A quasicategorical theory of E_∞ bimonoids

Saul Glasman

MIT

6 April, 2013
Outline

- Overview
Outline

- Overview
- Motivation from ordinary category theory
Outline

- Overview
- Motivation from ordinary category theory
- Review of ∞-categories
Outline

- Overview
- Motivation from ordinary category theory
- Review of ∞-categories
- Distributivity coherences
Outline

- Overview
- Motivation from ordinary category theory
- Review of ∞-categories
- Distributivity coherences
- Constructing symmetric bimonoidal ∞-categories
Overview

One aim of this talk is to indicate how to fill in the blank. More generally, we'll construct a theory of commutative bimonoid objects in a general ∞-category. We'll also reprove a delooping result.
Overview

E_∞-spaces (May)

One aim of this talk is to indicate how to fill in the blank. More generally, we'll construct a theory of commutative bimonoid objects in a general ∞-category. We'll also reprove a delooping result.
Overview

Γ-spaces (Segal) \quad E_∞-spaces (May)

More generally, we'll construct a theory of commutative bimonoid objects in a general ∞-category. We'll also reprove a delooping result.
Overview

Symmetric monoidal ∞-categories (Lurie) Γ-spaces (Segal) E_∞-spaces (May)

One aim of this talk is to indicate how to fill in the blank. More generally, we'll construct a theory of commutative bimonoid objects in a general ∞-category. We'll also reprove a delooping result.
Overview

Spaces acted on by a pair of E_∞ operads in distribution (May)

Symmetric monoidal ∞-categories (Lurie)

Γ-spaces (Segal)

E_∞-spaces (May)
Overview

Spaces acted on by a pair of E_∞ operads in distribution (May)

$\mathcal{F} \int^\wedge \mathcal{F}$-spaces (May)

Symmetric monoidal ∞-categories (Lurie)

Γ-spaces (Segal)

E_∞-spaces (May)
Overview

Symmetric monoidal ∞-categories (Lurie)

Spaces acted on by a pair of E_∞ operads in distribution (May)

$\mathcal{F} \int^\wedge \mathcal{F}$-spaces (May)

Γ-spaces (Segal)

E_∞-spaces (May)
One aim of this talk is to indicate how to fill in the blank.
Overview

Spaces acted on by a pair of E_∞ operads in distribution (May)

Symmetric monoidal ∞-categories (Lurie)

$\mathcal{F} \int^\wedge \mathcal{F}$-spaces (May)

Γ-spaces (Segal)

E_∞-spaces (May)

One aim of this talk is to indicate how to fill in the blank. More generally, we'll construct a theory of commutative bimonoid objects in a general ∞-category.
Overview

Spaces acted on by a pair of E_∞ operads in distribution (May)

Symmetric monoidal ∞-categories (Lurie)

$\mathcal{F} \int^\wedge \mathcal{F}$-spaces (May)

Γ-spaces (Segal)

E_∞-spaces (May)

One aim of this talk is to indicate how to fill in the blank. More generally, we’ll construct a theory of commutative bimonoid objects in a general ∞-category.

We’ll also reprove a delooping result.
Motivation from ordinary category theory

Let C be a category with finite products.
Motivation from ordinary category theory

Let \mathcal{C} be a category with finite products.

Definition

A *commutative monoid* in \mathcal{C} is a functor $M : \mathcal{F} \to \mathcal{C}$ such that for every n, the n inert maps $\langle n \rangle \to \langle 1 \rangle$ express $M(\langle n \rangle)$ as the product of n copies of $M(\langle 1 \rangle)$.
Motivation from ordinary category theory

Let \mathcal{C} be a category with finite products.

Definition
A **commutative monoid** in \mathcal{C} is a functor $M : \mathcal{F} \to \mathcal{C}$ such that for every n, the n inert maps $\langle n \rangle \to \langle 1 \rangle$ express $M(\langle n \rangle)$ as the product of n copies of $M(\langle 1 \rangle)$.

For example, an ordinary commutative monoid is a commutative monoid in Set. A monoid in an abelian category \mathcal{A} is nothing more than an object of \mathcal{A}. A monoid in Cat is a **strict symmetric monoidal category**.
Motivation from ordinary category theory

Let \mathcal{C} be a category with finite products.

Definition

A *commutative monoid* in \mathcal{C} is a functor $M : \mathcal{F} \to \mathcal{C}$ such that for every n, the n inert maps $\langle n \rangle \to \langle 1 \rangle$ express $M(\langle n \rangle)$ as the product of n copies of $M(\langle 1 \rangle)$.

For example, an ordinary commutative monoid is a commutative monoid in Set. A monoid in an abelian category \mathcal{A} is nothing more than an object of \mathcal{A}. A monoid in Cat is a *strict symmetric monoidal category*: one in which the associativity and commutativity isomorphisms for the monoidal product are identities.
Motivation from ordinary category theory

Let \mathcal{C} be a category with finite products.

Definition
A *commutative monoid* in \mathcal{C} is a functor $M : F \to \mathcal{C}$ such that for every n, the n inert maps $\langle n \rangle \to \langle 1 \rangle$ express $M(\langle n \rangle)$ as the product of n copies of $M(\langle 1 \rangle)$.

For example, an ordinary commutative monoid is a commutative monoid in Set. A monoid in an abelian category \mathcal{A} is nothing more than an object of \mathcal{A}. A monoid in Cat is a *strict symmetric monoidal category*: one in which the associativity and commutativity isomorphisms for the monoidal product are identities.

We don’t expect to see this structure very often in nature.
Motivation from ordinary category theory

Let \mathcal{C} be a category with finite products.

Definition

A *commutative monoid* in \mathcal{C} is a functor $M : \mathcal{F} \to \mathcal{C}$ such that for every n, the n inert maps $\langle n \rangle \to \langle 1 \rangle$ express $M(\langle n \rangle)$ as the product of n copies of $M(\langle 1 \rangle)$.

For example, an ordinary commutative monoid is a commutative monoid in Set. A monoid in an abelian category \mathcal{A} is nothing more than an object of \mathcal{A}. A monoid in Cat is a *strict symmetric monoidal category*: one in which the associativity and commutativity isomorphisms for the monoidal product are identities.

We don’t expect to see this structure very often in nature. Clearly the definition above is not the correct one for a 2-category such as Cat.
The Grothendieck construction and cocartesian fibrations

Let \(\mathcal{D} \) be a small category and let \(F : \mathcal{D} \to \text{Cat} \) be a functor. We can define a new category \(\mathcal{G} \) with a functor \(p : \mathcal{G} \to \mathcal{D} \) in such a way that for all objects \(d \in \mathcal{D} \),

\[
p^{-1}(d) \cong F(d).
\]

This is known as the Grothendieck construction.

It's possible to axiomatize this situation.

Definition

Let \(\mathcal{G} \) and \(\mathcal{D} \) be categories. A functor \(p : \mathcal{G} \to \mathcal{D} \) is called a cocartesian fibration if it looks like it came from the Grothendieck construction.
The Grothendieck construction and cocartesian fibrations

Let \mathcal{D} be a small category and let $F : \mathcal{D} \to \text{Cat}$ be a functor. We can define a new category \mathcal{G} with a functor $p : \mathcal{G} \to \mathcal{D}$ in such a way that for all objects $d \in \mathcal{D},$

\[p^{-1}(d) \cong F(d). \]
The Grothendieck construction and cocartesian fibrations

Let \mathcal{D} be a small category and let $F : \mathcal{D} \to \text{Cat}$ be a functor. We can define a new category \mathcal{G} with a functor $p : \mathcal{G} \to \mathcal{D}$ in such a way that for all objects $d \in \mathcal{D}$,

$$p^{-1}(d) \cong F(d).$$

Note that the fiber of p over $d \in \mathcal{D}$ is $F(d)$.
The Grothendieck construction and cocartesian fibrations

Let \mathcal{D} be a small category and let $F : \mathcal{D} \to \text{Cat}$ be a functor. We can define a new category \mathcal{G} with a functor $p : \mathcal{G} \to \mathcal{D}$ in such a way that for all objects $d \in \mathcal{D}$,

$$p^{-1}(d) \cong F(d).$$

Note that the fiber of p over $d \in \mathcal{D}$ is $F(d)$.

This is known as the Grothendieck construction.
The Grothendieck construction and cocartesian fibrations

Let \mathcal{D} be a small category and let $F : \mathcal{D} \to \text{Cat}$ be a functor. We can define a new category \mathcal{G} with a functor $p : \mathcal{G} \to \mathcal{D}$ in such a way that for all objects $d \in \mathcal{D}$,

$$p^{-1}(d) \cong F(d).$$

Note that the fiber of p over $d \in \mathcal{D}$ is $F(d)$.

This is known as the *Grothendieck construction*. It’s possible to axiomatize this situation.
The Grothendieck construction and cocartesian fibrations

Let \mathcal{D} be a small category and let $F : \mathcal{D} \to \text{Cat}$ be a functor. We can define a new category \mathcal{G} with a functor $p : \mathcal{G} \to \mathcal{D}$ in such a way that for all objects $d \in \mathcal{D}$,

$$p^{-1}(d) \simeq F(d).$$

Note that the fiber of p over $d \in \mathcal{D}$ is $F(d)$.

This is known as the Grothendieck construction. It’s possible to axiomatize this situation.

Definition

Let \mathcal{G} and \mathcal{D} be categories. A functor $p : \mathcal{G} \to \mathcal{D}$ is called a *cocartesian fibration* if it looks like it came from the Grothendieck construction.
Cocartesian fibrations, continued

In general, cocartesian fibrations correspond to *functors up to isomorphism*.
Cocartesian fibrations, continued

In general, cocartesian fibrations correspond to functors up to isomorphism.

The data of a (fully weak) symmetric monoidal category is encapsulated by a cocartesian fibration $p : C^\otimes \to \mathcal{F}$ satisfying a Segal condition:

$$p^{-1}(\langle n \rangle) = \prod_n p^{-1}(\langle 1 \rangle).$$
Review of ∞-categories

Definition

An ∞-category is a simplicial set satisfying some axioms that make it look sort of like the nerve of a category.
Review of ∞-categories

Definition

An ∞-category is a simplicial set satisfying some axioms that make it look sort of like the nerve of a category.

0-simplices

Objects
Review of ∞-categories

Definition

An ∞-category is a simplicial set satisfying some axioms that make it look sort of like the nerve of a category.

0-simplices
Objects

1-simplices
Morphisms

\[
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\end{array}
\]
Review of ∞-categories

Definition

An ∞-category is a simplicial set satisfying some axioms that make it look sort of like the nerve of a category.

0-simplices

Objects

X

1-simplices

Morphisms

$X \xrightarrow{f} Y$

2-simplex

"h is a composition of f and g"

$X \xrightarrow{h} Z$

$X \xrightarrow{f} Y

\xrightarrow{g} Z$
Review of ∞-categories

Definition

An ∞-category is a simplicial set satisfying some axioms that make it look sort of like the nerve of a category.

0-simplices

Objects X

1-simplices

Morphisms $X \rightarrow Y$

2-simplex

"h is a composition of f and g"

\[
\begin{array}{ccc}
X & \xrightarrow{h} & Z \\
\uparrow^{f} & \downarrow^{g} & \downarrow^{h} \\
Y & \rightarrow & Z
\end{array}
\]
Review of ∞-categories, continued

∞-categories themselves form an ∞-category Cat_∞.
Review of ∞-categories, continued

∞-categories themselves form an ∞-category Cat_∞.

Functors between ∞-categories, which are just maps of simplicial sets, are always “functors up to homotopy”.

\[\text{Definition} \]
A symmetric monoidal ∞-category is a functor $M : N(F) \to \text{Cat}_\infty$ satisfying the Segal condition
\[M(\langle n \rangle) = \prod_n M(\langle 1 \rangle), \]
or equivalently, a cocartesian fibration $p : C \otimes N(F) \to \text{Cat}_\infty$ satisfying the Segal condition
\[p^{-1}(\langle n \rangle) = \prod_n p^{-1}(\langle 1 \rangle). \]
Review of ∞-categories, continued

∞-categories themselves form an ∞-category Cat_∞.

Functors between ∞-categories, which are just maps of simplicial sets, are always “functors up to homotopy”. Thus there is a correspondence between functors $D \to \text{Cat}_\infty$ and cocartesian fibrations $p : C \to D$.

Definition

A symmetric monoidal ∞-category is a functor $M : N(F) \to \text{Cat}_\infty$ satisfying the Segal condition $M(\langle n \rangle) = \prod_n M(\langle 1 \rangle)$, or equivalently, a cocartesian fibration $p : C \otimes N(F)$ satisfying the Segal condition $p^{-1}(\langle n \rangle) = \prod_n p^{-1} M(\langle 1 \rangle)$.

Saul Glasman (MIT) A quasicategorical theory of E_∞ bimonoids 6 April, 2013 8 / 18
Review of ∞-categories, continued

∞-categories themselves form an ∞-category \textbf{Cat}_∞.

Functors between ∞-categories, which are just maps of simplicial sets, are always “functors up to homotopy”. Thus there is a correspondence between functors $D \to \textbf{Cat}_\infty$ and cocartesian fibrations $p : C \to D$.

Definition

A *symmetric monoidal* ∞-*category* is a functor $M : N(F) \to \textbf{Cat}_\infty$ satisfying the Segal condition

$$ M(\langle n \rangle) = \prod_{n} M(\langle 1 \rangle), $$

$$ p^{-1}(\langle n \rangle) = \prod_{n} p^{-1}(\langle 1 \rangle). $$
Review of ∞-categories, continued

∞-categories themselves form an ∞-category \mathbf{Cat}_∞.

Functors between ∞-categories, which are just maps of simplicial sets, are always “functors up to homotopy”. Thus there is a correspondence between functors $D \to \mathbf{Cat}_\infty$ and cocartesian fibrations $p : C \to D$.

Definition

A symmetric monoidal ∞-category is a functor $M : N(F) \to \mathbf{Cat}_\infty$ satisfying the Segal condition

$$M(\langle n \rangle) = \prod_n M(\langle 1 \rangle),$$

or equivalently, a cocartesian fibration $p : C^\otimes \to N(F)$ satisfying the Segal condition

$$p^{-1}(\langle n \rangle) = \prod_n p^{-1}M(\langle 1 \rangle).$$
Products induce a canonical symmetric monoidal structure on any \mathbf{C} in which they exist.
The category $\mathcal{F} \int^{\wedge} \mathcal{F}$

\mathcal{F} parametrizes coherences for a single associative and commutative operation.
The category $\mathcal{F} \int^\wedge \mathcal{F}$

\mathcal{F} parametrizes coherences for a single associative and commutative operation.

$\mathcal{F} \int^\wedge \mathcal{F}$ parametrizes coherences for two associative and commutative operations, one distributing over the other.
The category $\mathcal{F} \int^\wedge \mathcal{F}$

\mathcal{F} parametrizes coherences for a single associative and commutative operation.

$\mathcal{F} \int^\wedge \mathcal{F}$ parametrizes coherences for two associative and commutative operations, one distributing over the other.

- An object of $\mathcal{F} \int^\wedge \mathcal{F}$ is a finite pointed set S together with a finite pointed set T_s for each legit $s \in S$. We’ll denote this object $(S, [T_s])$.
The category $\mathcal{F} \int^\wedge \mathcal{F}$

\mathcal{F} parametrizes coherences for a single associative and commutative operation.

$\mathcal{F} \int^\wedge \mathcal{F}$ parametrizes coherences for two associative and commutative operations, one distributing over the other.

- An object of $\mathcal{F} \int^\wedge \mathcal{F}$ is a finite pointed set S together with a finite pointed set T_s for each legit $s \in S$. We’ll denote this object $(S, [T_s])$.

- A morphism $f : (S, [T_s]) \to (U, [V_u])$ in $\mathcal{F} \int^\wedge \mathcal{F}$ consists of
 - A map $f : S \to U$;
 - For each legit $u \in U$, a map

$$f_u : \left(\bigwedge_{s \in f^{-1}(u)} T_s \right) \to V_u.$$
Bilinear maps and tensor products

We’d like to put the idea of tensor product of commutative monoids in as general a context as possible.
Bilinear maps and tensor products

We’d like to put the idea of tensor product of commutative monoids in as
general a context as possible.

Let \mathcal{C} be a category with finite products. A commutative monoid Z in \mathcal{C} is
classified by a functor $\mathcal{F} \to \mathcal{C}$, and a pair of commutative monoids (X, Y)
in \mathcal{C} is classified by a functor $\mathcal{F} \times \mathcal{F} \to \mathcal{C}$.
Bilinear maps and tensor products

We’d like to put the idea of tensor product of commutative monoids in as general a context as possible.

Let \mathcal{C} be a category with finite products. A commutative monoid Z in \mathcal{C} is classified by a functor $\mathcal{F} \to \mathcal{C}$, and a pair of commutative monoids (X, Y) in \mathcal{C} is classified by a functor $\mathcal{F} \times \mathcal{F} \to \mathcal{C}$.

By a bilinear map from (X, Y) to Z, we mean a map

$$\left(\mathcal{F} \int ^{\wedge} \mathcal{F} \right)_{(\mu: \langle 2 \rangle \to \langle 1 \rangle)} \to \mathcal{C}$$

which pulls back to $(X, Y): \mathcal{F} \times \mathcal{F} = \left(\mathcal{F} \int ^{\wedge} \mathcal{F} \right)_{\langle 2 \rangle} \to \mathcal{C}$ and $Z: \mathcal{F} = \left(\mathcal{F} \int ^{\wedge} \mathcal{F} \right)_{\langle 1 \rangle} \to \mathcal{C}$.
Bilinear maps and tensor products, continued

The tensor product of X and Y is a commutative monoid corepresenting the functor

$$Z \mapsto \text{Bilin}((X, Y), Z).$$
Bilinear maps and tensor products, continued

The tensor product of X and Y is a commutative monoid corepresenting the functor

$$Z \mapsto \text{Bilin}((X, Y), Z).$$

If C is nice enough, then tensor products always exist.
The tensor product of X and Y is a commutative monoid corepresenting the functor

$$Z \mapsto \text{Bilin}((X, Y), Z).$$

If C is nice enough, then tensor products always exist.

This all works for ∞-categories.
Commutative bimonoids

Let \mathbf{C} be an ∞-category with finite products.
Commutative bimonoids

Let \mathbf{C} be an ∞-category with finite products.

Definition

A *commutative bimonoid* in \mathbf{C} is a functor $B : N(\mathcal{F} \int^\wedge \mathcal{F}) \to \mathbf{C}$ satisfying an enhanced Segal condition:

$$B(S, [T_s]) = \prod \left(\bigvee s \cdot T_s \right) \circ B(e = (\langle 1 \rangle, \langle 1 \rangle)).$$

A commutative bimonoid in Cat_∞ is called a *symmetric bimonoidal ∞-category*.

We could equally well define one of these as a cocartesian fibration, and indeed this is more practical for most purposes.
Commutative bimonoids

Let \mathbf{C} be an ∞-category with finite products.

Definition

A *commutative bimonoid* in \mathbf{C} is a functor $B : N(\mathcal{F} \int^\wedge \mathcal{F}) \to \mathbf{C}$ satisfying an enhanced Segal condition:

$$B(S, [T_s]) = \prod_{(\vee_s T_s)^o} B(e = (\langle 1 \rangle, [\langle 1 \rangle])).$$
Commutative bimonoids

Let \mathbf{C} be an ∞-category with finite products.

Definition

A *commutative bimonoid* in \mathbf{C} is a functor $B : N(\mathcal{F} \int \mathcal{F}) \to \mathbf{C}$ satisfying an enhanced Segal condition:

$$B(S, [T_s]) = \prod_{(\vee_s T_s)^{\circ}} B(e = (\langle 1 \rangle, [\langle 1 \rangle])).$$

A commutative bimonoid in \mathbf{Cat}_∞ is called a *symmetric bimonoidal ∞-category*.
Commutative bimonoids

Let \mathbf{C} be an ∞-category with finite products.

Definition

A *commutative bimonoid* in \mathbf{C} is a functor $B : N(\mathcal{F} \int^\wedge \mathcal{F}) \to \mathbf{C}$ satisfying an enhanced Segal condition:

$$B(S, [T_s]) = \prod_{(\vee_s T_s)^{op}} B(e = (\langle 1 \rangle, [\langle 1 \rangle])).$$

A commutative bimonoid in \mathbf{Cat}_∞ is called a *symmetric bimonoidal* ∞-category. We could equally well define one of these as a cocartesian fibration, and indeed this is more practical for most purposes.
Constructing symmetric bimonoidal ∞-categories

As often happens in this subject, we must bootstrap up from the discrete world.

Proposition

If C is a symmetric bimonoidal category, then $N(C)$ naturally has the structure of a symmetric bimonoidal ∞-category.

For example, we have a symmetric bimonoidal ∞-category $N(F \vee, \wedge) \to N(F \int \wedge F)$: the category of finite pointed sets under wedge and smash. This is, in some sense, the archetypal example.

What can we do for an arbitrary ∞-category?

One might expect the category of commutative monoids to carry a symmetric bimonoidal structure, and this is sometimes true.
Constructing symmetric bimonoidal ∞-categories

As often happens in this subject, we must bootstrap up from the discrete world.

Proposition

If \mathcal{C} is a symmetric bimonoidal category, then $\mathcal{N}(\mathcal{C})$ naturally has the structure of a symmetric bimonoidal ∞-category.
Constructing symmetric bimonoidal ∞-categories

As often happens in this subject, we must bootstrap up from the discrete world.

Proposition

If C is a symmetric bimonoidal category, then $N(C)$ naturally has the structure of a symmetric bimonoidal ∞-category.

For example, we have a symmetric bimonoidal ∞-category $N(F^\vee, \wedge) \to N(F \int^\wedge F)$: the category of finite pointed sets under wedge and smash. This is, in some sense, the archetypal example.
Constructing symmetric bimonoidal ∞-categories

As often happens in this subject, we must bootstrap up from the discrete world.

Proposition

If \mathcal{C} is a symmetric bimonoidal category, then $N(\mathcal{C})$ naturally has the structure of a symmetric bimonoidal ∞-category.

For example, we have a symmetric bimonoidal ∞-category $N(\mathcal{F}^\wedge, \wedge) \to N(\mathcal{F} \int^\wedge \mathcal{F})$: the category of finite pointed sets under wedge and smash. This is, in some sense, the archetypal example.

What can we do for an arbitrary ∞-category?
Constructing symmetric bimonoidal ∞-categories

As often happens in this subject, we must bootstrap up from the discrete world.

Proposition

If \mathcal{C} is a symmetric bimonoidal category, then $\mathcal{N}(\mathcal{C})$ naturally has the structure of a symmetric bimonoidal ∞-category.

For example, we have a symmetric bimonoidal ∞-category $\mathcal{N}(\mathcal{F}^\vee,^\wedge) \to \mathcal{N}(\mathcal{F} \int^\wedge \mathcal{F})$: the category of finite pointed sets under wedge and smash. This is, in some sense, the archetypal example.

What can we do for an arbitrary ∞-category? One might expect the category of commutative monoids to carry a symmetric bimonoidal structure,
Constructing symmetric bimonoidal ∞-categories

As often happens in this subject, we must bootstrap up from the discrete world.

Proposition

If \mathcal{C} is a symmetric bimonoidal category, then $N(\mathcal{C})$ naturally has the structure of a symmetric bimonoidal ∞-category.

For example, we have a symmetric bimonoidal ∞-category $N(\mathcal{F}^\vee, \wedge) \to N(\mathcal{F} \int^\wedge \mathcal{F})$: the category of finite pointed sets under wedge and smash. This is, in some sense, the archetypal example.

What can we do for an arbitrary ∞-category? One might expect the category of commutative monoids to carry a symmetric bimonoidal structure, and this is sometimes true.
Constructing symmetric bimonoidal ∞-categories, continued

Given an ∞-category \mathcal{C}, we define a map of ∞-categories $p : \text{CMon}(\mathcal{C})^{\oplus, \otimes} \to \mathcal{N}(\mathcal{F} \int^\wedge \mathcal{F})$ as follows:

If $K \to \mathcal{N}(\mathcal{F} \int^\wedge \mathcal{F})$, there is a bijection, natural in K:

$$\text{Fun}_{\mathcal{N}}(\mathcal{F} \int^\wedge \mathcal{F})(K, \text{CMon}(\mathcal{C})^{\oplus, \otimes}) \cong \text{Fun}_{\text{Seg}}(K \times \mathcal{N}(\mathcal{F} \int^\wedge \mathcal{F}), \mathcal{C}).$$

The fiber of p over e is, by construction, equivalent to $\text{CMon}(\mathcal{C})$.

If p is cocartesian, then this construction gives a symmetric bimonoidal ∞-category, and we say that \mathcal{C} admits tensor products.

This can really only go wrong if the tensor product fails to be associative.
Constructing symmetric bimonoidal ∞-categories, continued

Given an ∞-category \(C \), we define a map of ∞-categories
\[
p : \text{CMon}(C)_{\oplus,\otimes} \to N(\mathcal{F} \int^\wedge \mathcal{F})
\]
as follows:

If \(K \to N(\mathcal{F} \int^\wedge \mathcal{F}) \), there is a bijection, natural in \(K \)

\[
\text{Fun}_{N(\mathcal{F} \int^\wedge \mathcal{F})}(K, \text{CMon}(C)_{\oplus,\otimes}) \cong \text{Fun}^{\text{Seg}}(K \times _{N(\mathcal{F} \int^\wedge \mathcal{F})} N(\mathcal{F}^\vee,^\wedge), C).
\]
Constructing symmetric bimonoidal ∞-categories, continued

Given an ∞-category \mathbf{C}, we define a map of ∞-categories $p : \text{CMon}(\mathbf{C})^{\oplus,\otimes} \to N(\mathcal{F} \int^\wedge \mathcal{F})$ as follows:

If $K \to N(\mathcal{F} \int^\wedge \mathcal{F})$, there is a bijection, natural in K

$$\text{Fun}_{N(\mathcal{F} \int^\wedge \mathcal{F})}(K, \text{CMon}(\mathbf{C})^{\oplus,\otimes}) \cong \text{Fun}^\text{Seg}(K \times_{N(\mathcal{F} \int^\wedge \mathcal{F})} N(\mathcal{F}^\vee,^\wedge), \mathbf{C}).$$

The fiber of p over e is, by construction, equivalent to $\text{CMon}(\mathbf{C})$.
Constructing symmetric bimonoidal ∞-categories, continued

Given an ∞-category \mathbf{C}, we define a map of ∞-categories $p : \text{CMon}(\mathbf{C})^{\oplus,\otimes} \to N(\mathcal{F}\int^\wedge\mathcal{F})$ as follows:

If $K \to N(\mathcal{F}\int^\wedge\mathcal{F})$, there is a bijection, natural in K

$$\text{Fun}_{N(\mathcal{F}\int^\wedge\mathcal{F})}(K, \text{CMon}(\mathbf{C})^{\oplus,\otimes}) \cong \text{Fun}^{\text{Seg}}(K \times_{N(\mathcal{F}\int^\wedge\mathcal{F})} N(\mathcal{F}^{\vee,\wedge}), \mathbf{C}).$$

The fiber of p over e is, by construction, equivalent to $\text{CMon}(\mathbf{C})$.

If p is cocartesian, then this construction gives a symmetric bimonoidal ∞-category, and we say that \mathbf{C} admits tensor products.
Constructing symmetric bimonoidal ∞-categories, continued

Given an ∞-category \mathbf{C}, we define a map of ∞-categories $p : \text{CMon}(\mathbf{C})^{\oplus,\otimes} \to N(\mathcal{F} \int^\wedge \mathcal{F})$ as follows:

If $K \to N(\mathcal{F} \int^\wedge \mathcal{F})$, there is a bijection, natural in K

$$\text{Fun}_{N(\mathcal{F} \int^\wedge \mathcal{F})}(K, \text{CMon}(\mathbf{C})^{\oplus,\otimes}) \cong \text{Fun}^{\text{Seg}}(K \times_{N(\mathcal{F} \int^\wedge \mathcal{F})} N(\mathcal{F}^{\vee,\vee}), \mathbf{C}).$$

The fiber of p over e is, by construction, equivalent to $\text{CMon}(\mathbf{C})$.

If p is cocartesian, then this construction gives a symmetric bimonoidal ∞-category, and we say that \mathbf{C} admits tensor products.

This can really only go wrong if the tensor product fails to be associative.
Constructing symmetric bimonoidal ∞-categories, continued, continued

One can obtain some nice sufficient conditions for \mathcal{C} to admit tensor products.

Proposition

Suppose that \mathcal{C} has internal homs (in the cartesian sense). Then \mathcal{C} admits tensor products.

Examples include Top and Cat_∞. These hypotheses fail for Sp, and even Top^\ast.
Constructing symmetric bimonoidal ∞-categories, continued, continued

One can obtain some nice sufficient conditions for \mathbf{C} to admit tensor products.

Proposition

Suppose that \mathbf{C} has internal homs (in the cartesian sense).
One can obtain some nice sufficient conditions for \mathbf{C} to admit tensor products.

Proposition

Suppose that \mathbf{C} has internal homs (in the cartesian sense). Then \mathbf{C} admits tensor products.
Constructing symmetric bimonoidal ∞-categories, continued, continued

One can obtain some nice sufficient conditions for \mathbf{C} to admit tensor products.

Proposition

Suppose that \mathbf{C} has internal homs (in the cartesian sense). Then \mathbf{C} admits tensor products.

Examples include \mathbf{Top} and \mathbf{Cat}_∞.
Constructing symmetric bimonoidal ∞-categories, continued, continued

One can obtain some nice sufficient conditions for \mathbf{C} to admit tensor products.

Proposition
Suppose that \mathbf{C} has internal homs (in the cartesian sense). Then \mathbf{C} admits tensor products.

Examples include \textbf{Top} and \textbf{Cat}_∞.

These hypotheses fail for \textbf{Sp},
Constructing symmetric bimonoidal ∞-categories, continued, continued

One can obtain some nice sufficient conditions for C to admit tensor products.

Proposition
Suppose that C has internal homs (in the cartesian sense). Then C admits tensor products.

Examples include Top and Cat_{∞}.

These hypotheses fail for Sp, and even Top_\ast.
The symmetric bimonoidal ∞-category of spectra

The symmetric bimonoidal ∞-category $\text{CMon}(\text{Top})^{\oplus, \otimes}$ is classified by a map

$$N(\mathcal{F} \int^\wedge \mathcal{F}) \to \text{Cat}_\infty$$
The symmetric bimonoidal ∞-category of spectra

The symmetric bimonoidal ∞-category $\text{CMon}(\text{Top})^{\oplus,\otimes}$ is classified by a map

$$N(\mathcal{F} \int^\wedge \mathcal{F}) \to \text{Cat}_\infty \xrightarrow{\text{Stab}} \text{Cat}_\infty$$

We’d like to obtain Sp as a symmetric bimonoidal ∞-category by postcomposition with some kind of ‘stabilization’ endofunctor.
The symmetric bimonoidal ∞-category of spectra

The symmetric bimonoidal ∞-category \(\text{CMon}(\text{Top})^{\oplus,\otimes} \) is classified by a map

\[
N(\mathcal{F} \int^\wedge \mathcal{F}) \to \text{Cat}_\infty \xrightarrow{\text{Stab}} \text{Cat}_\infty
\]

We’d like to obtain \(\text{Sp} \) as a symmetric bimonoidal ∞-category by postcomposition with some kind of ‘stabilization’ endofunctor.

Things don’t work quite this way, but happily we can apply Lurie’s stabilization of ∞-operads.
The symmetric bimonoidal ∞-category of spectra

The symmetric bimonoidal ∞-category $\text{CMon}(\text{Top})^\oplus,\otimes$ is classified by a map

$$N(\mathcal{F} \int^{\wedge} \mathcal{F}) \to \text{Cat}_{\infty} \xrightarrow{\text{Stab}} \text{Cat}_{\infty}$$

We’d like to obtain Sp as a symmetric bimonoidal ∞-category by postcomposition with some kind of ‘stabilization’ endofunctor.

Things don’t work quite this way, but happily we can apply Lurie’s stabilization of ∞-operads.

This gives $\text{Sp}^{\vee,\wedge}$ and a symmetric bimonoidal map

$$\Omega^\infty : \text{Sp}^{\vee,\wedge} \to \text{CMon}(\text{Top})^\oplus,\otimes.$$
An application to symmetric monoidal K-theory

Suppose \mathbf{C} and \mathbf{D} are ∞-categories which admit tensor products.

This recovers the delooping of the K-theory of a symmetric bimonoidal category to an E_∞ ring spectrum.
An application to symmetric monoidal K-theory

Suppose \mathbf{C} and \mathbf{D} are ∞-categories which admit tensor products. Then any functor $F : \mathbf{C} \to \mathbf{D}$ induces a functor $\text{BiMon}(\mathbf{C}) \to \text{BiMon}(\mathbf{D})$. This recovers the delooping of the K-theory of a symmetric bimonoidal category to an E_∞ ring spectrum.
An application to symmetric monoidal K-theory

Suppose \mathbf{C} and \mathbf{D} are ∞-categories which admit tensor products. Then any functor $F : \mathbf{C} \rightarrow \mathbf{D}$ induces a functor $\text{BiMon}(\mathbf{C}) \rightarrow \text{BiMon}(\mathbf{D})$.

In particular, we have functors

$$\text{BiMon}(\text{Cat})$$

This recovers the delooping of the K-theory of a symmetric bimonoidal category to an E_∞ ring spectrum.
Suppose \mathbf{C} and \mathbf{D} are ∞-categories which admit tensor products. Then any functor $F : \mathbf{C} \to \mathbf{D}$ induces a functor $\operatorname{BiMon}(\mathbf{C}) \to \operatorname{BiMon}(\mathbf{D})$.

In particular, we have functors

$$\operatorname{BiMon}(\mathbf{Cat}) \xrightarrow{N} \operatorname{BiMon}(\mathbf{Cat}_\infty)$$
An application to symmetric monoidal K-theory

Suppose \mathbf{C} and \mathbf{D} are ∞-categories which admit tensor products. Then any functor $F : \mathbf{C} \to \mathbf{D}$ induces a functor $\text{BiMon}(\mathbf{C}) \to \text{BiMon}(\mathbf{D})$.

In particular, we have functors

$$\text{BiMon}(\text{Cat}) \xrightarrow{\mathbb{N}} \text{BiMon}(\text{Cat}_\infty) \xrightarrow{\iota} \text{BiMon}(\text{Top})$$
An application to symmetric monoidal K-theory

Suppose \mathbf{C} and \mathbf{D} are ∞-categories which admit tensor products. Then any functor $F : \mathbf{C} \rightarrow \mathbf{D}$ induces a functor $\text{BiMon}(\mathbf{C}) \rightarrow \text{BiMon}(\mathbf{D})$.

In particular, we have functors

$$\text{BiMon}(\mathbf{Cat}) \xrightarrow{N} \text{BiMon}(\mathbf{Cat}_\infty) \xhookrightarrow{\iota} \text{BiMon}(\mathbf{Top}) \xleftarrow{\Omega^\infty} \text{CRing}.$$
An application to symmetric monoidal K-theory

Suppose \(\mathbf{C} \) and \(\mathbf{D} \) are \(\infty \)-categories which admit tensor products. Then any functor \(F : \mathbf{C} \to \mathbf{D} \) induces a functor \(\text{BiMon}(\mathbf{C}) \to \text{BiMon}(\mathbf{D}) \).

In particular, we have functors

\[
\text{BiMon}(\text{Cat}) \xrightarrow{N} \text{BiMon}(\text{Cat}_\infty) \xrightarrow{\iota} \text{BiMon}(\text{Top}) \xleftarrow{\Omega^\infty} \text{CRing}.
\]

This recovers the delooping of the K-theory of a symmetric bimonoidal category to an \(E_\infty \) ring spectrum.