤ j, j′ ≤ r − 1, so j = j′ and k = k′.

This shows that F (x) satisfies the first property. We wish to make

F (x) vanish with high multiplicity at every point in P . For this we need

to examine the derivatives of the summands. The following proposition

carries out the (straightforward) computation of derivatives of F (x)

and shows that they are pretty much of the same form as F (x) itself.

8.3. Formal proof of Weil’s theorem 65

Proposition 8.12. Computation of derivatives. For ℓ ≤ M , the

ℓ-th derivative of F (x) is of the form:

F (ℓ)(x) = f(x)M−ℓGℓ(x, h(x), x
p),

where Gℓ(x, y, z) ∈ Fp[x, y, z] is a polynomial in the linear space L(A+

ℓ(m − 1), B, C). The coefficients of Gℓ(x, y, z) are linear combinations

of the (unknown) coefficients of G(x, y, z).

The proof goes by induction, with the inductive step involving some

straightforward differentiation. We leave the details as an exercise for

the reader.

Second Property. Let α ∈ P be an arbitrary element of P and let us

look at the ℓ-th partial of F (x) evaluated at α. We have

F (ℓ)(α) = f(α)M−ℓ ·Gℓ(α, h(α), α
p)

= f(α)M−ℓ ·Gℓ(α, θ, α) (as h(α) = θ and αp = α)

Notice that the factor Gℓ(α, θ, α) is a relatively low-degree polynomial

in α. We will choose the aijk’s in such a way as to ensure that this sum

is zero. The degree of Gℓ(α, θ, α), viewed as a polynomial in α, is at

most C + A + ℓ(m − 1). This means that for each ℓ ∈ {0, . . . ,M}, we
are imposing C +A+ ℓ(m− 1) homogeneous linear constraints on the

aijk’s. Thus, we have

Number of Constraints = (C +A) ·M + (m− 1) · M · (M + 1)

2
Available Coefficients = A · (B + 1) · (C + 1)

The reader can now verify that our choice of the parameters A,B,C

and M ensure that the number of available coefficients is more than

the number of constraints so that a nontrivial solution to this system of

homogeneous linear equations always exists. Thereby we get that there

exist aijk’s, not all zero, such that F (x) vanishes with multiplicity M

everywhere on P . This shows that F (x) satisfies property (2).

Third Property. Lastly, we verify that our choice of the parameters

66 The Stepanov method

also ensures that F (x) satisfies the third property.

deg(F (x)) ≤ deg
(
f(x)M

)
+

(
A+B · m · (p− 1)

r
+ C · p

)
= m ·M +A+m · p− 1

r
· (r − 1) + p · C

=
p

r
·M +Θ(p ·m)

This completes the construction of F and hence, the proof of Theorem

8.3 for the special case of polynomials of the form yr − f(x), with r

prime and gcd(r,deg(f)) = 1.

We then leave the proof of the following more general lemma as a

practice problem for the interested readers.

Exercise 8.13. Let F be a field (of say characteristic zero) and f1(x),

f2(x) ∈ F[x] be two polynomials of degree d1 and d2, respectively. If

gcd(d1, d2) = 1, then for any θ1, θ2 ∈ F, the number of common roots

of f1(x)
n − θ1 and f2(x)

n − θ2 is at most n+O(d1d2
√
n).

8.4 The Heath-Brown and Mit’kin estimates

In independent work around 1993, Heath-Brown [HB96] and Mit’kin

[Mit92] proved the following:

Theorem 8.14. Let h(x) ∈ Fp[x] be the following polynomial:

h(x) = x+
x2

2
+

x3

3
+ . . .+

xp−1

p− 1
.

Then for any θ ∈ Fp, the number of Fp-roots of h(x) − θ is at most

O(p
2
3).

Note that the given polynomial has highest possible degree p−1, but

despite that it attains no Fp-value more than p2/3 times. The two pa-

pers had different motivations (which are detailed therein). For Mit’kin

it was showing that Stepanov’s method can be applied in complete-

ly different situations than the original, especially to “transcendental-

looking” polynomials, like the logarithm and exponential. For Heath-

8.4. The Heath-Brown and Mit’kin estimates 67

Brown this polynomial arose naturally as part of his proof for giving a

nontrivial estimate on the Heilbronn exponential sum.

We use Stepanov’s method described in the previous section. What

guides the proof is that h(x) looks like a discrete version of log(1− x).

This gives us two insights. First, it supplies the following appropriate

differential equation:

(x2 − x)h′ = (xp − x). (8.12)

Notice that as before, the Fp-roots of h(x) are precisely the common

roots of h(x) and xp − x and that is where the structure of the dif-

ferential equation above helps us. Secondly, as h “looks like” a tran-

scendental equation, it should have no low degree algebraic relations.

Specifically,

Lemma 8.15. Let G(x, y) ∈ Fp[x, y] be any polynomial of degree A

in x and degree B in y. If AB < p then

G(x, h(x)) = 0 (mod xp − x)

if and only if G is identically zero.

This lemma (which also uses the differential equation) is the hardest

part of the argument, and we skip the proof. It gives us the following:

For any nonzero polynomial G ∈ L(A,B,C), if AB < p then

F (x)
def
= (x2 − x)M ·G(x, h(x), xp)

is nonzero as well.

Choice of parameters. We choose

A = p
2
3

B = p
1
3

C = p
1
3

M =
p

2
3

3

We see that the number of available coefficients, namely ABC is larger

than the number of imposed constraints which is at most (A+C) ·M+

68 The Stepanov method

2M2 (as here the “cost” m per differentiation is only m = 2, the degree

of x2−x). On the other hand, the degree D of F is 2M +A+Bp+Cp

so that the set of common zeroes has cardinality at most

deg(F)

M
=

2M +A+Bp+ Cp

M
= O(p

2
3).

Part II: Lower Bounds

69

70 The Stepanov method

Overview

In this part, we will see how partial derivatives are useful in proving

lower bounds on a variety of arithmetic models of computation.

In Chapter 9, we start with the most general model of arithmetic

circuits. After some basic results, we present the only nontrivial lower

bound for it so far: an n log d lower bound on circuits computing the

sum of d-powers of n variables. A central piece of the proof is a result

showing that if a circuit of size s computes a polynomial f , then with

O(s) size one can additionally compute all the first-order partial deriva-

tives of f . So the use of partial derivatives here is indirect, reducing

the proof of a lower bound on computing a single polynomial to that

of a lower bound on computing many polynomials simultaneously.

In Chapter 10, we move to restricted models, and demonstrate the

use of partial derivatives as a “progress measure” in a very special situ-

ation. We consider a restricted kind of depth-3 circuits which compute

the sum of powers of linear functions. For this very restricted model,

considering all partial derivatives provides exponential lower bounds,

even when a monomial is to be computed.

In Chapter 11, we consider other restricted forms of depth-3 arith-

metic circuits, for which the use of partial derivatives for lower bounds

is more sophisticated (and the bounds are typically weaker).

In Chapter 12, we consider arithmetic formulae. We first recall that

in the arithmetic setting formulae are not much weaker than circuits,

and then move to derive some more lower bounds. In particular, for

multilinear formulae, Raz proved an nΩ(logn) lower bound for both De-

terminant and Permanent, by combining partial derivatives with ran-

dom restrictions. We demonstrate this approach by presenting a lower

bound for iterated matrix multiplication.

In Chapter 13, we recall the Permanent vs. Determinant problem

mentioned in Chapter 2, motivated by their completeness properties.

We then show the power of the Hessian, the matrix of all second-order

partial derivatives of a polynomial, in giving the best lower bound for

projecting the Permanent to Determinant. In Part Three we will also

see algorithmic uses of the Hessian.

9

General arithmetic circuits

What is the smallest arithmetic circuit computing a given

polynomial? Our current knowledge falls far short of giving

satisfactory answers to questions of this type in general. In

this chapter we first look at some well known (families of)

polynomials and give some of the smallest known arithmetic

circuits for computing these polynomials. We then give an

exposition of the state of the art in terms of lower bounds

for general arithmetic circuits and the role played by partial

derivatives in this result.

We first review known upper bounds for some interesting polyno-

mials. Then we prove the classical Ω(n log d) lower bound of Strassen

[Str73a] and Baur-Strassen [BS83] for S(
∑n

i=1 x
d
i).

We start with matrix multiplication. Let

X = (xi,j)i,j∈[n] and Y = (yi,j)i,j∈[n]

be two n× n matrices with 2n2 variables. We need to design an arith-

metic circuit with n2 output gates to compute XY. Because(
XY

)
i,j

=
∑
k∈[n]

xi,k · yk,j ,

71

72 General arithmetic circuits

we have S(XY) = O(n3). However, Strassen’s matrix multiplication al-

gorithm [Str69] implies that S(XY) = O(n2.81). The best upper bound

right now is O(n2.376...) by Coppersmith and Winograd [CW90].

Open Problem 9.1. What is S(XY)? Is it O(n2)?

We are also interested in the complexity of Ax, where A is a fixed

n × n matrix and x = (x1, x2, . . . , xn) is a vector of n variables. Note

that an arithmetic circuit for Ax should have n output gates to com-

pute
∑

j∈[n]Ai,j · xj , for every i ∈ [n]. It can be shown that for almost

all matrices A, S(Ax) ≥ c · n2, for some constant c > 0. However, the

following problem remains open.

Open Problem 9.2. Find an explicit matrix A such that S(Ax) ≫
n. (Actually, even showing S(Ax) > 3n would be interesting.)

Next we list some known size upper bounds concerning the perma-

nent Pern, determinant Detn, and the (elementary) symmetric poly-

nomial SYMd
n.

Definition 9.3. Let Xn = (xi,j)i,j∈[n] be an n × n matrix with n2

variables. We define the permanent and determinant of Xn as

Pern(Xn) =
∑
σ

∏
i∈[n]

xi,σ(i)

and

Detn(Xn) =
∑
σ

sgn(σ)
∏
i∈[n]

xi,σ(i).

The summation is over the set of permutations σ from [n] to itself.

For d ≤ n, we define the d-th elementary symmetric polynomial, in

n variables x1, . . . , xn, SYMd
n ∈ F[x1, . . . , xn] as

SYMd
n =

∑
S⊆[n], |S|=d

∏
i∈S

xi.

73

One way to compute Detn is to use the Gaussian elimination. How-

ever, one cannot implement it directly using an arithmetic circuit, as

division is not allowed. Strassen [Str73b] gives a division-free arithmetic

circuit of size O(n3) for computing Detn and thus, we have

Lemma 9.4. S(Detn) = O(n3).

The computation of the permanent, in contrast, is believed to be

much harder. We will come back to the comparison of permanent and

determinant in Chapter 13.

Note that the number of monomials in Pern is n!. This gives us a

trivial upper bound n · n! for S(Pern) by computing these monomials

one by one. Indeed there is a much more efficient way to expand Pern

called Ryser’s formula, which we present below. The formula is based

on the inclusion-exclusion principle, which gives an upper bound much

better than n · n!.
Let Sk,n denote the set of k-tuples π = (i1, . . . , ik), with 1 ≤ i1 <

i2 < . . . < ik ≤ n. Given π ∈ Sk,n and an n × n matrix X, we let Xπ

denote the new matrix obtained by setting every entry of X in columns

i1, i2, . . . , ik to be 0. We also use w(X) to denote
∏n

i=1(
∑n

j=1 xi,j).

Then, the permanent of X is equal to

w(X) +

n∑
k=1

∑
π∈Sk,n

(−1)k · w(Xπ).

The proof follows directly from the inclusion-exclusion principle.

Corollary 9.5. S(Pern) = O(n2 · 2n).

In the rest of this chapter, we will focus on the following two prob-

lems: the computation of (xd1, x
d
2, . . . , x

d
n) (in which we need to output

n polynomials) and
∑n

i=1 x
d
i , where we assume the field F to be C. It

is easy to see that both

S
(
xd1, x

d
2, . . . , x

d
n

)
and S

(∑d
i=1 x

d
i

)
are O(n log d). Intuitively, one might guess that n log d is also a lower

bound for S(xd1, . . . , x
d
n), since S(xd) = Θ(log d), and the n monomials

74 General arithmetic circuits

xdi are in distinct variables. In other words, it might seem that eval-

uating a polynomial f on n independent inputs cannot be combined,

and the computational effort must increase n-fold when compared to

evaluating f on a single input. This hypothesis, which is often called a

direct-sum conjecture, is natural to make for this and other computa-

tional models, but is often wrong, as shown by the following example.

Example 9.6. As mentioned earlier, for almost all n× n matrices A,

S(Ax) = Ω(n2). Let A be such a matrix. Now we need to compute

n polynomials Ax1, . . . ,Axn, where xi = (xi,1, . . . , xi,n). Even though

the n variables xi in Axi do not appear in any other linear forms and

intuitively, the computation of Axi should be independent from the

computation of other linear forms, it follows from S(XY) that

S
(
Ax1, . . . ,Axn

)
= O(n2.376...) ≪ n · S(Ax).

As we will see, even for these two seemingly simple problems, prov-

ing tight lower bounds is very challenging and counterintuitive. We first

present Strassen’s Ω(n log d) lower bound for S(xd1, x
d
2, . . . , x

d
n) [Str73a].

The same bound is later extended to S(
∑n

i=1x
d
i) by Strassen and Baur

[BS83] for which we present a simplified proof of Morgenstern [Mor85].

We start with the Ω(n log d) lower bound for S(xd1, . . . , x
d
n). It uses

several concepts from Algebraic Geometry, and in particular, Bezout’s

Theorem [Har77, I.7, Thm.7.7]. We need the following definitions.

Definition 9.7. Let f1, . . . , fk be a set of polynomials in C[X]. We

define their variety as

V
(
f1, . . . , fk

)
=
{
a = (a1, . . . , an) ∈ Cn

∣∣ f1(a) = . . . = fk(a) = 0
}
.

The degree of their variety, denoted by deg(V(f1, . . . , fk)), is the max-

imum finite number achievable by |L ∩ V(f1, . . . , fk) |, where L is any

affine subspace of Cn defined by a collection of affine forms {ℓ1, . . . , ℓm}:

L =
{
a ∈ Cn

∣∣ ℓ1(a) = . . . = ℓm(a) = 0
}
⊆ Cn.

We use the following example to explain these two concepts.

75

Example 9.8. Let f(x, y) = y − xd ∈ C[x, y], then we show that

deg
(
V(f)

)
= d.

First, deg(V(f)) ≥ d because after restricting y = 1, we get 1 − xd

which has d roots in C. Second, we have deg(V(f)) ≤ d because

(1) If we do not add any affine linear constraint, then L = Cn

and |L ∩ V(f)| is clearly infinite;

(2) If we add two affine linear constraints, then |L ∩ V(f)| ≤ 1;

(3) If we add one affine linear constraint, then the degree of the

resulting univariate polynomial is at most d and thus, the

number of roots is at most d.

As a result, the degree of V(f) is exactly d.

Now we prove S(xd1, . . . , x
d
n) = Ω(n log d). Let

C = (x1, . . . , xn, gn+1, . . . , gs, gs+1, . . . , gs+n)

be an arithmetic circuit that computes (xd1, . . . , x
d
n). In particular gs+i

outputs xdi for every i ∈ [n]. We also assume each gate gi has bounded

fan-in 2, since any arithmetic circuit of size t can be easily converted

to a bounded fan-in circuit of size O(t). Because we assumed that the

fan-in of C is bounded, we have S(C) = Θ(s).

Next we use C to define a collection of polynomials. For every i ∈
[n+ 1 : s+ n], we define a polynomial fi ∈ C[x1, . . . , xn, . . . , xs+n]:

(1) fi = xi − αxj − βxk if gi = αgj + βgk in C; or

(2) fi = xi − αxjxk if gi = αgjgk in C.

We also let hi = xs+i − xdi be a polynomial in

C[x1, . . . , xn, xs+1, . . . , xs+n],

for every i ∈ [n].

76 General arithmetic circuits

Then the lower bound on s follows from the following inequalities:

dn ≤ deg
(
V(h1, . . . , hn)

)
(9.1)

≤ deg
(
V(fn+1, fn+2, . . . , fn+s)

)
(9.2)

≤
∏
i∈[s]

deg
(
V(fn+i)

)
(9.3)

≤ 2s. (9.4)

(9.1) follows from the fact that if we restrict xs+i = 1 for all i ∈ [n]

then there are dn roots to {xdi = 1 : i ∈ [n]}.
(9.2) holds because

(x1, . . . , xn, xn+1, . . . , xs+n) 7→ (x1, . . . , xn, xs+1, . . . , xs+n)

is clearly a one-to-one correspondence between

V(fn+1, . . . , fn+s) and V(h1, . . . , hn),

because we assumed that (xd1, . . . , x
d
n) is correctly computed by C. As

a result, any subspace L of C2n yields a subspace L′ of Cs+n (defined

by the same set of affine forms) such that∣∣L′ ∩ V(fn+1, . . . , fn+s)
∣∣ = ∣∣L ∩ V(h1, . . . , hn)

∣∣.
(9.3) is an application of Bezout’s Theorem [Har77]. The theorem

states that, under certain conditions (which are satisfied here),

deg
(
V(f1, . . . , fk)

)
≤
∏
i∈[k]

deg(V(fi)).

Finally, (9.4) follows from deg(V(fi)) ≤ 2 for all n+ 1 ≤ i ≤ n+ s.

It then follows that S(C) = Θ(s) = Ω(n log d). Besides, it should be

noted that other than (9.1), the proof above actually works for any set

of polynomials (f1, . . . , fk). As a result, it gives us the following more

general lower bound for S(f1, . . . , fk) [Str73a]. Indeed this lower bound

applies even if we only count multiplication gates!

Theorem 9.9. S(f1, . . . , fk) ≥ log deg
(
V(h1, . . . , hk)

)
, where

hi := yi − fi(x1, . . . , xn), for every i ∈ [k].

77

Next we extend the same lower bound to S(
∑n

i=1 x
d
i). It is a direct

corollary of the following theorem of Baur and Strassen [BS83]:

Theorem 9.10. For any field F and f ∈ F[x1, . . . , xn], we have

S
(
∂1(f), . . . , ∂n(f)

)
≤ 5S(f).

Corollary 9.11. S
(∑n

i=1 x
d
i

)
= Ω(n log d).

Proof. By Theorem 9.10, we have

5S
(∑n

i=1 x
d
i

)
≥ S

(
xd−1
1 , . . . , xd−1

n

)
= Ω

(
n log(d− 1)

)
.

We present the following simplified proof of Morgenstern [Mor85].

Proof. (of Theorem 9.10) Roughly speaking, the idea is to compute

from the given circuit C for f , inductively backwards from its output,

the partial derivatives of f with respect to every gate of C. The chain

rule will imply that each of these partial derivatives can be computed

by adding a few new gates and edges into C. Moreover, the added gates

can be naturally arranged in a “mirror image” of C, as shown in Figure

9.1 for a simple example. Note that in particular, we have computed

the partial derivatives of f with respect to all its variables, and these

become the outputs of the new circuit. Implementing this idea formally

requires some care.

Suppose the following arithmetic circuit

C = (x1, . . . , xn, g1, . . . , gs)

computes f ∈ F[x1, . . . , xn].
First we view all the xi’s and gi’s in the circuit C as variables. Then

we inductively define a sequence of polynomials fs, fs−1, . . . , f0, where

fi ∈ F[x1, . . . , xn, g1, . . . , gi] for all i : 0 ≤ i ≤ s. The polynomial fs is

simply gs. Now suppose fi ∈ F[x1, . . . , xn, g1, . . . , gi] has already been

defined, then fi−1 is the polynomial obtained by replacing the variable

78 General arithmetic circuits

x
1
 x
2
 x
3
 x
4

g
 h

f
C

1

∂�
h
(
f
)
∂�
g
(
f
)

∂�
4
(
f
)
∂�
3
(
f
)
∂�
2
(
f
)
∂�
1
(
f
)

Fig. 9.1 Adding new gates and edges to compute the partial derivatives ∂i(f) of f .

gi in fi with either αgj + βgk or gjgk, depending on the operation of

C at gi. It is easy to see that f0 is exactly f ∈ F[x1, . . . , xn] since C is

assumed to compute f .

Next, we start to add new gates into the original circuit C to com-

pute a sequence of partial derivatives:

∂gi(fi)
∣∣
gj=Cj , j∈[i]

∈ F[x1, . . . , xn]

from i = s to 1. ∂gi(fi) is a polynomial in F[x1, . . . , xn, g1, . . . , gi] and
∂gi(fi)|gj=Cj , j∈[i] is obtained by replacing every gj with Cj ∈ F[x1, . . . ,
xn], the polynomial computed at gj in C. For convenience, we simply

79

denote ∂gi(fi)|gj=Cj , j∈[i] by ∂gi(fi). After obtaining this sequence

∂gs(fs), . . . , ∂g1(f1),

we will follow the same idea to compute ∂xi(f).

The basis is trivial: ∂gs(fs) = 1. For the induction step, we need to

show that if
∂gs(fs), . . . , ∂gk+1

(fk+1)

have already been computed in the circuit, then one only need to add

a small number of gates to get ∂gk(fk). Since ∂gk(fk) can be written as

∂gk(fk) =
s−1∑
i=k

(
∂gk(fi)−∂gk(fi+1)

)
+∂gk(fs) =

s−1∑
i=k

(
∂gk(fi)−∂gk(fi+1)

)
,

where we use ∂gk(fi), i ≥ k, to denote

∂gk(fi)
∣∣
gj=Cj ,j∈[i]

∈ F[x1, . . . , xn],

we take a close look at ∂gk(fℓ+1)−∂gk(fℓ), ℓ ≥ k. There are three cases.

First, if gate gk is not a predecessor of gℓ+1 in C, then we have

∂gk(fℓ+1)− ∂gk(fℓ) = 0,

since the only difference between fℓ+1 and fℓ is that gℓ+1 is replaced

by other g’s, and this does not affect the derivative with respect to gk.

Second, if gate gℓ+1 = αgk + βgm, for some other m : m ̸= k and

m ≤ ℓ, then using the chain rule we have

∂gk(fℓ) = ∂gk(fℓ+1)+∂gk(gℓ+1)∂gℓ+1
(fℓ+1) = ∂gk(fℓ+1)+α ·∂gℓ+1

(fℓ+1).

Finally, if gate gℓ+1 = αgkgm then we have the following two cases.

If m ̸= k, then using the chain rule, we have

∂gk(fℓ) = ∂gk(fℓ+1) + αCm · ∂gℓ+1
(fℓ+1).

If m = k then

∂gk(fℓ) = ∂gk(fℓ+1) + 2αCk · ∂gℓ+1
(fℓ+1).

Let Nk denote the set of successors of gk in C, we have

∂gk(fk) =

s−1∑
i=k

(
∂gk(fi)− ∂gk(fi+1)

)
=
∑
ℓ∈Nk

∂gk(gℓ) · ∂gℓ(fℓ).

80 General arithmetic circuits

Note that we assumed all the ∂gℓ(fℓ)’s, ℓ > k, have already been com-

puted in the circuit. Also note that all the Cm’s, m ∈ [s], have already

been computed in the circuit. As a result, we can compute ∂gk(fk) by

adding at most 2|Nk| − 1 new gates and 4|Nk| − 2 new edges.

Now we have computed the sequence ∂gs(fs), . . . , ∂g1(f1). By using

the same argument, one can show that ∂xi(f0) = ∂xi(f) can be com-

puted by adding at most 2|Mi| − 1 new gates and 4|Mi| − 2 new edges

where Mi denotes the set of successors of xi in C.
Since S(C) =

∑
|Mi| +

∑
|Ni|, the total number of edges inserted

is at most 4S(C) and thus, the size of the new circuit is ≤ 5S(C).

Exercise 9.12. Prove that given a matrix A ∈ Cn×n, computing the

matrix vector product Ax (with n outputs) is at most a constant factor

harder than computing the (single-output) bilinear form yAx.

Open Problem 9.13. Let f(x1, . . . , xn, y1, . . . , ym) be a function in

n+m variables. Is it true that

S

(
∂2f

∂xi∂xj

)
≤ O

(
S(f) + n2

)
?

Exercise 9.14. If the statement above is true, then matrix multipli-

cation has a O(n2) algorithm.

Open Problem 9.15. The lower bounds above turn out to be the

strongest ones we have right now for general arithmetic circuits. Can

we prove stronger lower bounds for polynomials of constant degree?

10

Sums of powers of linear forms

In chapter 2 we saw that every n-variate polynomial f of

degree d can be written as

f = ℓd1 + ℓd2 + . . .+ ℓds ,

where the ℓi’s are affine forms. For a given polynomial f ,

what is the smallest s such that f has an expression of

the above form? In this chapter we will see how partial

derivatives can be used to derive an exponential lower bound

for the smallest s required for computing a single monomial.

The degree approach described in Chapter 9 gives tight lower bound-

s for S(xd1, . . . , x
d
n) and S(

∑n
i=1 x

d
i). So far, they are still the strongest

size lower bounds we have under the general arithmetic circuit model.

Proving lower bounds in this general setting has been known as a very

challenging problem, and right now we do not have techniques powerful

enough to deal with it. One of the directions is to make extra restric-

tions on the arithmetic circuits considered, and prove (size or depth)

lower bounds for these restricted (but still interesting and nontrivial)

classes of arithmetic circuits.

In this chapter we begin our exposition of lower bounds for restrict-

81

82 Sums of powers of linear forms

ed models of computation with a small warmup. We present a lower

bound for representing a polynomial as a sum of powers of linear form-

s. 1 It complements the lemma by Ellison (Lemma 2.4) which shows

that every polynomial can be represented in this fashion. It shows that

representing a polynomial as a sum of powers of linear forms is an ex-

ceedingly restricted and weak model of computation for polynomials.

We begin with a definition:

Definition 10.1. Let

f(X)
def
=
(
f1(X), f2(X), . . . , fm(X)

)
∈
(
F[X]

)m
be a set of m polynomials over a field F. The fi’s are said to be F-
linearly dependent if there exist constants a1, a2, . . . , am ∈ F, not all

zero such that

a1f1 + a2f2 + . . .+ amfm = 0.

The lower bound we present here is based on the following observa-

tion: a polynomial which is computed by a small sum-of-power circuit

has the property that only a few of its partial derivatives are F-linearly
independent.

Lemma 10.2. Let fn = x1x2 · . . . · xn. If

fn =
s∑

i=1

ℓdi ,

where the ℓi’s are affine forms, then s(d+ 1) ≥ 2n.

Proof. Given a polynomial f , we let ∂∗(f) denote the set of all partial

derivatives of f of all possible orders. For example, for the polynomial

fn = x1x2 · . . . · xn considered here, we have

∂∗(fn) =

{∏
i∈S

xi : S ⊆ [n]

}
.

1The main result of this chapter, Theorem 10.4, is originally due to Saxena [Sax08]. The
proof we present here is based on [Kay10].

83

The polynomials in ∂∗(fn) are all distinct monomials and are therefore

linearly independent. We thus have

dim
(
∂∗(fn)

)
= 2n,

where dim
(
∂∗(fn)

)
denotes the number of F-linearly independent poly-

nomials in ∂∗(fn).

Now if ℓ is an affine form and d ≥ 0 is an integer, then the partial

derivatives of ℓd are all scalar multiples of ℓi for some i ∈ [0 : d]. Thus

dim(∂∗(ℓd)) ≤ (d+ 1). By linearity of derivatives, we have

dim

∂∗

∑
i∈[s]

ℓdi

 ≤ s(d+ 1).

From the two equations above we get that s(d+ 1) ≥ 2n.

The above lemma implies that if d = poly(n) then s must be expo-

nential. But what if we allowed exponential d? It can be shown that to

cancel the monomials of degree higher than n, d cannot be too much

larger than s.

Exercise 10.3. Let F be a field of characteristic zero. Suppose that

ℓi’s are coprime affine forms over F such that
∑s

i=1 ℓ
d
i is a polynomial

of degree m, then s ≥ d−m.

Hint:

(1) If two multilinear polynomials f(x1, . . . , xn) and g(x1, . . . ,

xn) are coprime then they are also coprime under a random

substitution of the form xi := ai · t+ bi, i.e. with high prob-

ability over a random choice of the ai’s and bi’s, the polyno-

mials f(a1t + b1, . . . , ant + bn) and g(a1t + b1, . . . , ant + bn)

are coprime as well.

(2) If (a1t + b1), (a2t + b2), . . . , (ant + bn) are mutually coprime

polynomials, then use the invertibilty of the Vandermonde

matrix to deduce that
n∑

i=1

(ait+ bi)
d ̸= 0 for d > n.

84 Sums of powers of linear forms

Combining Lemma 10.2 with the above exercise we get the following:

Theorem 10.4. If we have

x1x2 · . . . · xn =

s∑
i=1

ℓdi ,

where the ℓi’s are affine forms, then s must be 2Ω(n).

Fischer [Fis94] gave an explicit set of 2n−1 linear forms such that∏
xi is the sum of their n-th powers.

Arithmetic circuits with addition and powering gates

Now consider arithmetic circuits which have the usual addition gates

of arbitrary fanin (as usual, addition gates can compute an arbitrary

linear combination of its inputs) and powering gates. A powering gate

takes as input (f(X), d) with f(X) ∈ F[X] and d ∈ Z≥1, and out-

puts f(X)d. Clearly such circuits are restricted versions of the usual

arithmetic circuits. In the other direction, using the identity

x · y =

(
x+ y

2

)2

−
(
x− y

2

)2

,

we see that they can simulate general arithmetic circuits. However, the

computational power of constant-depth circuits with addition gates (of

arbitrary fanin) and powering gates is not clear. We pose a problem:

Open Problem 10.5. Can polynomial-sized constant-depth circuits

with addition and powering gates and polynomially-bounded degree

compute the polynomial x1x2 · . . . · xn?

Depth-2 symmetric arithmetic circuits

Following Shpilka [Shp02]: a depth-2 symmetric arithmetic circuit has

a symmetric gate computing the symmetric polynomial SYMd
m at the

top and addition gates at the bottom. So the polynomial computed by

such a circuit is of the form:

SYMd
m(ℓ1, ℓ2, . . . , ℓm),

85

where ℓ1, ℓ2, . . . , ℓm are linear functions. The relation of this model to

depth-3 circuits is studied in Shpilka [Shp02]. However, even for this

restricted model, we do not have a superlinear lower bound.

Open Problem 10.6. Can we prove a superlinear lower bound for

depth-2 symmetric arithmetic circuits?

11

Depth-3 arithmetic circuits

In this chapter, we look at one of the most restricted classes

of arithmetic circuits for which we do not have superpoly-

nomial lower bounds — circuits of depth three where each

addition/multiplication gate can have arbitary fanin. We will

see that if we further impose the additional (but apparently

mild) restriction of homogenity on depth three circuits then

partial derivatives help us prove exponential lower bounds.

In this chapter, we focus on a class of restricted arithmetic circuits

— circuits of depth 3. More exactly, we consider circuits whose gates are

divided into three levels with a plus (output) gate at the top, product

gates in the middle, and plus gates at the bottom. We allow the fan-

in to be unbounded (otherwise it would be too weak). An example is

shown in Figure 1.1. We call them ΣΠΣ-circuits. We also use SΣΠΣ(f)

to denote the minimum size of a ΣΠΣ-circuit that computes f .

Of course, one can also define ΠΣ- and ΣΠ-circuits similarly, but

they are so weak that both SΠΣ(f) and SΣΠ(f) are very easy to deter-

mine. The other class of depth-3 circuits is the ΠΣΠ-circuits. But when

the f to be computed is irreducible, they are as powerful as the ΣΠ-

circuits. To summarize, ΣΠΣ is the simplest non-trivial class of arith-

86

87

metic circuits. But even for this class of circuits we do not have strong

lower bounds for many interesting polynomials.

Open Problem 11.1. Find an explicit polynomial which cannot be

computed by a ΣΠΣ-circuit of polynomial size.

One of the best lower bounds for ΣΠΣ-circuits is the Ω(n2) lower

bound by Shpilka and Wigderson [SW01] for the symmetric polynomi-

als SYMd
n. It matches the beautiful O(n2) upper bound by Ben-Or. In

an earlier paper by Nisan and Wigderson [NW97], it is shown that, if

there is a circuit computing SYMd
n, which is not only ΣΠΣ but also

homogeneous (see the definition below) then its size must be exponen-

tial.

Definition 11.2. We say a polynomial f ∈ F[x1, . . . , xn] is homoge-

neous if all of its monomials are of the same degree.

We say an arithmetic circuit C is homogeneous if for every vertex v

in C, Cv is a homogeneous polynomial.

Both of the proofs use partial derivatives as the main tool. In this

chapter, we first present Ben-Or’s construction and then prove the ex-

ponential lower bound for homogeneous ΣΠΣ-circuits, which is easier

to understand. Besides, as the only interesting depth-3 circuits are of

type ΣΠΣ, we will use S3 to denote SΣΠΣ and use SH3 for homogeneous

ΣΠΣ-circuits.

For now assume the underlying field to be R. Ben-Or’s construction

is based on the following observation. Let

g(t) =

n∏
i=1

(xi + t),

then one can write it as

g(t) =
n∑

k=0

SYMk
n · tn−k.

If we set t to be a constant, say 1, then g(1) is a linear combination of

the n+1 symmetric polynomials SYMk
n. The good thing about g(t) is

88 Depth-3 arithmetic circuits

that, given any t, g(t) can be computed by a ΠΣ-circuit of size O(n).

Therefore, we can compute g(t) for every t ∈ [0 : n] with O(n2) gates.

Now if we can find a set of “magic” constants α0, . . . , αn such that

in the summation
∑n

i=0 αi · g(i), the coefficient of every SYMk
n, where

k ̸= d, is 0 and the coefficient of SYMd
n is 1, then we are done. Such a

set of constants always exists because
1 01 02 · · · 0n

1 11 12 · · · 1n

1 21 22 · · · 2n

...
...

...
. . .

...

1 n1 n2 · · · nn


is a Vandermonde matrix and thus, has full rank. It is easy to extend

the construction to large fields with at least n nonzero elements.

Note that Ben-Or’s circuit is not homogeneous. We now use partial

derivatives to prove an exponential lower bound for SH3 (SYMd
n) which

shows that the use of non-homogeneous circuits in Ben-Or’s construc-

tion is indeed necessary.

Given f ∈ F[X], recall that ∂∗(f) denotes the set of all partial deri-

vatives of f of all possible orders. We also use dim(∂∗(f)) to denote

the dimension of the linear space spanned by ∂∗(f). For example,

dim
(
∂∗(xi)

)
= 2 and dim

(
∂∗

(
n∏

i=1

xi

))
= 2n.

It is easy to show that

Property 11.3. For f, f1, . . . , fk ∈ F[x1, . . . , xn] and α ∈ F, α ̸= 0,

(1) dim
(
∂∗(αf)

)
= dim

(
∂∗(f)

)
;

(2) dim
(
∂∗(
∑k

i=1 fi)
)
≤
∑k

i=1 dim
(
∂∗(fi)

)
; and

(3) dim
(
∂∗(
∏k

i=1 fi)
)
≤
∏k

i=1 dim
(
∂∗(fi)

)
.

Now suppose there is a homogeneous ΣΠΣ-circuit C that computes

SYM2d
n . Since C is homogeneous, we may assume that every product

89

gate v ∈ C has 2d predecessors and Cv is of degree 2d (otherwise we can

remove all the product gates v ∈ C whose polynomial Cv has degree not

equal to 2d, and the new and smaller circuit still computes SYM2d
n).

Every predecessor of v computes a linear combination of xi’s.

Assume the fan-in of the output gate of C is s. Since

dim
(
∂∗(
∑n

i=1 αixi)
)
≤ 2,

we have

dim
(
∂∗(Cout)

)
≤ s · 22d,

using Proposition 11.3. A lower bound for s immediately follows from

Lemma 11.4 below, which states that SYM2d
n has a very large derivative

space.

Lemma 11.4. dim
(
∂∗(SYM2d

n)
)
≥
(
n
d

)
.

Proof. Let S denote the set of all U ⊂ {x1, . . . , xn} with |U | = d. We

only need to show the following derivatives are linearly independent:{
∂U (SYM2d

n) : U ∈ S
}
.

For any V ∈ S, we let xV denote
∏

xi∈V xi. Then it is easy to see that

∂U (SYM2d
n) =

∑
V ∈S,U∩V=∅ x

V .

The set of monomials xV is clearly linearly independent. Therefore, to

prove these
(
n
d

)
derivatives are linearly independent, we only need to

show that the following
(
n
d

)
×
(
n
d

)
matrix M has full rank: Every row

(or column) of M corresponds to a set U ∈ S (or V ∈ S); MU,V = 1

if U ∩ V = ∅; and MU,V = 0 otherwise. A proof that M is nonsingular

can be found in the text by Kushilevitz and Nisan[KN97, pp.22–23].

Corollary 11.5. SH3 (SYM2d
n) ≥ 2−2d

(
n
d

)
≥
(
n/(4d)

)d
.

12

Arithmetic formulae

We turn our attention to multilinear arithmetic formulae,

i.e. arithmetic circuits in which every gate computes a multi-

linear polynomial and has fanout exactly one. In this chapter

we present a lower bound for constant depth set-multilinear

formulae, a result which was a prelude to an elegant recent

result of Raz on lower bounds for multilinear formulae.

A formula is an arithmetic circuit whose underlying graph is a tree.

The root of the tree is then the output of the formula. In other words,

each gate can be used as an input for at most once. Similarly, given a

polynomial f , we let L(f) denote the size (that is, the number of edges

of the underlying graph) of the smallest formula computing f .

Since formulae are much more restricted than general circuits, it is

expected that for many polynomials f , L(f) should be much greater

than S(f). For example while S(Detn) = O(n3), we do not even know

whether it has a polynomial-size formula or not. The smallest formula

known for Detn is of size nO(logn). For multilinear formulae, Raz gave

a beautiful nΩ(logn) lower bound for both Detn and Pern [Raz09].

Open Problem 12.1. Is L(Detn) polynomial in n?

90

91

Other than its size, another important parameter of an arithmetic

circuit is its depth since a circuit of low depth for f indicates a highly

parallel way to compute f (note that we come back to general arith-

metic circuits again). When talking about depth, we only consider cir-

cuits with bounded fanin.

The best depth upper bound for Detn so far is O(log2 n) given by

Csansky [Csa76] and Berkowitz [Ber84]. One particular way to under-

stand Berkowitz’s construction is to use the concept of clow (closed

walk) sequences (see Soltys [Sol02] for the definition).

However, it turns out later that this O(log2 n) depth upper bound

for Detn is not accidental, but is a corollary of a much more general

theorem. If we take the class of f that has a polynomial S(f) as an

analog of class P and the class of f that has a (log n)O(1) depth circuit

as an analog of NC, then we can ask the same “P vs NC” question in

the general arithmetic circuit setting. Very surprisingly, it was shown

by Valiant, Skyum, Berkowitz, and Rackoff [VSBR83] that “P = NC”

in this arithmetic setting:

Theorem 12.2. If S(f) = s, then there exists a bounded fan-in circuit

for f that has size sO(1) and depth O((log s) · (log deg(f))).

As a corollary, Detn can be computed by a O(log2 n) depth circuit

as S(Detn) = O(n3) and deg(Detn) = n. It also implies the following

important relationship between S(f) and L(f):

Theorem 12.3. L(f) ≤ S(f)O(log deg(f)).

We will not give their construction here but leave the following as

an exercise:

Exercise 12.4. Every f has a formula of depth O(log L(f)).

In the rest of this chapter, we first present a framework of proving

lower bounds for formulae. Then we combine it with partial derivatives

to derive the lower bound of Nisan and Wigderson [NW97] concerning

set-multilinear formulae that compute IMM2
d, the iterated multiplica-

tion of d 2× 2 matrices.

92 Arithmetic formulae

12.1 Cover sets and measure functions

Let C be a formula over variables X, and T be the underlying tree of

C. Every vertex v in T computes a polynomial Cv ∈ F[X]. For every v

in T , we use Sv to denote the set of vertices in the subtree rooted at v

(including v). We now define cover sets of v inductively as follows:

Definition 12.5. Let v be a vertex in T , and V ⊆ Sv. If v is a leaf

of T , then V covers v if V = {v}. Otherwise, let v1, . . . , vk denote the

predecessors of v, then V covers v if

(1) v ∈ V ; or

(2) v is a plus gate, and one can decompose V into V1 ∪ . . .∪ Vk

such that Vi covers vi for all i ∈ [k]; or

(3) v is a product gate, and there exists a subset of V that

covers one of the vi’s, i ∈ [k].

We say V is a cover set of C if it covers outC , the root of T . Cover sets

are useful when they are combined with a measure function ρ. Here ρ

is a function from F[X] (or a subset of F[X], e.g., the set of multilinear

polynomials) to [0, 1] that satisfies the following two properties:

Multiplicity: ρ(fg) ≤ ρ(f) · ρ(g); and

Additivity: ρ(f + g) ≤ ρ(f) + ρ(g), for all f, g ∈ F[X].

The following lemma shows that if one can find a cover set V of C
such that every polynomial Cv computed at v, v ∈ V , has a small ρ(Cv)
then ρ(Cout) cannot be too large.

Lemma 12.6. If V is a cover set of C, then we have

ρ(Cout) ≤
∑

v∈V ρ(Cv). (12.1)

Proof. We use induction on the depth of T . Let v1, . . . , vk denote the

predecessors of out. We now prove (12.1), assuming that if V ′ covers

vi, for some i ∈ [k], then

12.2. A constant-depth lower bound 93

ρ(Cvi) ≤
∑

v∈V ′ ρ(Cv).

If out is a plus gate, then because V covers out, we can decompose

the set V into V = V1∪ . . .∪Vk and vi is covered by Vi for every i ∈ [k].

By induction,

ρ(Cout) ≤
k∑

i=1

ρ(Cvi) ≤
k∑

i=1

∑
v∈Vi

ρ(Cv) =
∑
v∈V

ρ(Cv).

If out is a product gate, then there exists a subset V ′ ⊆ V and an

ℓ ∈ [k] such that V ′ covers vℓ. By induction, we have

ρ(Cout) ≤
k∏

i=1

ρ(Cvi) ≤ ρ(Cvℓ) ≤
∑
v∈V ′

ρ(Cv) ≤
∑
v∈V

ρ(Cv).

Here
∏k

i=1 ρ(Cvi) ≤ ρ(Cvℓ) is because ρ(Cvi) ∈ [0, 1] for all i.

Now let f ∈ F[X] be the polynomial considered. Suppose there is

a formula C that claims to compute f and has size s, and we want to

show that this cannot be true. A naive way to use this cover-measure

approach is as follows: find a measure function ρ together with a cover

V of C such that ρ(f) is large (e.g., 1), but ρ(Cv) is very small (e.g.,

< 1/s) for all v ∈ V . Since |V | ≤ s, we conclude that

ρ(Cout) ≤
∑

v∈V ρ(Cv) < 1 = ρ(f)

and Cout ̸= f . However, this approach does not work well since given a

general formula C, one has no idea what polynomial Cv is computed at

an intermediate vertex v and thus, it could be very hard to prove an

upper bound for ρ(Cv). One of the solutions is to combine this cover-

measure approach with random restriction, which will be demonstrated

in the next section.

12.2 A constant-depth lower bound

In [NW97], Nisan and Wigderson proved a lower bound for set-multi-

linear formulae of depth h that compute IMM2
d (the iterated multipli-

cation of d 2× 2 matrices):

94 Arithmetic formulae

Definition 12.7. Let Xt = (xti,j)i,j∈[n], where t ∈ [d], denote d n × n

matrices with dn2 variables. 1 We use

IMMn
d ∈ F[X1,X2, . . . , Xd]

to denote the (1, 1)-th entry of the n× n matrix X1X2 · · · Xd.

Definition 12.8. Given a subset S = {t1, . . . , ts} ⊆ [d] with s = |S|,
an S-monomial is a product of s variables, one from each Xti :

xt1i1,j1 · . . . · x
ts
is,js

, where i1, j1, . . . , is, js ∈ [n].

We use PS to denote the set of all S-monomials.

A polynomial f is said to be set-multilinear if there exists a subset

S ⊆ [d] such that f is a linear combination of monomials in PS .

A formula C over F[X1 . . . Xd] is said to be set-multilinear if the

polynomial Cv computed at any vertex v of C is set-multilinear.

Theorem 12.9. Every depth-h set-multilinear formula that computes

IMM2
d has size 2Ω(d1/h).

Theorem 12.9 implies that if h is a constant, then the size of any

depth-h set-multilinear formula that computes IMM2
d must be expo-

nential in d. It also implies that any polynomial-size set-multilinear

formula for IMM2
d must have depth Ω(log d/ log log d). We note that

these lower bound results were strengthened to hold even for the more

general model of multilinear formulae by Raz and Yehudayoff [RY08].

We start the proof of Theorem 12.9 by introducing a measure function

ρ, from set-multilinear polynomials to [0, 1]. By definition, if C is set-

multilinear, then one can assign a set Sv ⊆ [d] to each vertex v such

that Cv is Sv-multilinear.

1 In this chapter superscripts will denote indices of the different sets of variables (and not
powers). As we deal here with multilinear polynomials, no confusion should arise.

12.2. A constant-depth lower bound 95

Now let f be any S-multilinear polynomial, and W = {w1, . . . , wk}
be a subset of S. We let ∂W (f) denote the set of partial derivatives of

f with respect to all possible monomials in PW :

∂W (f)
def
=

{
∂xw1

i1,j1
... x

wk
ik,jk

(f) : xw1
i1,j1

. . . xwk
ik,jk

∈ PW

}
.

We use dimW (f) to denote the dimension of the linear space spanned

by the polynomials in ∂W (f). The following upper bound for ∂W (f) is

easy to prove:

Lemma 12.10. Let f be an S-multilinear polynomial, and W ⊆ S.

Then we have

dimW (f) ≤ min
{
n2|W |, n2|S−W |} ≤ n2⌊|S|/2⌋.

Let dim(f) = maxW⊆S [dimW (f)], then we have:

Lemma 12.11. For S1, S2 ⊆ [d] with S1 ∩ S2 = ∅, let f, g be two S1-

multilinear polynomials and h be an S2-multilinear polynomial. Then

(1) dim(f) ≤ n2⌊|S1|/2⌋;

(2) dim(αf) = dim(f) for all α ∈ F;
(3) dim(f + g) ≤ dim(f) + dim(g); and

(4) dim(f · h) ≤ dim(f) · dim(h).

Now we can define ρ by normalizing dim(f): given an S-multilinear f ,

ρ(f)
def
=

dim(f)

n2⌊|S|/2⌋ .

Clearly ρ is a measure function because it satisfies both additivity and

multiplicity. Moreover, one can show that ρ(IMMn
d) is very close to 1:

Lemma 12.12. For odd d, ρ(IMMn
d) = 1; for even d, ρ(IMMn

d) = 1/n.

Furthermore, ρ satisfies the following important property. We will

use it to argue that after certain random restriction, with high proba-

bility, there exists a cover set of C, in which every vertex v has a very

small ρ value.

96 Arithmetic formulae

Property 12.13. Let S1, . . . , Sk be pairwise disjoint subsets of [d],

and fi be an Si-multilinear polynomial, i ∈ [k]. If m of these k subsets

S1, . . . , Sk are of odd size, then

ρ

(∏
i

fi

)
≤ n−2⌊m/2⌋

∏
i

ρ(fi) ≤ n−2⌊m/2⌋min
i

ρ(fi).

Proof. Using dim(f · g) ≤ dim(f) · dim(g), we have

ρ

(∏
i

fi

)
≤

∏
i dim(fi)

n2⌊(
∑

i |Si|)/2⌋
≤
∏

i n
2⌊|Si|/2⌋ ·

∏
i ρ(fi)

n2⌊(
∑

i |Si|)/2⌋
=

∏
i ρ(fi)

n2⌊m/2⌋ .

It implies that if f =
∏

i fi, and many of the fi’s are odd-multilinear,

then ρ(f) would be very small (regardless of what these fi’s are). Now

suppose C is a depth-h formula for IMM2
d (n = 2) and has size s = 2ϵr,

where r = d1/h and ϵ > 0 is a small enough constant. We then apply

the following random restriction to C:

Let z1, . . . , zd be d independent, unbiased {0, 1} random vari-

ables. For each i, set Xi to be the identity matrix if zi = 0.

We use C′ to denote the formula we get from C, after this random

restriction. First, as C is assumed to compute IMM2
d, C′ must compute

IMM2
d′ (where d′ is close to d/2 w.h.p.) and thus, ρ(C′

out) ≥ 1/2. So to

get a contradiction, we only need to show the existence of a cover set

V in C′ such that for every v ∈ V , ρ(C′
v) is very small.

The intuition is that, since C is of depth h, by using a degree argu-

ment, there must be a lot of product gates with large fanin (≥ r). So

one can hope that there exists a cover V of C (note that if V is a cover

of C, then it is also a cover of C′) that consists of product gates with

large fanin only.

On the other hand, if a product gate has large fanin (≥ r) in C then

after the random restriction, w.h.p. (≥ 1 − 2−r/10), the number of its

predecessors that are odd-multilinear is large (≥ r/3) since every pre-

decessor becomes odd-multilinear independently with probability 1/2.

12.2. A constant-depth lower bound 97

As a result, by Property 12.13, the values of ρ at these gates must be

very small (≤ 2−2⌊r/6⌋).

Note that |V | ≤ s = 2ϵr. When ϵ is a small enough constant, one

can apply union bound to show that with positive probability, all the

product gates in V have ρ value at most 2−2⌊r/6⌋. So by Lemma 12.6

ρ(C′
out) ≤ s · 2−2⌊r/6⌋ = 2ϵr · 2−2⌊r/6⌋ ≪ 1/2,

and we get a contradiction.

Below are the two technical lemmas we need to finish the proof of

Theorem 12.9. First, Lemma 12.14 shows the existence of a cover set

V in any depth-h formula C for IMM2
d, which consists of large fan-in

product gates only. Then Lemma 12.15 shows that if a product gate v

has large fan-in then after the random restriction, ρ(C′
v) is small with

high probability. Lemma 12.15 follows from the Chernoff bound.

Lemma 12.14. There exists a cover set V of C such that every v in

V is a product gate and has fan-in at least r = d1/h.

Proof. Let u1 . . . uk be a path in C where u1 = out and uk is a leaf. We

say u1 . . . uk is a good path, if for every product gate ui on the path,

ui+1 has the largest |Sui+1 | among all ui’s predecessors. Recall that Sui

is a subset of [d] associated with ui such that Cui is Sui-multilinear.

It is easy to show that on every good path u1 . . . uk of C, there must

exist a product gate ui with fanin at least d1/h (since |Sout| = d and

k ≤ h). Now for every good path of C, we arbitrarily pick a product

gate ui with fanin at least d1/h. One can show that the set formed by

these product gates is indeed a cover set of C.

Lemma 12.15. Let z1, . . . , zd be d independent and unbiased {0, 1}
random variables. Given any S ⊆ [d], we let z(S) =

∑
i∈S zi (mod 2).

Then for any nonempty pairwise disjoint subsets S1, . . . , Sr of [d],

Pr

[∑
i

z(Si) < r/3

]
≤ 2−r/10.

13

Projections of Determinant to Permanent

The arithmetic analog of the celebrated P versus NP prob-

lem is the following: what is the smallest integer m such

that the permanent polynomial can be expressed as the de-

terminant of an m×m matrix whose entries are affine forms

in the relevant set of variables. It is known as the Perma-

nent versus Determinant problem in arithmetic complexity.

In this chapter, we use the Hessian matrix consisting of

second-order partial derivatives introduced in chapter 2 to

derive a quadratic lower bound on m.

Determinant and permanent are two of the most well-studied poly-

nomials in theoretical computer science. In Valiant’s theory of arith-

metic complexity [Val79b], they are two of the central objects. The

complexity of computing the permanent characterizes the class VNP,

while the complexity of computing the determinant (almost) charac-

terizes the class VP. Since VNP and VP are analogs of NP and P in

the arithmetic world, the following problem, called “Permanent versus

Determinant”, has received great attention.

Definition 13.1. Let X be an n × n matrix with n2 variables: (xi,j)

98

99

i, j ∈ [n]. We say A is an affine projection from Pern to Detm over F
if A = {Ak,ℓ : k, ℓ ∈ [m]} is a collection of affine forms over X:

Ak,ℓ =
∑

i,j∈[n] αi,j · xi,j + α, for some αi,j , α ∈ F,

such that

Pern(X) ≡ Detm

(
A(X)

)
over the polynomial ring F[X].

We let dc(Pern) denote the smallest integer m such that an affine

projection from Pern to Detm exists. We can similarly define dc(f),

for any f ∈ F[X]. It is called the determinantal complexity of f .

Exercise 13.2. Show that dc(f) ≤ L(f) + 1.

(Hint: Use induction. Make sure that all the matrices constructed in-

ductively are “almost” upper triangular, and have the following form:(
u 0

B v

)
,

where u is a row vector, v is a column vector and B is upper triangular

with 1’s on its diagonal.)

Using Ryser’s formula [Rys63] together with Exercise 13.2, we have

dc(Pern) = O(n2 · 2n).

On the other hand, it was first noticed by Pólya [Pól71] that

Per2

(
a b

c d

)
= Det2

(
a −b

c d

)
.

He asked whether there are other similar equations. It was answered

in the negative by Szegö [Sze92], which implies that dc(Pern) ≥ n+ 1

for all n > 2. The first non-trivial lower bound (
√

8/7n) for dc(Pern)

is due to von zur Gathen [vzG87]. It was then improved by Babai and

Seress, by Cai [Cai90], and by Meshulam [Mes89], to
√
2n.

An approach to this problem, which is now referred to as the Geo-

metric Complexity Theory, uses some exceptional properties of deter-

minant and permanent to translate the question into a problem in the

100 Projections of Determinant to Permanent

representation theory of groups. Interested readers are referred to the

survey articles [Mul09b, Mul09a, BLMW09] and to the series of papers

beginning with [Mul99, MS01, MS08].

In [MR04], Mignon and Ressayre proved a quadratic lower bound

for dc(Pern), which is the best known bound for this problem. The

main idea is to study the Hessian matrices of Det and Per.

Given X = (xi,j)i,j∈[n] of n
2 variables, we use Detn(X) to denote

the determinant and Pern(X) to denote the permanent of X, respec-

tively. Both of them are polynomials of degree n in F[X]. We use

HPern(X) =
(
Hij,kℓ

)
i,j,k,ℓ∈[n]

to denote the Hessian matrix of Pern(X):

Hij,kℓ =
∂2Pern(X)

∂xi,j ∂xk,ℓ
∈ F[X], for all i, j, k, ℓ ∈ [n].

Similarly, we can define the Hessian matrix HDetm of Detm.

Suppose there exists a collection A of m2 affine maps, where

A =
{
Ak,ℓ(x1,1, x1,2, . . . , xn,n) : k, ℓ ∈ [m]

}
such that in the polynomial ring F[X],

Pern(X) = Detm

((
Ak,ℓ(X)

)
k,ℓ∈[m]

)
. (13.1)

Now consider a scalar matrix M ∈ Fn×n, satisfying Pern(M) = 0.

The first step of the proof is to transform A into a new form, while

maintaining the property that Pern(X) = Detm(A(X)), such that

A(M) is a diagonal matrix in Fm×m.

To this end, we expand every Ak,ℓ(X) at M and write A as

A(X) =
(
Ak,ℓ(X)

)
=
(
Lk,ℓ(X−M)

)
+N, (13.2)

where Lk,ℓ’s are linear functions and N ∈ Fm×m. It follows that

Detm(N) = Pern(M) = 0.

As a result, we can find two non-singular matrices C and D, such

that Detm(C) = Detm(D) = 1 and CND is a diagonal matrix(
0 0

0 Js

)
, where Js is an s× s diagonal matrix.

101

Since Detm(N) = 0 there is at least one 0 on the diagonal and s < m.

It then follows that, by (multiplying C and D to the left and right

of (13.2) and) renaming Lk,ℓ, we may assume (13.1) takes the form

Pern(X) = Detm

((
Lk,ℓ (X−M)

)
k,ℓ∈[m]

+

(
0 0

0 Js

))
.

Next, we take second-order derivatives, and evaluate HPern at M.

By the chain rule (Lemma 2.7), we have

HPern(M) = L ·HDetm

(
0 0

0 Js

)
· LT ,

where L is an n2 ×m2 scalar matrix over F. It follows directly that

rank
(
HPern(M)

)
≤ rank

(
HDetm

(
0 0

0 Js

))
. (13.3)

It is easy to obtain an upper bound for the latter, using the fact

that the matrix is diagonal. Let us first assume s = m − 1. Note that

when one takes a partial derivative ∂xi,j on the determinant (as well as

on the permanent), one simply gets the minor after striking out row i

and column j. Second-order derivative ∂xi,jxk,ℓ
simply strikes out row

{i, k} and column {j, ℓ}. For the diagonal matrix, if the {ij, kℓ}th entry

of HDetm is nonzero then it must be that 1 ∈ {i, k} and 1 ∈ {j, ℓ}. In
fact the only nonzero entries are

(ij, kℓ) = (11, tt), (tt, 11), (1t, t1) or (t1, 1t), for t ∈ [2 : m].

This gives an upper bound of 2m for the right-hand side of (13.3).

Moreover, if s < m − 1 then it would be even more difficult to get

a nonzero entry in HDetm . For example, if s = m− 2, then there could

be at most O(1) many nonzero entries; if s < m− 2, then there are no

nonzero entries. As a result, we obtain the following lemma:

Lemma 13.3. Let M be a matrix in Fn×n with Pern(M) = 0, then

dc(Pern) ≥ rank
(
HPern(M)

)
/2.

102 Projections of Determinant to Permanent

Now it is clear that the only thing left is to find a matrix M such that

Pern(M) = 0 and HPern(M) has high rank. When F is of characteris-

tic 0, we let Mn = (Mi,j) denote the n× n matrix where M1,1 = 1− n

and Mi,j = 1 otherwise. While Pern(Mn) = 0 is trivial, we leave the

computation of the rank of HPern(Mn) as an exercise for the reader.

Lemma 13.4. (Mignon and Ressayre [MR04]) For any field F of char-

acteristic 0,

Pern(Mn) = 0 and rank
(
HPern(Mn)

)
= n2.

It immediately follows from Lemma 13.3 that

Corollary 13.5. For any F of characteristic 0, dc(Pern) ≥ n2/2.

However, the matrix Mn above does not work for fields F of small

characteristics, e.g., 3. All entries of HPern(Mn) are divisible by large

factorials and thus, divisible by char F. As a result, HPern(Mn) is the

zero matrix of rank 0. In [CCL08] a different family of matrices is used

to extend Mignon and Ressayre’s quadratic lower bound to all finite

fields.

At first sight, it might seem very hopeful to try and extend this

approach using higher-order derivatives, and to prove stronger lower

bounds for dc(Pern). However, note that in terms of the number of

variables in Pern, the lower bound is “only” linear. Such bounds on

determinantal complexity can be obtained for much simpler functions

than the permanent, e.g. the 2nd symmetric polynomial, as the fol-

lowing exercise shows. This exercise, in some sense, implies that the

quadratic lower bound mainly follows from the limitation of the de-

terminant, but does not take much advantage of the hardness of the

permanent.

Exercise 13.6. Show that dc
(∑

1≤i̸=j≤n xixj
)
= Ω(n).

103

Open Problem 13.7. Prove a super-linear lower bound on dc(f) for

any explicit polynomial f .

Part III: Algorithms

104

105

Overview

Suppose that we are given an arithmetic circuit C whose inputs are x1,

. . . , xn. We use C(x1, . . . , xn), abbreviated as C(X), to denote the poly-

nomial computed by the circuit C. In this part, we will see how partial

derivatives help us in designing efficient algorithms to understand some

basic algebraic properties of C(X).

In Chapter 14 we will define the “Identity Testing” problem of test-

ing if the given polynomial C(X) is identically zero. This is a central

problem in arithmetic complexity, and in a strong sense “complete” for

derandomization. Here we will use partial derivatives to give a deter-

ministic algorithm for a certain special case of it.

In Chapter 15 we turn to another basic problem: checking if C(X)

is absolutely irreducible, namely that C(X) cannot be factored over

the algebraic closure of its field of coefficients. Partial derivatives will

lead to an efficient deterministic algorithm in the bivariate case and

a probabilistic algorithm (via Hilbert’s irreducibility theorem) in the

general case.

In Chapter 16 we deal with the polynomial equivalence (or “isomor-

phism”) problem, namely testing if the two polynomials computed by

two given circuits can be made identical by an invertible linear transfor-

mation of the variables. Again, partial derivatives lead to deterministic

algorithms in special cases.

We shall henceforth assume that the underlying field F has char-

acteristic zero. This is mostly for ease of presentation. All results and

their proofs remain unchanged when the characteristic is larger than

say d2, where d is the degree of the input polynomial.

14

Identity testing

Given an arithmetic circuit, how efficiently can we deter-

mine (deterministically) whether the polynomial computed

is the zero polynomial or not? This is the famous polyno-

mial identity testing problem. In this chapter, we will see

how partial derivatives (combined with substitutions) help

us devise efficient identity testing algorithms for a certain

restricted class of arithmetic circuits.

Given a circuit C(X), a basic question is:

Question 14.1. Is C(X) ≡ 0?

The computational version of this question is commonly known as

Identity Testing. It admits an efficient randomized algorithm [Sch80,

Zip90]. Despite much effort, no deterministic polynomial-time algorith-

m is yet known for identity testing. [CK00, LV98, KS01, AB03, RS04,

DS05, KS06, KS07, SV08, BHLV09, SS09, KS09] is a partial list of ref-

erences on this problem. The problem is also connected to arithmetic

circuit lower bounds (cf. [KI04, Agr05]). Because of the difficulty of

the general problem, research has focussed on special cases. We will

106

107

present a deterministic algorithm for a special family of polynomials

— polynomials of the form
m∑
i=1

(
gi1(x1) + gi2(x2) + . . .+ gin(xn)

)Di , (14.1)

where each gij(xj) is a univariate polynomial of degree at most d. The

running time will be poly(nmdD), where D = maxiDi. Our presenta-

tion is based on [Kay10].

We start this chapter by defining a problem called POLYDEP and

then giving its relation to the problem of polynomial identity testing.

POLYDEP and its connection to identity testing

We formulate a computational problem motivated by a concept (defi-

nition 10.1) which had featured in some of the lower bound proofs in

previous chapters.

Definition 14.2. Let

f(X)
def
=
(
f1(X), f2(X), . . . , fm(X)

)
∈
(
F[X]

)m
be a vector of m polynomials over a field F. The set of F-linear depen-

dencies in f , denoted f⊥, is the set of all vectors v ∈ Fm whose inner

product with f is the zero polynomial, i.e.,

f⊥
def
=
{
(a1, . . . , am) ∈ Fm : a1f1(X) + . . .+ amfm(X) = 0

}
.

Notice that if f⊥ contains a nonzero vector, then the fi’s are said

to be F-linearly dependent. The set f⊥ is clearly a linear subspace of

Fm. In many of our applications, we will want to efficiently compute

a basis of f⊥ for a given tuple f = (f1(X), . . . , fm(X)) of polynomials.

Let us capture this as a computational problem.

Definition 14.3. The problem of computing linear dependencies be-

tween polynomials, denoted POLYDEP, is defined to be the following

computational problem: given as input m arithmetic circuits comput-

ing polynomials f1(X), . . . , fm(X) respectively, output a basis for the

subspace (f1(X), . . . , fm(X))⊥ ⊆ Fm.

108 Identity testing

We state without proof the following lemma from [Kay10] which

shows the connection between POLYDEP and identity testing.

Lemma 14.4. For n-variate arithmetic circuits of degree bounded by

poly(n), identity testing is deterministic polynomial-time equivalent to

POLYDEP. In particular, POLYDEP admits a randomized algorithm

with running time polynomial in the arithmetic circuit size of the input

polynomials.

Basic properties of POLYDEP

Even though POLYDEP is equivalent to identity testing, it is a some-

what more structured problem which makes it more amenable to at-

tack. We state without proof the following two properties of the POLY-

DEP problem. Note that the second property gives a basic form of

reduction between two POLYDEP problems.

Proposition 14.5. Let f = (f1(X), . . . , fm(X)) ∈ F[X]m and h =

(h1(X), . . . , ht(X)) ∈ F[X]t be two tuples of polynomials. Then:

(1) Testing zeroness of ∑
i∈[m]

ai · fi(X)

reduces to solving POLYDEP(f1, . . . , fm).

(2) If the fi’s are known F-linear combinations of the hj ’s then

POLYDEP(f) reduces to POLYDEP(h). In other words, if

we know a set of vectors a1, . . . ,am ∈ Ft such that

fi(X) = ai · h for each 1 ≤ i ≤ m

then POLYDEP(f) reduces to POLYDEP(h).

We now focus our efforts on POLYDEP and devise an efficient deter-

ministic algorithm for POLYDEP(f1(X), . . . , fm(X)) when each poly-

nomial fi(X) is a power of a sum of univariate polynomials, i.e., for

109

every i ∈ [m]:

fi(X) =
(
gi1(x1) + gi2(x2) + . . .+ gin(xn)

)Di ,

and each gij(xj) is a univariate polynomial of degree at most d. For a

set of polynomials of this form the brute force algorithm that expands

every polynomial takes time about m ·nd+D. Below we will present the

poly(nmdD)-time algorithm given in [Kay10].

A key idea is that partial derivatives can be used to reduce a given

instance of the POLYDEP problem into a large number of instances of

the POLYDEP problem, each of which has one variable less. Specifical-

ly, to compute the dependencies of a set of multivariate polynomials,

it suffices to compute these for the set of their coefficients of xj1 (which

are polynomials in the remaining n− 1 variables), for each power j.

Proposition 14.6. Let f = (f1(X), . . . , fm(X)). Suppose that the de-

gree of each fi(X) is at most d. Then we have

f⊥ =

d∩
j=0

Vj ,

where for each j ∈ {0, 1, . . . , d}, Vj is defined to be

Vj
def
=
(
σ1∂

j
1f1, . . . , σ1∂

j
1fm

)⊥
.

The proof is a straightforward generalization of Lemma 1.11 — we

omit the details.

The algorithm

Proposition 14.6 above suggests a natural strategy for POLYDEP —

recursively compute the dependencies among(
σ1∂

j
1f1, . . . , σ1∂

j
1fm

)
for j ∈ {0, . . . , d}, and then take the intersection of all the subspaces

so obtained. This näıve strategy in general only gives an exponential

110 Identity testing

algorithm that is little better than brute force expansion. However, for

the case when fi’s are the powers of sums of univariate polynomials,

one can show that all the polynomials in{
σ1∂

j
1fk : 0 ≤ j ≤ d, 1 ≤ k ≤ m

}
are efficiently expressible as linear combinations of a small number of

polynomials {h1, h2, . . . , ht} ⊆ F[x2, . . . , xn] where hi’s are also powers

of sums of univariate polynomials. Then using just one recursive call

POLYDEP(h1, . . . , ht) and using the second property in Proposition

14.5, we can compute each Vj for 0 ≤ j ≤ d. Thereafter, taking the

intersection of the Vj ’s allows us to compute the linear dependencies

between the original polynomials. The algorithm is efficient because in

the inductive step we make just one recursive call to POLYDEP rather

than (d+ 1) calls.

Lemma 14.7. Let f(x1, . . . , xn) = (g1(x1)+ . . .+gn(xn))
D, where the

gi’s are univariate polynomials of degree at most d. Let G = g1(x1) +

g2(x2) + . . .+ gn(xn). Then

σ1∂
j
1f =

j∑
k=0

ajk · σ1GD−k, for some ajk ∈ F.

Furthermore, the ajk’s occurring in the above expression can be com-

puted in time poly(dD).

Proof. It suffices to prove that

∂j
1f =

j∑
k=0

(d−1)j∑
ℓ=0

bkℓ ·GD−k · xℓ1, (14.2)

where the bkℓ’s are computed efficiently. We prove it by induction on j

with the base case of j = 0 being trivial. Now assume equation (14.2)

holds then differentiating both sides of equation (14.2) with respect to

x1, we get an expression for ∂j+1
1 f . By linearity of derivatives it suffices

to examine just one summand which is of the form ∂1G
D−kxℓ1. We have

111

∂1G
D−kxℓ1 = ℓ ·GD−kxℓ−1

1 + (D − k) ·GD−k−1xℓ1 · ∂1G

= ℓ ·GD−kxℓ−1
1 + (D − k) ·GD−k−1xℓ1 · ∂1(g1(x1))

= ℓ ·GD−kxℓ−1
1 +

d−1∑
i=0

ai(D − k) ·GD−k−1xℓ+i
1 ,

where ∂1g1 =
∑d−1

i=0 aix
i
1. This completes the proof of the lemma.

We are now ready to prove our first result on POLYDEP and con-

sequently on identity testing.

Theorem 14.8. For i ∈ [m] and j ∈ {0, . . . , D}, let fij(X) = Gi(X)j

where each Gi is a sum of univariate polynomials of degree at most d,

i.e., each Gi is of the form(
gi1(x1) + . . .+ gin(xn)

)
,

the gik’s being univariate polynomials of degree at most d. There is a

deterministic algorithm for

POLYDEP
(
fij : i ∈ [m], j ∈ {0, . . . , D}

)
,

whose running time is bounded by poly(nmdD).

Proof. The algorithm is as follows.

Step 1: If n = 0, then the fij ’s are all field elements and

thus, the computation of their dependencies is trivial.

Step 2: If n ≥ 1, then by making a recursive call to

POLYDEP
(
σ1(Gi)

j : i ∈ [m], j ∈ {0, . . . , D}
)
,

we get a basis for(
σ1(Gi)

j : i ∈ [m], j ∈ {0, . . . , D}
)⊥

.

112 Identity testing

Step 3: Use the algorithm of Lemma 14.7 to compute

aijks’s such that

σ1∂
k
1G

j
i =

D∑
s=0

aijks · σ1(Gi)
s.

Step 4: From the data above and using the second

property of Proposition 14.5, compute a basis for

Vk
def
=
{
σ1∂

k
1G

j
i : i ∈ [m], j ∈ {0, . . . , D}

}⊥
.

Step 5: Output
dD∩
k=0

Vk.

The correctness follows from Proposition 14.6. If the time taken is

denoted by T (n,m, d,D), then the recurrence relation is

T (n,m, d,D) = T (n− 1,m, d,D) + poly(mdD),

which solves out to give T (n,m, d,D) = poly(nmdD).

15

Absolute irreducibility testing

In chapter 8 we saw the role of absolute irreducibility in

determining the number of zeroes of a bivariate polynomial

over a finite field. Let us consider the following algorithmic

question: given a bivariate polynomial f(x, y) how do we

determine whether or not it is absolutely irreducible? In this

chapter, we will see how partial derivatives help in convert-

ing this apparently highly nonlinear problem into a simple

task in linear algebra. This then gives an efficient algorithm

for determining absolute irreducibility.

Recall that a bivariate polynomial f(x, y) ∈ F[x, y] is said to be

absolutely irreducible if it is irreducible over the algebraic closure F
of F. In Chapter 8 we saw an application of absolute irreducibility in

determining the number of rational points on a curve over a finite field.

A natural and interesting computational question is the following:

Question 15.1. Is C(X) absolutely irreducible?

In this chapter we will show how partial derivatives can be used to

determine the absolutely irreducibility of a polynomial. We will then go

113

114 Absolute irreducibility testing

on to Hilbert’s Irreducibility Theorem. We start with bivariate polyno-

mials and then generalize to multivariate polynomials. Theorem 15.2

below is due to Ruppert [Rup99]. Parts of the proof have been adapted

from Gao [Gao03].

Notation

For a polynomial f(x, y) ∈ F[x, y], we say that deg(f) = (m,n) if

degx(f) = m and degy(f) = n.

In this chapter, we will denote ∂f
∂x simply by fx and ∂f

∂y simply by fy.

Theorem 15.2. Let F be a field of characteristic zero, then f(x, y) ∈
F[x, y] of degree (m,n) is absolutely irreducible iff the equation

Py · f − fy · P = Qx · f − fx ·Q (15.1)

has no nonzero solution P,Q ∈ F[x, y] with

deg(P) ≤ (m− 1, n) and deg(Q) ≤ (m,n− 2). (15.2)

Before proceeding to the proof, first note the magic. The nonlinear

task of testing if f has nontrivial factors is reduced to the task of

solving a system of homogeneous linear equations! Moreover, since the

coefficients of this system are in F, a solution P,Q (if it exists) will

also have coefficients in F. These observations will essentially give the

algorithm.

Proof. The ‘if part’. We would like the reader to observe that for

every polynomial f , the polynomials P = fx and Q = fy satisfy equa-

tion (15.1) so a solution to (15.1) with degree constraints (m − 1, n)

and (m,n − 1) respectively always exists. More interestingly, we will

see that if f is reducible then we can lower the degree of a satisfying

Q from the trivial (m,n − 1) to the strictly smaller value (m,n − 2).

Suppose that f factors over the algebraic closure F. Let f = g · h. We

have already said that

P = fx = ghx + gxh and Q = fy = ghy + gyh

115

are solutions to (15.1). More interestingly, we observe that for any

α, β ∈ F,

P = α · gx · h+ β · g · hx, and

Q = α · gy · h+ β · g · hy.

is also a solution to (15.1). We leave it to the reader to verify this.

If we now choose α = degy(h) and β = − degy(g), then we further

decrease the degree of Q from (m,n − 1) to (m,n − 2) so that the

degree constraints of equation (15.2) are also satisfied.

The ‘only if ’ part. Assume that f is absolutely irreducible. We will

show that (15.1) and (15.2) has no solution. Let us now view f(x, y)

as a univariate polynomial in x over the function field F(y). F(y) is

the algebraic closure of the function field F(y). Let K ⊂ F(y) be the

splitting field of f over F (y). Then (dividing f by its leading coefficient

if necessary) we have

f =
m∏
i=1

(x− ci),

where the ci’s are distinct algebraic functions of y in K ⊂ F(y) and are

algebraic conjugates of each other over the base field F (y). Suppose

for contradiction that P,Q satisfy equation (15.1) together with the

degree constraints (15.2). The crux would be to prove that this can only

happen if Q = αfy for some constant α ∈ F (from this a contradiction

would follow simply). To show this, it would be useful to note that, up

to a scaling factor f2, equation 15.1 is equivalent to the equation

∂

∂y

(
P

f

)
=

∂

∂x

(
Q

f

)
so we proceed to explore these functions.

Using degx(P) < degx(f) we have the partial fraction decomposi-

tions
P

f
=

m∑
i=1

ai
x− ci

,
Q

f
=

m∑
i=1

bi
x− ci

+ q,

where

ai =
P (ci, y)

fx(ci, y)
∈ K, bi ∈ K and q ∈ F(y) ⊆ K. (15.3)

116 Absolute irreducibility testing

The elements of K are algebraic functions of y so that we have

∂a

∂x
= 0 and

∂a

∂y
∈ K for all a ∈ K.

We thus have:

∂

∂y

(
P

f

)
=

m∑
i=1

(
1

x− ci
· ∂ai
∂y

+
ai

(x− ci)2
· ∂ci
∂y

)
,

∂

∂x

(
Q

f

)
=

m∑
i=1

−bi
(x− ci)2

Now applying equation 15.1 in the form above, and using the unique-

ness of partial fraction expansion, we have ∂ai
∂y = 0. This means that

ai ∈ F ⊂ F(y). Further since the ci’s are all algebraic conjugates over

F (y) so are the ai’s which means that in fact ai = aj as they are

in F. Let a1 = a2 = . . . = am = α. Then by (15.3) we have that

P (x, y) = α · fx. But equation (15.1) then implies

fx · (αfy +Q) = f · (Qx + αPy)

By the absolute irreducibility of f , we have that f divides either fx or

(αfy +Q). f cannot divide fx because the latter has smaller degree by

assumption. Therefore f must divide (αfy +Q). This polynomial also

has smaller degree than that of f so that the only way this is possible

is if (αfy + Q) is zero. This means that Q = −αfy so that deg(Q) =

(m,n − 1), a contradiction. Thus there is no P and Q simultaneously

satisfying both (15.1) and (15.2).

Consequences

Notice that solving for P and Q satisfying (15.1) and (15.2) involves

solving a system of homogeneous linear equations. Now a system of

linear equations has a nonzero solution in the algebraic closure F if and

only if it has one in F itself. We thus have

Corollary 15.3. There is a deterministic algorithm that given a poly-

nomial f(x, y) ∈ Q[x, y] determines whether f is absolutely irreducible

or not and has running time poly(deg(f)·H), where H is the maximum

height (namely bit-size) of the coefficients of f .

117

We now state without proof the following theorem which roughly

says that we can set all but 2 variables of any absolutely irreducible

n-variate polynomial to randomly chosen values so that with high prob-

ability the resulting bivariate polynomial will also be absolutely irre-

ducible.

Theorem 15.4. (Hilbert’s Irreducibility Theorem)

Let f ∈ F[x, y1, y2, . . . , yn] be an absolutely irreducible (n+ 1)-variate

polynomial. If fx ̸= 0 then for “most” choices of a,b ∈ Fn, the following

bivariate polynomial

f(x, a1t+ b1, a2t+ b2, . . . , ant+ bn)

is also absolutely irreducible.

See for example Kaltofen [Kal89] for a proof. Hilbert’s Irreducibil-

ity Theorem now immediately provides us with an algorithm to test

absolute irreducibility in randomized polynomial time.

Corollary 15.5. Let F be a field of characteristic zero. Given a poly-

nomial f(X) ∈ F[X], we can determine the absolute irreducibility of f

in randomized time poly(d · s) where d is the degree of f and s is the

size of the arithmetic circuit specifying f .

Proof. Apply a random invertible transformation of the variables —

this ensures that if f is a nonconstant polynomial then with high prob-

ability, ∂f
∂x is nonzero. Let

g(x, t)
def
= f(x, a1t+ b1, a2t+ b2, . . . , ant+ bn)

where the ai’s and the bi’s are chosen uniformly at random from an

appropriately large set. Use the algorithm of Corollary 15.3 to test

absolute irreducibility of g and accept if and only if g is irreducible.

Hilbert’s Irreducibility Theorem can be used to do much more — it

is the key ingredient in the efficient randomized algorithm of Kaltofen

[Kal89] for factoring multivariate polynomials given as arithmetic cir-

cuits. We shall use Kaltofen’s algorithm in the subsequent section to

devise more algorithms.

16

Polynomial equivalence testing

An n-variate polynomial f over a field F represents a func-

tion from the vector space Fn to F in the natural way:

(x1, x2, . . . , xn) 7→ f(x1, x2, . . . , xn).

A basic question then is: given two polynomials, how do we

determine if they are the same function upto a change of

basis. In other words, given n-variate polynomials f and g,

does there exist an invertible matrix A = (aij)1≤i,j≤n such

that

g(x1, . . . , xn) = f(a11x1+. . .+a1nxn, . . . , an1x1+. . .+annxn)?

While this appears to be a difficult question in general, we

will show how partial derivatives help solve some rather spe-

cial cases.

Two polynomials f(X) and g(X) are said to be equivalent iff there is

an invertible linear transformation of the variables which maps f to g,

i.e., if there exists an A ∈ GLn(F) such that

f(A ·X) = g(X).

118

119

Another way to look at this equivalence relation among polynomials

is the following. An n-variate polynomial can be viewed as a function

from the vector space Fn to F. Two polynomials are equivalent if they

are the same function upto a change of basis of the vector space Fn. If

two polynomials are equivalent then they are structurally or geomet-

rically the same. In particular they have the same complexity in most

natural models of computation. This chapter addresses the following

problem: given two polynomials can we efficiently determine if they are

equivalent?

Historical Notes. A topic of intense mathematical interest and at-

tention during the nineteenth century was the study of the intrinsic or

geometrical properties of polynomials. The task here was to find and

describe all fundamental invariants of a polynomial, i.e. find a list of

geometrical properties of a polynomial which describes the polynomial

completely upto equivalence. The dramatic and unexpected solution to

its most fundamental problem — the finitude of the number of fun-

damental invariants — propelled the young David Hilbert into the

position of the most renowned mathematician of his time. Following

subsequent decline this topic sank into obscurity during the twenti-

eth century. Ironically, though, its indirect influence continued to be

felt on many parts of abstract algebra, while in computational alge-

bra/algebraic geometry the three most famous of Hilbert’s theorems

— the Basis Theorem, the Syzygy Theorem and the Nullstellensatz —

were all born as lemmas (Hilfsätze) for proving “more important” re-

sults in invariant theory! For this fascinating account and more details

of the topic, we refer the reader to the text by Peter Olver [Olv99].

A Modern Perspective. An algorithmic consequence of Hilbert’s

work is that testing whether two given polynomials are equivalent (the

polynomial equivalence problem) is decidable — but we do not know

if it is in P (Hilbert’s work actually goes much deeper than this). In its

full generality, polynomial equivalence appears to be a difficult question

— it is at least as hard as graph isomorphism (see the footnote to

Exercise 2.9) and probably much harder. Graph isomorphism admits

heuristic algorithms which seem to work very well in practice but no

120 Polynomial equivalence testing

such heuristic algorithms are known for polynomial equivalence. In this

chapter we will use partial derivatives to solve certain special cases.

These algorithms were first presented in [Kay10]. The algorithms show

how the space of partial derivatives of up to second order of a given

polynomial relates to its structure. Partial derivatives also play a crucial

role in classical invariant theory and we refer the reader to the text by

Hilbert himself [Hil93] and to the text by Olver [Olv99] for more on

this topic.

Suppose that we are given a polynomial as an arithmetic circuit C(X).

We will address the following questions.

Question 16.1. Is C(X) equivalent to a polynomial that depends on

a fewer number of variables?

Question 16.2. Is C(X) equivalent to xd1 + . . .+ xdn?

Question 16.3. Is C(X) equivalent to an elementary symmetric poly-

nomial?

Notice that for each of these questions, if the phrase “equivalent to”

is replaced by “equal to” then the questions are easily seen to reduce

to the identity testing problem. We will see how partial derivatives

are useful in devising efficient randomized algorithms for the simpler

versions of polynomial equivalence that are captured in questions 16.1,

16.2 and 16.3. We refer the interested readers to [Kay10] for certain

generalizations of these algorithms.

Notation

We specify some more notation to be used for the rest of this chapter.

Let f(x1, . . . , xn) ∈ F[x1, . . . , xn] be a polynomial.

• ∂kf shall denote the set of k-th order partial derivatives

16.1. Algorithm for minimizing the number of variables 121

of f . Thus ∂1f , abbreviated as ∂f , shall equal{
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

}
, and

∂2f is the set {
∂2f

∂xi · ∂xj
: 1 ≤ i ≤ j ≤ n

}
.

• Also recall that we have

∂if
def
=

∂f

∂xi
and σif

def
= f(x1, . . . , xi−1, 0, xi+1, . . . , xn).

Ring of differential operators. Notice that both differentiation and

substitution are F-linear maps from F[X] to itself. We will denote the

linear combinations and compositions of these basic linear operators

in the natural way. Thus ∂i∂j is a shorthand for the map that sends

f(X) to (∂i(∂jf))(X), while ∂i + ∂j is a shorthand for the map that

sends f(X) to (∂if + ∂jf)(X). Continuing in this way, one can look

at all polynomial expressions in ∂1, . . . , ∂n. They form a commutative

ring which we denote by F[∂1, . . . , ∂n]. We call it the ring of differential

operators.

16.1 Algorithm for minimizing the number of variables

We will now see how to eliminate redundant variables from a polyno-

mial. We adopt the following terminology from Carlini [Car06]:

Definition 16.4. Let f(X) ∈ F[X] be a polynomial. We say f(X) is

independent of a variable xi if no monomial of f(X) contains xi. We

say the number of essential variables in f(X) is t if t ≥ 0 is the smallest

integer, such that, we can make an invertible linear A ∈ GLn(F) trans-
formation on the variables X and f(A ·X) depends only on t variables

x1, . . . , xt. The remaining (n − t) variables xt+1, . . . , xn are said to be

redundant variables. We will say that f(X) is a regular polynomial if it

has no redundant variables.

122 Polynomial equivalence testing

Example 16.5. The number of essential variables in the quadratic

polynomial f(x1, x2, x3) = x21 + 2x1x2 + x22 + x23 is just two, because

notice that f = (x1 + x2)
2 + x23 and thus, after making the invertible

linear transformation

x1 + x2 7→ x1

A : x3 7→ x2

x2 7→ x3

we get that f(A ·X) = x21 + x22 is a polynomial that only depends on

two variables x1 and x2.

The vanishing of partials

Let us examine the situation when the number of essential variables

in f(X) is t < n and relate this to the partial derivatives of f . We state

without proof the following lemma from Carlini [Car06].

Lemma 16.6. The number of redundant variables in a polynomial

f(X) equals the dimension of ∂(f)⊥.

Furthermore, given a basis of ∂(f)⊥, one can construct efficiently

a linear transformation A over the variables such that the polynomial

f(A ·X) only depends on the first (n− dim(∂(f)⊥)) variables.

Lemma 16.6 combined with the randomized algorithm for POLYDEP

given by lemma 14.4 and the fact that arithmetic circuits for the first

order partial derivatives of f can be easily computed from the circuit

of f (Exercise 1.10) imply:

Theorem 16.7. Given a polynomial f(X) ∈ F[X] with m essential

variables, we can compute in randomized polynomial time an invertible

linear transformation A ∈ GLn(F) such that f(A ·X) depends on the

first m variables only.

16.2. Equivalence to a sum of powers 123

Henceforth we will assume that the given polynomial is “regular”,

that is, no invertible linear transformation of the variables can reduce

the number of variables.

16.2 Equivalence to a sum of powers

Consider the following problem: given a circuit computing a homoge-

neous polynomial f(X) ∈ F[X] of degree d, does there exist a linear

transformation A ∈ GLn(F) and constants a1, . . . , an ∈ F such that

f(A ·X) = a1 · xd1 + a2 · xd2 + . . .+ an · xdn.

Equivalently, the problem can be restated as follows: given a circuit

computing a homogeneous polynomial f(X) ∈ F[X] of degree d, de-

termine n independent linear forms ℓ1, . . . , ℓn ∈ F[X] and n constants

a1, . . . , an ∈ F such that

f(X) = a1 · ℓ1(X)d + . . .+ an · ℓn(X)d.

We will devise a randomized polynomial-time algorithm that given f ,

computes the constants and the set of linear forms ℓ1, . . . , ℓn, if they

exist. The idea involved is a small variation of the idea used in char-

acterizing the symmetries of power-symmetric polynomials that we p-

resented in Chapter 2. Recall the definition of the Hessian matrix and

its following property:

Lemma 16.8. Let f(X) ∈ F[X] be an n-variate polynomial and A ∈
Fn×n be a linear transformation. Let

F (X)
def
= f(A ·X).

Then we have

HF (X) = AT ·Hf (A ·X) ·A.

In particular,

Det
(
HF (X)

)
= Det(A)2 ·Det

(
Hf (A ·X)

)
.

124 Polynomial equivalence testing

Now consider a homogeneous polynomial f(X) of degree d ≥ 3, which

has the property that there exists a linear transformation A ∈ GLn(F)
of the variables such that

f(A ·X) = xd1 + xd2 + . . .+ xdn.

Set F (X)
def
= xd1 + xd2 + . . .+ xdn. Observe that

∂2F

∂xi · ∂xj
=

{
0 if i ̸= j,

d(d− 1)xd−2
i if i = j.

Thus the matrix HF (X) is a diagonal matrix so that we have

Det
(
HF (X)

)
= dn(d− 1)n ·

n∏
i=1

xd−2
i .

By Lemma 2.6, we get that

Det
(
Hf (A ·X)

)
= dn(d− 1)n ·Det(A)−2 ·

n∏
i=1

xd−2
i

and thus,

Det
(
Hf (X)

)
= dn(d− 1)n ·Det(A)−2 ·

n∏
i=1

ℓi(X)d−2,

where the ℓi(X)’s are linear forms corresponding to the different rows

of the matrix A−1. Let us record this as a lemma.

Lemma 16.9. For a polynomial f(X) ∈ F[X] of degree d, if

f(X) =
n∑

i=1

ai · ℓi(X)d,

where ℓ1(X), . . . , ℓn(X) are independent linear forms, then

Det(Hf (X)) = c ·
n∏

i=1

ℓi(X)d−2,

where c ∈ F is a nonzero constant.

Lemma 16.9 can now be used to devise a randomized polynomial-

time algorithm for sum-of-powers equivalence testing as follows.

16.3. Equivalence to an elementary symmetric polynomial 125

Input. An arithmetic circuit which computes an n-variate

polynomial f(X) ∈ F[X] of degree d.

Output. A set of independent linear forms ℓ1(X), . . . , ℓn(X)

and constants a1, . . . , an such that

f(X) = a1 · ℓ1(X)d + . . .+ an · ℓn(X)d,

if such a set of ℓi’s exists.

The Algorithm.

(a) Compute a new arithmetic circuit C′(X) from C(X),

which computes Det(Hf (X)).

(b) Use Kaltofen’s factorization algorithm [Kal89] to fac-

tor C′(X) in randomized polynomial time. If it is not

the case that

C′(X) =

n∏
i=1

ℓi(X)d−2,

where each ℓi(X) is a linear form, then output No

such forms. 1 Else (by solving a system of linear

equations) compute constants a1, . . . , an such that

f(X) =
n∑

i=1

ai · ℓi(X)d.

Output
(
ℓ1(X), . . . , ℓn(X)

)
and (a1, . . . , an).

This completes the description of the algorithm to determine whether

a given polynomial is a sum of powers.

16.3 Equivalence to an elementary symmetric polynomial

The problem that we now tackle is the following — given an arithmetic

circuit which computes an n-variate homogeneous polynomial f(X) ∈

1Kaltofen’s algorithm as usually stated outputs circuits for each factor. If the factors are
constant degree, as in our case, then we can also recover each factor explicitly in the usual
sum of monomials representation by doing interpolation.

126 Polynomial equivalence testing

F[X], is there an invertible linear transformation A such that f(A ·X)

is the elementary symmetric polynomial of degree d? Recall that the

elementary symmetric polynomial of degree d 2 is

SYMd
n

def
=

∑
S⊆[n],|S|=d

∏
i∈S

xi.

Observe that SYMd
n is a multilinear polynomial and therefore we have

∂2
i

(
SYMd

n

)
= 0, for all i ∈ [n]. (16.1)

More interestingly, these are essentially the only second-order partial

derivatives of SYMd
n which vanish. The following lemma follows from

the proof of Lemma 11.4.

Lemma 16.10. For d ≥ 4, we have dim
(
∂2(SYMd

n)
)
=
(
n
2

)
.

This means that if f is equivalent to SYMd
n, then ∂2(f) has dimension(

n
2

)
. Indeed our method shows that for any polynomial f ∈ F(X) which

has the property that ∂2(f) has dimension
(
n
2

)
, we can efficiently de-

termine whether f is equivalent to a multilinear polynomial and if so,

find an invertible matrix A such that f(A ·X) is multilinear. Now let

g(X)
def
= f(A ·X)

be multilinear. It will also follow from our proof that this multilinear

polynomial g(X) is equivalent to an elementary symmetric polynomial

if and only if there is a diagonal matrix B such that

g(B ·X) = SYMd
n.

It is then a relatively easy exercise to determine whether such a diago-

nal matrix B exists or not.

2SYMd
n also admits an alternative definition similar in spirit to the characterizations pro-

vided by exercises 2.2 and 2.3. SYMd
n is the unique (upto scalar multiples) homogeneous

multilinear polynomial of degree d in n variables, which is invariant under every permu-
tation of the variables.

16.3. Equivalence to an elementary symmetric polynomial 127

Exercise 16.11. Show that given a multilinear polynomial g(X), one

can efficiently determine whether there exist λ1, . . . , λn ∈ F such that

g(λ1x1, . . . , λnxn) = SYMd
n(X)

In the rest of this section, we will assume that f(X) ∈ F[X] is a poly-

nomial that satisfies dim(∂2(f)) =
(
n
2

)
. We will tackle the problem of

finding an invertible matrix A such that f(A ·X) is multilinear, if such

an A exists. We will first observe that our problem boils down to find-

ing a good basis for a given space of symmetric matrices consisting of

rank one matrices. We then devise an efficient randomized algorithm

for the latter problem.

16.3.1 Reduction to finding a good basis for a space
of matrices

First we make the following observation. Let

g(X) = f(A ·X) = f

∑
j

a1jxj ,
∑
j

a2jxj , . . . ,
∑
j

anjxj

 .

Then ∂2
i g = 0 if and only if(

a1i∂1 + a2i∂2 + . . .+ ani∂n
)2
f = 0.

Therefore, if g(X) is multilinear then every column vector of A satisfies(
a1∂1 + a2∂2 + . . .+ an∂n

)2
f = 0,

and these n vectors are linearly independent since A is invertible.

Now given f , we first compute the set ∂2f and then using the ran-

domized algorithm for POLYDEP, we obtain a basis for the set of all

quadratic differential operators D(∂1, . . . , ∂n) such that Df = 0. Since

dim(∂2(f)) =
(
n
2

)
we have dim(D(∂1, . . . , ∂n)) = n. By the observation

above our problem boils down to finding a basis for D(∂1, . . . , ∂n) such

that every quadratic operator in the basis has the following form:

(a1∂1 + a2∂2 + . . .+ an∂n)
2f = 0.

128 Polynomial equivalence testing

Towards this end, we associate every n-variate quadratic operator

D with an n×n symmetric matrix D̂ in the following natural way. Let

D ∈ F[∂1, . . . , ∂n] be a quadratic polynomial, where

D =
∑
i∈[n]

αi∂
2
i +

∑
1≤i<j≤n

βij∂i∂j .

The matrix D̂ associated with this operator D is the following:

D̂
def
=


α1

1
2β12 . . . 1

2β1n
1
2β12 α2 . . . 1

2β2n
...

...
. . .

...
1
2β1n

1
2β2n . . . αn

 . (16.2)

This way of associating a quadratic polynomial with a symmetric

matrix has the following property.

Property 16.12. Over an algebraically closed field F of characteristic

different from 2, the quadratic polynomial D is equivalent to a sum of

r squares if and only if the corresponding symmetric matrix D̂ is of

rank r. In particular, the polynomial D is a perfect square if and only

if D̂ is of rank one.

Using this property, our problem is equivalent to finding a basis of

a given space of symmetric matrices consisting of rank one symmetric

matrices in the following way.

(1) Given an arithmetic circuit of size s for the polynomial

f(X) ∈ F[X], we use the naive method of computing

derivatives to obtain a new circuit of size O(sn2), whose

outputs are the second-order partial derivatives ∂2(f) of f .

(2) Using the randomized algorithm for POLYDEP, we obtain

a basis for (∂2(f))⊥. Each element in the basis of (∂2(f))⊥

is a homogeneous quadratic polynomial in F[∂1, . . . , ∂n] in
the natural way. Let this basis be{

D1, . . . , Dn

}
⊂ F[∂1, . . . , ∂n].

16.3. Equivalence to an elementary symmetric polynomial 129

(3) From D1, . . . , Dn, we get the corresponding symmetric

matrices D̂1, . . . , D̂n. Using the randomized algorithm given

below, we obtain another basis {Ê1, . . . , Ên} of the vector

space generated by {D̂1, . . . , D̂n} such that each Êi is a

rank one symmetric matrix 3, if such a basis exists. Their

corresponding quadratic polynomials E1, . . . , En ⊂ F[∂1,
. . . , ∂n] are then perfect squares. Let

Ei =

∑
j∈[n]

aij∂j

2

.

The matrix A = (aij)i,j∈[n] is then the required linear

transformation which makes f multilinear.

We now present an efficient randomized algorithm that given n lin-

early independent matrices of dimension n×n, finds a basis consisting

of rank-one matrices, if such a basis exists. Our proof will also show

that such a basis, if it exists, is unique up to scalar multiples and per-

mutations of the basis elements.

16.3.2 Randomized algorithm for finding a basis consisting
of rank-one matrices

We are given n symmetric matrices D̂1, . . . , D̂n, and we want to find

another basis Ê1, . . . , Ên of the space generated by the given matrices

such that each Êi is of rank one. A rank one symmetric matrix is the

outer product of a vector with itself. So for each i ∈ [n], let Êi = vT
i vi

where vi ∈ Fn.

Lemma 16.13. Suppose that v1, . . . ,vn ∈ Fn are vectors. Then

Det
(
z1v

T
1 · v1 + . . .+ znv

T
n · vn

)
= z1z2 . . . zn ·

(
Det(V)

)2
, (16.3)

where V = [vT
1 . . .vT

n] is the matrix whose columns are the vi’s.

3Here we think of matrices as n2-dimensional vectors.

130 Polynomial equivalence testing

Proof. Let M(z)
def
= z1v

T
1 · v1 + . . .+ znv

T
n · vn. Then Det(M(z)) is a

polynomial of degree n in the formal variables z1, . . . , zn. If zi = 0 then

for every setting of the remaining variables, the matrix M is singular

because its image is spanned by the vectors v1, . . . ,vi−1,vi+1, . . . ,vn,

and is of rank at most n−1. Thus zi divides Det(M(z)) for all i ∈ [n].

Using Chinese remaindering, we have that
∏

zi divides Det(M(z)).

Because the degree of Det(M(z)) is n, we have

Det
(
M(z)

)
= λ

∏
i∈[n]

zi,

for some scalar λ ∈ F. Setting all the zi’s to 1, we get

λ = Det

∑
i∈[n]

vT
i · vi

 = Det(V · V T) = Det(V)2.

We thus have Det(M(z)) = z1z2 . . . zn · (Det(V))2.

Corollary 16.14. Let D̂1, D̂2, . . . , D̂n ∈ Fn×n be symmetric matrices.

Suppose that there exist vectors v1, . . .vn such that

D̂i =
n∑

j=1

αijv
T
j · vj . (16.4)

Then

Det(z1D̂1 + . . . znD̂n) = constant · ℓ1ℓ2 . . . ℓn,

where for all j ∈ [n], ℓj =
∑n

i=1 αijzi is a linear form over z1, . . . , zn.

Corollary 16.14 suggests an algorithm.

Lemma 16.15. There exists a randomized polynomial-time algorithm

that, given n symmetric matrices D̂1, . . . , D̂n ∈ Fn×n, finds a basis for

the space generated by them consisting of matrices of rank one, if such

a basis exists.

16.3. Equivalence to an elementary symmetric polynomial 131

Proof. We write down an arithmetic circuit for the polynomial

F (z1, . . . , zn)
def
= Det(z1D̂1 + . . .+ znD̂n).

Then we use Kaltofen’s algorithm [Kal89] to factor F (z1, z2, . . . , zn) in

randomized polynomial time. By Corollary 16.14 we can use the linear

factors ℓ1, ℓ2, . . . , ℓn of this polynomial, which are unique up to scalar

multiples and permutations, to solve the equations (16.4), and get the

rank one matrices as required.

This completes the description of the algorithm.

Acknowledgements

We would like to thank an anonymous referee for many suggestions.

Our thanks also go to Jiri Matousek, Amir Shpilka, Madhu Sudan and

Amir Yehudayoff for taking the time to read an earlier draft and for

their comments and suggestions.

132

References

[AB03] M. Agrawal and S. Biswas. Primality and identity testing via chinese
remaindering. Journal of the ACM, 50(4), 2003.

[Agr05] M. Agrawal. Proving lower bounds via pseudo-random generators. In
Proceedings of the 25th Conference on Foundations of Software Tech-
nology and Theoretical Computer Science, pages 92–105, 2005.

[AS06] M. Agrawal and N. Saxena. Equivalence of F-algebras and cubic forms.
In Proceedings of the 23rd Annual Symposium on Theoretical Aspects
of Computer Science, pages 115–126, 2006.

[AW09] S. Aaronson and A. Wigderson. Algebrization: A new barrier in com-
plexity theory. ACM Transactions on Computation Theory, 1(1):1–54,
2009.

[BCS97] P. Bügisser, M. Clausen, and A. Shokrollahi. Algebraic Complexity
Theory. Springer, 1997.

[Ber84] S.J. Berkowitz. On computing the determinant in small parallel time
using a small number of processors. Information Processing Letters,
18:147–150, 1984.

[BGS75] T. Baker, J. Gill, and R. Solovay. Relativizations of the P =? NP
question. SIAM Journal on Computing, 4(4):431–442, 1975.

[BHLV09] M. Bläser, M. Hardt, R.J. Lipton, and N.K. Vishnoi. Deterministically
testing sparse polynomial identities of unbounded degree. Information
Processing Letters, 109(3):187–192, 2009.

[BLMW09] P. Bürgisser, J.M. Landsberg, L. Manivel, and J. Weyman. An overview
of mathematical issues arising in the geometric complexity theory ap-
proach to VP v.s. VNP. CoRR, abs/0907.2850, 2009.

133

134 References

[BM75] A. Borodin and I. Munro. The Computational Complexity of Algebraic
and Numeric Problems. American Elsevier, first edition, 1975.

[BS83] W. Baur and V. Strassen. The complexity of partial derivatives. The-
oretical Computer Science, 22(3):317–330, 1983.

[Cai90] J.-Y. Cai. A note on the determinant and permanent problem. Infor-
mation and Computation, 84(1):119–127, 1990.

[Car06] E. Carlini. Reducing the number of variables of a polynomial. In Al-
gebraic Geometry and Geometric Modelling, pages 237–247. Springer,
2006.

[CCL08] J.-Y. Cai, X. Chen, and D. Li. A quadratic lower bound for the per-
manent and determinant problem over any characteristic ̸= 2. In Pro-
ceedings of the 40th Annual ACM Symposium on Theory of Computing,
pages 491–498, 2008.

[Chi85] A.L. Chistov. Fast parallel calculation of the rank of matrices over
a field of arbitary characteristic. In Proceedings of the International
Conference Foundations of Computation Theory, pages 63–69, 1985.

[CK00] Z.-Z. Chen and M.-Y. Kao. Reducing randomness via irrational num-
bers. SIAM Journal of Computing, 29(4):1247–1256, 2000.

[Csa76] L. Csanky. Fast parallel inversion algorithm. SIAM Journal on Com-
puting, 5:618–623, 1976.

[CW90] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic
progressions. Journal of Symbolic Computation, 9(3):251–280, 1990.

[DGW09] Z. Dvir, A. Gabizon, and A. Wigderson. Extractors and rank extractors
for polynomial sources. Computational Complexity, 18(1):1–58, 2009.

[DS05] Z. Dvir and A. Shpilka. Locally decodable codes with 2 queries and
polynomial identity testing for depth 3 circuits. In Proceedings of the
37th annual ACM symposium on Theory of computing, pages 592–601,
2005.

[Dvi09a] Z. Dvir. From randomness extraction to rotating needles. SIGACT
News, 40(4):46–61, 2009.

[Dvi09b] Z. Dvir. On the size of Kakeya sets in finite fields. Journal of the
American Mathematical Society, 22:1093–1097, 2009.

[Ell69] W.J. Ellison. A ‘waring’s problem’ for homogeneous forms. Proceedings
of the Cambridge Philosophical Society, 65:663–672, 1969.

[ER93] R. Ehrenborg and G.-C. Rota. Apolarity and canonical forms for homo-
geneous polynomials. European Journal of Combinatorics, 14(3):157–
181, 1993.

[Fis94] I. Fischer. Sums of like powers of multivariate linear forms. Mathematics
Magazine, 67(1):59–61, 1994.

[Gao03] S. Gao. Factoring multivariate polynomials via partial differential e-
quations. Mathematics of computation, 72(242):801–822, 2003.

[GK08] L. Guth and N.H. Katz. Algebraic methods in discrete analogs of the
Kakeya problem. arXiv:0812.1043, 2008.

[GS99] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and
algebraic-geometric codes. IEEE Transactions on Information Theory,
45(6):1757–1767, 1999.

References 135

[Har77] R. Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics,
No. 52. Springer-Verlag, New York, 1977.

[HB96] D.R. Heath-Brown. An estimate for Heilbronn’s exponential sum. In
Analytic number theory: Proceedings of a conference in honor of Heini
Halberstam, pages 451–463, 1996.

[Hil93] David Hilbert. Theory of Algebraic Invariants. Cambridge University
Press, 1993.

[HY09] P. Hrubes and A. Yehudayoff. Arithmetic complexity in algebraic ex-
tensions. Manuscript, 2009.

[Kal89] E. Kaltofen. Factorization of polynomials given by straight-line pro-
grams. Randomness and Computation, 5:375–412, 1989.

[Kay09] N. Kayal. The complexity of the annihilating polynomial. In Proceedings
of the 24th Annual IEEE Conference on Computational Complexity,
pages 184–193, 2009.

[Kay10] N. Kayal. Algorithms for arithmetic circuits. Technical report, Elec-
tronic Colloquium on Computational Complexity, 2010.

[Kel39] O. Keller. Ganze cremona-transformationen. Monatsh. Math. Phys.,
47:299–306, 1939.

[KI04] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity
tests means proving circuit lower bounds. Computational Complexity,
13(1/2):1–46, 2004.

[KN97] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge
University Press Cambridge, 1997.

[KS01] A. Klivans and D.A. Spielman. Randomness efficient identity testing
of multivariate polynomials. In Proceedings of the 33rd annual ACM
symposium on Theory of computing, pages 216–223, 2001.

[KS06] N. Kayal and N. Saxena. Polynomial identity testing for depth 3 cir-
cuits. In Proceedings of the twenty-first Annual IEEE Conference on
Computational Complexity, 2006.

[KS07] Z.S. Karnin and A. Shpilka. Black box polynomial identity testing of
depth-3 arithmetic circuits with bounded top fan-in. Electronic Collo-
quium on Computational Complexity, 14(042), 2007.

[KS09] N. Kayal and S. Saraf. Blackbox polynomial identity testing for depth 3
circuits. Electronic Colloquium on Computational Complexity, 16(032),
2009.

[KSS10] H. Kaplan, M. Sharir, and E. Shustin. On lines and joints. Discrete
and Computational Geometry, to appear, 2010.

[KSY11] S. Kopparty, S. Saraf, and S. Yekhanin. High-rate codes with sublinear-
time decoding. In Proceedings of ACM Symposium on Theory of Com-
puting, 2011.

[Kud01] L.D. Kudryavtsev. Implicit function. Encyclopaedia of Mathematics,
2001.

[Lov11] Shachar Lovett. Computing polynomials with few multiplications.
Technical Report 094, Electronic Colloquium on Computational Com-
plexity, 2011.

136 References

[LV98] D. Lewin and S.P. Vadhan. Checking polynomial identities over any
field: Towards a derandomization? In Proceedings of the 30th annual
ACM Symposium on Theory of Computing, pages 438–447, 1998.

[Mes89] R. Meshulam. On two extremal matrix problems. Linear Algebra and
its Applications, 114/115:261–271, 1989.

[Mit92] D.A. Mit’kin. Stepanov method of the estimation of the number of
roots of some equations. Matematicheskie Zametki, 51(6):52–58, 1992.
Translated as Mathematical Notes, 51, 565–570, 1992.

[Mor85] J. Morgenstern. How to compute fast a function and all its derivatives:
a variation on the theorem of Baur-Strassen. SIGACT News, 16(4):60–
62, 1985.

[MR04] T. Mignon and N. Ressayre. A quadratic bound for the determinant
and permanent problem. International Mathematics Research Notices,
pages 4241–4253, 2004.

[MS01] K. Mulmuley and M.A. Sohoni. Geometric complexity theory I: An
approach to the P vs. NP and related problems. SIAM Journal on
Computing, 31(2):496–526, 2001.

[MS08] K. Mulmuley and M.A. Sohoni. Geometric complexity theory II: To-
wards explicit obstructions for embeddings among class varieties. SIAM
Journal on Computing, 38(3):1175–1206, 2008.

[Mul99] K. Mulmuley. Lower bounds in a parallel model without bit operations.
SIAM Journal on Computing, 28(4):1460–1509, 1999.

[Mul09a] K. Mulmuley. On P versus NP, geometric complexity theory and the
Riemann hypothesis. Technical report, The University of Chicago, Au-
gust 2009.

[Mul09b] K. Mulmuley. On P versus NP, geometric complexity theory, explicit
proofs and the complexity barrier. Technical report, The University of
Chicago, August 2009.

[NW97] N. Nisan and A. Wigderson. Lower bounds on arithmetic circuits via
partial derivatives. Computational Complexity, 6(3):217–234, 1997.

[Olv99] Peter Olver. Classical Invariant Theory. London Mathematical Society,
1999.

[Oxl06] J.G. Oxley. Matroid Theory. Oxford Graduate Texts in Mathematics.
Oxford University Press, 2006.

[Pól71] G. Pólya. Aufgabe 424. Arch. Math. Phys., 20:1913, 271.
[Raz09] R. Raz. Multi-linear formulas for permanent and determinant are of

super-polynomial size. Journal of the Association for Computing Ma-
chinery, 56(2), 2009.

[RR94] A.A. Razborov and S. Rudich. Natural proofs. Journal of Computer
and System Sciences, 55:204–213, 1994.

[RS04] R. Raz and A. Shpilka. Deterministic polynomial identity testing in
non-commutative models. In IEEE Conference on Computational Com-
plexity, pages 215–222, 2004.

[Rup99] W.M. Ruppert. Reducibility of polynomials f(x, y) modulo p. Journal
of Number Theory, 77:62–70, 1999.

References 137

[RY08] R. Raz and A. Yehudayoff. Lower bounds and separations for constant
depth mutilinear circuits. In Proceedings of the 23rd IEEE Annual
Conference on Computational Complexity, pages 128–139, 2008.

[Rys63] H.J. Ryser. Combinatorial Mathematics. Mathematical Association of
America, 1963.

[Sax08] N. Saxena. Diagonal circuit identity testing and lower bounds. In Pro-
ceedings of the 35th International Colloquium on Automata, Languages
and Programming, pages 60–71, 2008.

[Sch80] J.T. Schwartz. Fast probabilistic algorithms for verification of polyno-
mial identities. Journal of the Association for Computing Machinery,
27(4):701–717, 1980.

[Sch04] W.M. Schmidt. Equations over Finite Fields. Kendrick Press, 2004.
[Shp02] A. Shpilka. Affine projections of symmetric polynomials. Journal of

Computer and System Sciences, 65(4):639–659, 2002.
[Sol02] M. Soltys. Berkowitz’s algorithm and clow sequences. Electronic Jour-

nal of Linear Algebra, 9:42–54, 2002.
[SS09] N. Saxena and C. Seshadhri. Proceedings of the 24th annual ieee con-

ference on computational complexity. In IEEE Conference on Compu-
tational Complexity. IEEE Computer Society, 2009.

[Str69] V. Strassen. Gaussian elimination is not optimal. Numerische Mathe-
matik, 13:354–356, 1969.

[Str73a] V. Strassen. Die berechnungskomplexität von elementarsymmetrisch-
en funktionen und von interpolationskoeffizienten. Numerische Mathe-
matik, 20(3):238–251, 1973.

[Str73b] V. Strassen. Vermeidung von divisionen. J. Reine Angew. Math.,
264:184–202, 1973.

[Sud97] M. Sudan. Decoding of Reed Solomon codes beyond the error-correction
bound. Journal of Complex, 13(1):180–193, 1997.

[SV08] A. Shpilka and I. Volkovich. Read-once polynomial identity testing. In
Proceedings of the 40th annual ACM Symposium on Theory of Comput-
ing, pages 507–516, 2008.

[SW01] A. Shpilka and A. Wigderson. Depth-3 arithmetic circuits over fields of
characteristic zero. Computational Complexity, 10(1):1–27, 2001.

[Sze92] G. Szegö. Zu aufgabe 424. Arch. Math. Phys., 21:1913, 291–292.
[Val79a] L.G. Valiant. Completeness classes in algebra. In Proceedings of the

11th Annual ACM Symposium on Theory of Computing, pages 249–
261, 1979.

[Val79b] L.G. Valiant. The complexity of computing the permanent. Theoretical
Computer Science, 8:189–201, 1979.

[vdW37] B.L. van der Waerden. Moderne Algebra. Berlin, Springer, 2nd edition,
1937.

[VSBR83] L.G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. Fast parallel
computation of polynomials using few processors. SIAM Journal on
Computing, 12(4):641–644, 1983.

[vzG87] J. von zur Gathen. Permanent and determinant. Linear Algebra and
its Applications, 96:87–100, 1987.

138 References

[vzGG99] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cam-
bridge University Press, 1999.

[Woo96] T.D. Wooley. A note on simultaneous congruences. Journal of Number
Theory, 58(2):288–297, 1996.

[Wri81] D. Wright. On the Jacobian conjecture. Illinois Journal of Mathematics,
15(3):423–440, 1981.

[Yu95] J.T. Yu. On the Jacobian conjecture: reduction of coefficients. Journal
of Algebra, 171:515–523, 1995.

[Zip90] R. Zippel. Interpolating polynomials from their values. Journal of
Symbolic Computation, 9(3):375–403, 1990.

	Introduction
	Motivation
	Arithmetic circuits
	Formal derivatives and their properties

	Part I: Structure
	Symmetries of a polynomial
	Algebraic independence
	Polynomials with high arithmetic complexity
	Bezout's theorem
	Algebraic extractors and the Jacobian conjecture
	The Jacobian conjecture

	The ``Joints conjecture'' resolved
	The Stepanov method
	Weil's theorem on rational points on curves
	A high-level description of the Stepanov method
	Formal proof of Weil's theorem
	The Heath-Brown and Mit'kin estimates

	Part II: Lower Bounds
	General arithmetic circuits
	Sums of powers of linear forms
	Depth-3 arithmetic circuits
	Arithmetic formulae
	Cover sets and measure functions
	A constant-depth lower bound

	Projections of Determinant to Permanent

	Part III: Algorithms
	Identity testing
	Absolute irreducibility testing
	Polynomial equivalence testing
	Algorithm for minimizing the number of variables
	Equivalence to a sum of powers
	Equivalence to an elementary symmetric polynomial

	Acknowledgements
	References

