R I C H A R D    T A Y L O R



Here are some recent papers. They are available either as dvi or as pdf files. They may be slightly different from the published versions, e.g. they may not include corrections made to the proofs.


On the Rigid Cohomology of Certain Shimura Varieties.
M.Harris, K.-W.Lan, R.Taylor and J.Thorne
preprint.
pdf
Automorphy and irreducibility of some l-adic representations.
S.Patrikis and R.Taylor
preprint.
pdf
Local-global compatibility for l=p. I
T.Barnet-Lamb, T.Gee, D.Geraghty and R.Taylor
Ann. de Math. de Toulouse 21 (2012), 57-92.
pdf
Local-global compatibility for l=p. II
T.Barnet-Lamb, T.Gee, D.Geraghty and R.Taylor
to appear Ann. Sci. de l'ENS.
pdf
Adequate subgroups.
R.Guralnick, F.Herzig, R.Taylor and J.Thorne
(appendix to `On the automorphy of l-adic Galois representations with small residual image' by J.Thorne), J. Inst. Math. Jussieu 11 (2012), 907-920.
pdf
Potential automorphy and change of weight.
T.Barnet-Lamb, T.Gee, D.Geraghty and R.Taylor
to appear, Annals of Math.
pdf
The image of complex conjugation in l-adic representations associated to automorphic forms.
R.Taylor
Algebra and Number Theory 6 (2012), 405-435.
pdf
A family of Calabi-Yau varieties and potential automorphy II.
T.Barnet-Lamb, D.Geraghty, M.Harris and R.Taylor
P.R.I.M.S. 47 (2011), 29-98.
pdf
Reciprocity laws and density theorems. (Review article.)
R.Taylor
preprint.
pdf
Automorphy for some l-adic lifts of automorphic mod l representations. II
R.Taylor
Pub. Math. IHES 108 (2008), 183-239.
pdf
A family of Calabi-Yau varieties and potential automorphy.
M.Harris, N.Shepherd-Barron and R.Taylor
Annals of Math. 171 (2010), 779-813.
pdf
Automorphy for some l-adic lifts of automorphic mod l representations.
L.Clozel, M.Harris and R.Taylor
Pub. Math. IHES 108 (2008), 1-181.
pdf
Compatibility of local and global Langlands correspondences.
R.Taylor and T.Yoshida
J.A.M.S. 20 (2007), 467-493.
pdf
Galois representations. (Review article.)
R.Taylor
Proceedings of ICM 2002, volume I, 449-474.
pdf
Galois representations. (Long version of above review article.)
R.Taylor
Annales de la Faculte des Sciences de Toulouse 13 (2004), 73-119.
pdf
Galois representations.
R.Taylor
slides for talk at ICM 2002.
pdf
On the meromorphic continuation of degree two L-functions.
R.Taylor
Documenta Mathematica, Extra Volume: John Coates' Sixtieth Birthday (2006), 729-779.
pdf
Remarks on a conjecture of Fontaine and Mazur.
R.Taylor
Journal of the Institute of Mathematics of Jussieu 1 (2002), 1-19.
pdf
On icosahedral Artin representations. II
R.Taylor
American Journal of Mathematics 125 (2003), 549-566.
pdf
On the modularity of elliptic curves over Q.
C.Breuil, B.Conrad, F.Diamond and R.Taylor
J.A.M.S. 14 (2001), 843-939.
pdf
On icosahedral Artin representations.
K.Buzzard, M.Dickinson, N.Shepherd-Barron and R.Taylor
Duke Math. J. 109 (2001), 283-318.
pdf
The geometry and cohomology of some simple Shimura varieties.
M.Harris and R.Taylor
Annals of Math. Studies 151, PUP 2001.
Modularity of certain potentially Barsotti-Tate Galois representations.
B.Conrad, F.Diamond and R.Taylor
J.A.M.S. 12 (1999) 521-567.
pdf
Companion forms and weight one forms.
K.Buzzard and R.Taylor
Annals of Mathematics 149 (1999), 905-919.
pdf
Icosahedral Galois representations
R.Taylor
Pacific Journal of Math., Olga Taussky-Todd memorial issue (1997) 337-347
pdf
Mod 2 and mod 5 icosahedral representations.
N.Shepherd-Barron and R.Taylor
J.A.M.S. 10 (1997) 283-298.
pdf
Ring theoretic properties of certain Hecke algebras.
R.Taylor and A.Wiles
Annals of Math. 141 (1995) 553-572.
pdf
On congruences between modular forms.
R.Taylor
PhD. thesis, Princeton University 1988.
pdf


Picture of me Richard Taylor
rtaylor[@]math[dot]ias[dot]edu

CV as of December 2012

(Former) Students
Institute for Advanced Study,
Einstein Drive,
Princeton, NJ 08540,
U.S.A.
tel. 609-734-8189

Editor of:

Algebra and Number Theory
Annals of Mathematics
Duke Mathematical Journal
Forum of Mathematics Π and Σ
Some of this material is based upon work partially supported by the National Science Foundation
under Grant Numbers 9702885, 0100090, 0600716 and 1062759. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.