Discreteness of Asymptotic Tensor Ranks

Briët, Christandl, Leigh, Shpilka and Zuiddam

ITCS 2024

• We prove a new result about tensor parameters that are amortized or regularized over large tensor powers, often called "osymptotic" tensor parameters • We prove a new result about tensor parameters that are amortized or regularized over large tensor powers, often called "asymptotic" tensor parameters

• These are of the form
$$\mp(T) = \lim_{n \to \infty} F(T)^{n}$$

· We prove a new result about tensor parameters that are amortized or regularized over large tensor powers, often called "osymptotic" tensor parameters

• These are of the form
$$\mp(T) = \lim_{n \to \infty} F(T)^n$$

• Play central role in algebraic complexity theory (fast matrix multiplication), quantum information (entanglement cost and distillation) and combinatorics (cap sets, sunflower-free sets).

. Unlike matrix rank (say), asymptotic tensor parameters may attain non-integer values

- . Unlike matrix rank (say), asymptotic tensor parameters may attain non-integer values
- Raises the question (for a given F): What values can F(T) take when varying T over all tensors (of fixed order) ?
 Are there gaps? accumulation points? Is it discrete?
 gap

- . Unlike matrix rank (say), asymptotic tensor parameters may attain non-integer values
- Raises the question (for a given F): What values can F(T) take when varying T over all tensors (of fixed order)?
 Are there gaps? accumulation points? Is it discrete?
 gap
 Our result: We prove for several parameters and regimes that
- the set of possible values is discrete.

- 1. Asymptotic ranks, applications and context
- 2. Discreteness theorem
- 3. Proof ingredients
- u. General result

1. Asymptotic ranks and applications

Warm-up: Matrix rank

1. Asymptotic ranks and applications

Warm-up: Matrix rank

(1) decomposition into rank-1 matrices

$$M = \sum_{i=1}^{r} u_i \otimes V_i$$

1. Asymptotic ranks and applications

Warm-up: Matrix rank

(1) decomposition into rank-1 matrices

$$M = \sum_{i=1}^{r} u_i \otimes v_i$$

(2) Gaussian elimination into diagonal

Asymptotic ranks

"Rank"
$$\longrightarrow$$
 "Asymptotic rank"
 $F \qquad \qquad F(T) = \lim_{n \to \infty} F(T)^{n}$

Asymptotic	ranks		
" R	lank"~~> F	"Asymptotic rank" $F(T) = \lim_{n \to \infty} F(T)$	on) ^{1/r}
Tensor rank	R.	Asymptotie tensor rank	R ~
Subrank	Q	Asymptotic subrank	Q
Slice rank	SR	Asymptotic slice rank	SR.

Applications and context Asymptotic tensor rank R Applications and context <u>Asymptotic tensor rank</u> \mathcal{R} Characterizes matrix multiplication complexity: $\mathcal{R}(MaMu_2) = 2^{\omega}$ [Strassen] Applications and context Asymptotic tensor rank R Characterizes matrix multiplication complexity: $R(MaMu_2) = 2^{W}$ [Strassen] <u>Central problems</u>: (1) Determine whether W = 2 or W > 2? $R(MaMu_2) = 4$ or >4? Applications and context Asymptotic tensor rank R Characterizes matrix multiplication complexity: $R(MaMu_2) = 2^{W}$ [Strassen] <u>Central problems</u>: (1) Determine whether W = 2 or W > 2? $R(MaMu_2) = 4$ or >4? (2) Is there any tensor $T \in \mathbb{F}^n \otimes \mathbb{F}^n \otimes \mathbb{F}^n$ with R(T) > n?

Applications and context "matrix mult. exponent" Asymptotic tensor rank R Characterizes matrix multiplication complexity: $\Re(MaMu_2) = 2^{W}$ [Strassen] Central problems: (1) Determine whether W = 2 or W > 2? $\mathbb{R}(MaMu_2) = 4$ or > 4? (2) Is there any tensor $T \in \mathbb{F}^n \otimes \mathbb{F}^n \otimes \mathbb{F}^n$ with $\mathbb{R}(T) > n$? (3) What is the structure (geometric, topological, algebraic,...) of $\int \mathcal{R}(T) : T \in \mathcal{F}^{n_{2}} \otimes \mathcal{F}^{n_{3}}, n \in \mathbb{N} \mathcal{F}^{2}$

Applications and context "matrix mult. exponent" Asymptotic tensor rank R Characterizes matrix multiplication complexity: $\Re(MaMu_2) = 2^{W}$ [Strassen] <u>Central problems</u>: (1) Determine whether W = 2 or W > 2? $\mathbb{R}(MaMu_2) = 4$ or > 4? (2) Is there any tensor $T \in \mathbb{F}^n \otimes \mathbb{F}^n \otimes \mathbb{F}^n$ with $\mathbb{R}(T) > n$? (3) What is the structure (geometric, topological, algebraic,...) of $\frac{1}{2} \frac{1}{2} (T) : T \in F'' \otimes F''^{2} \otimes F''^{3}, n \in \mathbb{N}$ What can we prove about (3) without resolving (1) or (2)?

Applications and context "matrix mult. exponent" Asymptotic tensor rank R Characterizes matrix multiplication complexity: $\Re(MaMu_2) = 2^{W}$ [Strassen] Central problems: (1) Determine whether W = 2 or W > 2? $\mathbb{R}(MaMu_2) = 4$ or > 4? (2) Is there any tensor $T \in \mathbb{F} \otimes \mathbb{F} \otimes \mathbb{F}$ with $\mathbb{R}(T) > n$? (3) What is the structure (geometric, topological, algebraic, ...) of $\frac{1}{2} \frac{1}{N} (T) : T \in \mathcal{F}'' \otimes \mathcal{F}''^{2} \otimes \mathcal{F}''^{3}, n \in \mathbb{N} \frac{1}{2}$ What can we prove about (3) without resolving (1) or (2)? Known: Closed under applying any (univariate) polynomial with non-negative integer coefficients [Wigderson-Zuiddam 23]

Asymptotic subrank and asymptotic slice rank Q, SR Important tools:

- · combinatorics : slice rank method for capsets, sunflower-free sets [Tao]
- · barrier results for matrix multiplication [Alman-Williams, Christanal-Vrana-Z]

Asymptotic subrank and asymptotic slice rank Q, SR Important tools:

- · combinatorics : slice rank method for capsets, sunflower-free sets [Tao]
- · barrier results for matrix multiplication [Alman-Williams, Christanal-Vrana-Z]

Problem. What is the structure of

$$\{ Q(T) : T \in \mathbb{F}^{n_{0}} \otimes \mathbb{F}^{n_{2}} \otimes \mathbb{F}^{n_{3}}, n \in \mathbb{N} \} \}$$

$$\{\underbrace{SR}^{n}(T): T \in \mathbb{F}^{n_{0}} \otimes \mathbb{F}^{n_{2}} \otimes \mathbb{F}^{n_{3}}, n \in \mathbb{N} \} \}$$

Asymptotic subrank and asymptotic slice rank Q, SR Important tools:

- · combinatorics : slice ranke method for capsets, sunflower-free sets [Tao]
- · barrier results for matrix multiplication [Alman-Williams, Christanal-Vrana-Z]

<u>Problem</u> What is the structure of $\begin{cases} Q(T) : T \in \mathbb{F}^{n} \otimes \mathbb{F}^{n^{2}} \otimes \mathbb{F}^{n^{3}}, n \in \mathbb{N} \end{cases}$?

$$\{\underbrace{SR}^{n}(T): T \in \mathbb{F}^{n_{0}} \otimes \mathbb{F}^{n_{2}} \otimes \mathbb{F}^{n_{3}}, n \in \mathbb{N} \}^{2}$$

Gives information on the power of the slice rank method. <u>Known</u>: Closed under polynomials, as before [Wigderson-Zuiddam 23]

- Countably many values over C [Blatter - Draisma - Rupniewski 22a]
- Well-ordered over finite fields (no accumulation points from above) [Blatter-Draisma-Rupriewski 226]

Theorem Over any finite set of coefficients
$$S \subseteq \mathbb{F}$$
, the set $\mathbb{Z}(T) : T \in S^{n_1} \otimes S^{n_2} \otimes S^{n_3}$, $n_1, n_2, n_3 \in \mathbb{N}$

is discrete.

Theorem Over any finite set of coefficients
$$S \subseteq \mathbb{T}$$
, the set
 $\int Q(T) : T \in S^{n_1} \otimes S^{n_2} \otimes S^{n_3}$, $n_1, n_2, n_3 \in \mathbb{N}$ }
is discrete

Remarks:

discrete = has no accumulation points
 any converging sequence must become constant
 values are "gapped".

Theorem Over any finite set of coefficients
$$S \subseteq \mathbb{F}$$
, the set $\int Q(T) : T \in S^{n_1} \otimes S^{n_2} \otimes S^{n_3}$, $n_1, n_2, n_3 \in \mathbb{N}$ }

Remarks:

discrete = has no accumulation points
any converging sequence must become constant
values are "gapped".
gap between nth and (n+1)th value at most O(1/1/n²).

Theorem Over any finite set of coefficients
$$S \subseteq \mathbb{F}$$
, the set $\int Q(T) : T \in S^{n_1} \otimes S^{n_2} \otimes S^{n_3}$, $n_1, n_2, n_3 \in \mathbb{N}$ }

Remarks:

discrete = has no accumulation points

any converging sequence must become constant
values are "gapped".

gap between nth and (n+1)th value at most O(1/1/n7).
similar result for other parameters and regimes (slice rank, tensor rank)

Theorem Over any finite set of coefficients
$$S \subseteq \mathbb{F}$$
, the set
 $\int Q(T) : T \in S^{n_1} \otimes S^{n_2} \otimes S^{n_3}$, $n_1, n_2, n_3 \in \mathbb{N}$ }
is discrete.
 $\int SR(T) : T \in \mathbb{C}^{n_1} \otimes \mathbb{C}^{n_2} \otimes \mathbb{C}^{n_3}$, $n_1, n_2, n_3 \in \mathbb{N}$ }
Remarks:
 $is discrete = has no accumulation points$
 $= any converging sequence must become constant$
 $= values are "gapped".$
 $gap between nth and (n+1)th value at most $O(\sqrt[1]{n_1})$.
 $similar result for other parameters and regimes (slice rank, tensor rank)$$

3. Proof ingredients

Lemma 1 (Big tensors) If
$$T \in \mathbb{F}^{n_1} \otimes \mathbb{F}^{n_2} \otimes \mathbb{F}^{n_3}$$
 is concise,
then $Q(T) \geqslant \min(n_1, n_2, n_3)^{1/3}$.

Lemma 2 (Thin tensors)

Lemma 1 (Big tensors) If
$$T \in \mathbb{F}^{n_1} \otimes \mathbb{F}^{n_2} \otimes \mathbb{F}^{n_3}$$
 is concise,
then $Q(T) \geqslant \min(n_1, n_2, n_3)^{1/3}$.

Lemma 2 (Thin tensors) if
$$T \in \mathbb{F}^{n_1} \otimes \mathbb{F}^n \otimes \mathbb{F}^c$$
 is concise

and $n, \geq N(c)$, then Q(T) = c.

Lemma (Big tensors) If
$$T \in \mathbb{F}^{n_1} \otimes \mathbb{F}^{n_2} \otimes \mathbb{F}^{n_3}$$
 is concise,
then $Q(T) \ge \min(n_1, n_2, n_3)^{1/3}$.

Lemma 2 (Thin tensors) if
$$T \in \mathbb{F}^{n_1} \otimes \mathbb{F}^n \otimes \mathbb{F}^c$$
 is concise
and $n, \geq N(c)$, then $Q(T) = c$.

Proof sketch of main result: Consider infinite sequence $Q(T_i)$ with $T_i \in \mathbb{F}^{a_i} \otimes \mathbb{F}^{b_i} \otimes \mathbb{F}^{c_i}$ concise. • If min(a_i, b_i, c_i) $\rightarrow \infty$, then $Q(T_i) \rightarrow \infty$ • If max_i $c_i = c$, then $a_i \rightarrow \infty$ so $Q(T_i)$ eventually constant \square Lemma 1 Proof ingredient

 $Q_i(T) = \max \{ \operatorname{rank}(A) : A \in A_i \}$

Lemma 1 Proof ingredient

$$Q_i(T) = \max \{ rank(A) : A \in A_i \}$$

Lemma For concise $T \in \mathbb{F}^{n_1} \otimes \mathbb{F}^{n_2} \otimes \mathbb{F}^{n_3}$, and any distinct i, j, $k \in [3]$, $Q_i(T) Q_j(T) \ge n_k$. Lemma 2 Proof ingredient

• minrank
$$(A_i) = \min \{ rank(A) : o \neq A \in A_i \}$$

- . relation between minrank and subrank
- · tensor power tricks

4. General result

Theorem We have discreteness when

finite S⊆∓

- asymptotic subrank
- asymptotic slice rank
- asymptotic tensor rank (simple proof)
- F = C for asymptotic slice rank (uses entanglement polytopes, quantum functionals)
- F arbitrary - asymptotic subrank and asymptotic slice rank for "tight" tensors
 - asymptotic slice rank for "oblique" tensors.

4. Arbitrary fields