Geometric Rank of Tensors

Jeroen Zuiddam (IAS)

Joint work with Swastik Kopparty and Guy Moshkovitz

Tensors are 3-d arrays

Matrix

Tensor

Tensors play a central role in computer science, mathematics and physics

Algebraic Complexity Theory:
Complexity of Matrix Multiplication

Quantum Information Theory:
Understanding Entanglement

Extremal Combinatorics:

Cap set problem

Motivated by these problems we introduce a new tensor parameter

Geometric Rank

Geometric Rank of tensors extends the classical rank of matrices

Matrix Rank

Geometric Rank

Slice Rank

Subrank
Analytic Rank
Tensor Rank
Border Rank

Main results on Geometric Rank

- basic properties and invariances
- develop tools to reason about, and sometimes exactly compute it
- intimate connections to the other important notions for tensors
- answer an old question of Strassen on the (Border) Subrank of matrix multiplication, the "dual" of the more famous Tensor Rank.

Geometric Rank provides new interesting route to upper bound

- Subrank of tensors
important in complexity theory for matrix multiplication and barriers
- Independence number of Hypergraphs
important in combinatorics in the context of specific natural hypergraphs, as in cap set problem and Erdős-Szemerédi sunflower problem

Geometric Rank

Geometric Rank

system of equations

$$
\begin{gathered}
\left(x_{1}, \ldots, x_{n}\right) M_{1}\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)=0 \\
\left(x_{1}, \ldots, x_{n}\right) M_{2}\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)=0 \\
\vdots \\
\left(x_{1}, \ldots, x_{n}\right) M_{n}\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)=0
\end{gathered}
$$

Geometric Rank

$$
\begin{aligned}
\left(x_{1}, \ldots, x_{n}\right) M_{1}\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right) & =0 \quad \operatorname{GR}(T)=2 n-\operatorname{dimension~of~} V(T) \\
\left(x_{1}, \ldots, x_{n}\right) M_{2}\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right) & \left.=0 \quad \begin{array}{l}
\\
\vdots \\
\left(x_{1}, \ldots, x_{n}\right) M_{n}\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)
\end{array}\right)=0
\end{aligned}
$$

Geometric Rank

$$
\begin{gathered}
\left(x_{1}, \ldots, x_{n}\right) M_{1}\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)=0 \quad \begin{array}{c}
\text { set of all } \\
\text { solutions }
\end{array} \\
\left(x_{1}, \ldots, x_{n}\right) M_{2}\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)=0 \\
\vdots \\
\left(x_{1}, \ldots, x_{n}\right) M_{n}\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)=0
\end{gathered}
$$

$\operatorname{GR}(T)=2 n-$ dimension of set of solutions $V(T)$

Dimension measures continuous degrees of freedom

"length of maximal chain of irreducible subvarieties"
Computational intuition:

- If V is a linear space then the dimension equals the one from linear algebra
- If $V=\cup_{i} W_{i}$ then $\operatorname{dim} V=\max _{i} \operatorname{dim} W_{i}$
- If $V \subseteq W$ then $\operatorname{dim} V \leq \operatorname{dim} W$

Example of Geometric Rank (W-tensor)

Geometric Rank takes values between 0 and n because the system is bilinear

$$
\begin{aligned}
&\left(x_{1}, \ldots, x_{n}\right) M_{1}\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)=0 \begin{array}{l}
\text { Always: } \\
\left\{x_{1}=\cdots=x_{n}=0\right\} \subseteq V(T) \\
n \leq \operatorname{dim} V(T)
\end{array} \\
&\left(x_{1}, \ldots, x_{n}\right) M_{2}\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)=0 \\
& \vdots \\
&\left(x_{1}, \ldots, x_{n}\right) M_{n}\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)=0
\end{aligned}
$$

Computing Geometric Rank is easy in practice for small tensors

system of equations:
dimension:

$$
\begin{aligned}
& x_{2} y_{1}+x_{1} y_{2}=0 \\
& x_{1} y_{1}=0
\end{aligned}
$$

2

Macaulay2

```
R = CC[x1, x2,y1,y2];
dim ideal(x1*y1, x2*y1 + x1*y2)
```

Sage
A. $\langle x 1, x 2, y 1, y 2>=\operatorname{AffineSpace}(4, C C)$; Ideal ([x1*y1, $x 2 * y 1+x 1 * y 2]) . d i m e n s i o n()$

Computing dimension of variety that is:
linear: easy
bilinear: not known to be easy or hard (at least we are not aware) general: hard

Koiran:
NP-hard \leq dimension of general variety \leq PSPACE

The outline of this talk:
I. Tensors and Applications
II. Fundamental Properties of Geometric rank
III. As upper bound on Subrank
I. Tensors and Applications

Guassian elimination

1	-2			
0	1	\cdot	1	2
:---	:---			
2	1	\cdot	1	$2 / 3$
:---	:---			
0	$-2 / 3$	$=$	1	0
:---	:---			
0	1			

"Guassian order" on matrices

Example:

1	2			
2	1	\geq	1	0
:---	:---			
0	1			

Matrix Rank completely determines the Gaussian order

if and only if
$\operatorname{rank}(M) \geq \operatorname{rank}(N)$

Recall once more:

 column operations

not necess. invertible row operations

Gaussian order on Tensors generalizes the one on matrices

not necess. invertible slice operations in any of the three directions

Examples of slice operations:

Gaussian order in Mathematics, Physics and Computer Science

Matrix Rank completely determines the Gaussian order on matrices

$$
M \geq \begin{aligned}
& N
\end{aligned} \quad \Leftrightarrow \quad \mathrm{R}(M) \geq \mathrm{R}(N)
$$

For tensors that level of complete understanding is out of reach

(NP-hard problem)

Our aim is to find monotones for the Gaussian order:

Monotones serve as obstructions:

II. Fundamental Properties of Geometric Rank

Theorem 1
(Geometric Rank is monotone under the Gaussian order on tensors)

Theorem 2
("Fundamental Theorem of Multilinear Algebra", by analogy)

$$
\begin{aligned}
& \text { GR(T) }=\operatorname{codim}\left\{(u, v): \forall i u^{\top} M_{i} v=0\right\} \\
& =\operatorname{codim}\left\{(u, v): \forall i u^{\top} N_{i} v=0\right\} \\
& =\operatorname{codim}\left\{(u, v): \forall i u^{\top} L_{i} v=0\right\}
\end{aligned}
$$

Theorem 1 (Monotonicity) $T \geq T^{\prime} \Rightarrow \mathrm{GR}(T) \geq \mathrm{GR}\left(T^{\prime}\right)$

Proof:

By Fundamental Theorem we may focus on the first step.

Focus on one step:

$$
\begin{aligned}
& V(T)=\left\{(u, v): \forall i u^{\top} M_{i} v=0\right\} \\
& V\left(T^{\prime}\right)=\left\{(u, v): \forall i u^{\top} M_{i}^{\prime} v=0\right\}
\end{aligned}
$$

- By assumption: $M_{i}{ }^{\prime}$ are in the span of the M_{i}
- $V(T) \subseteq V\left(T^{\prime}\right)$
- $\operatorname{dim} V(T) \leq \operatorname{dim} V\left(T^{\prime}\right)$.
- $\mathrm{GR}(T)=\operatorname{codim} V(T) \geq \operatorname{codim} V\left(T^{\prime}\right)=\mathrm{GR}\left(T^{\prime}\right)$.

Fundamental Theorem follows from:

Theorem 3
(Method for computing Geometric Rank)

$T(u):=u_{1} M_{1}+\cdots+u_{n} M_{n}$
$\operatorname{GR}(T)=\min _{j} \operatorname{codim}\{u: \operatorname{rank} T(u)=j\}+j$

Proof: relies on a fiber dimension theorem applied to the projection $(u, v) \longmapsto u$

Summarizing

Theorem 1
$S \geq T \quad \Rightarrow \quad \mathrm{GR}(S) \geq \mathrm{GR}(T)$

Theorem 2

Theorem 3

$$
T(u):=u_{1} M_{1}+\cdots+u_{n} M_{n}
$$

$$
\operatorname{GR}(T)=\min _{j} \operatorname{codim}\{u: \operatorname{rank} T(u)=j\}+j
$$

III. As upper bound on Subrank

The Subrank of T is the size of the largest diagonal tensor smaller than T

Strassen 1987

Subrank of tensors

Complexity theory
matrix multiplication and barriers

Combinatorics
Hypergraph independence number, cap set problem, and Erdős-Szemerédi sunflower problem

Quantum Information
distilling GHZ states by SLOCC

Subrank upper bounds hypergraph independence number

Hypergraph: symmetric subset $E \subseteq V \times V \times V$
Independent set: $A \subseteq V$ such that $E \cap(A \times A \times A)=\emptyset$
Tensor T supported on $E \cup\{(i, i, i): i \in V\}$.

Upper bounds on Subrank

Slice Rank
Analytic Rank
Geometric Rank

Slice Rank is the smallest number of slice rank one tensors summing to T

Tao

Slice rank one tensor has slices that are multiples of one slice
 multiples

Slice Rank upper bounds Subrank

$$
\begin{aligned}
& \text { Proof: Monotone } \quad(T \geq S \Rightarrow \mathrm{SR}(T) \geq \mathrm{SR}(S)) \\
& + \text { Normalized }\left(\operatorname{SR}\left(I_{n}\right)=n\right)
\end{aligned}
$$

Analytic Rank for tensors over finite fields \mathbb{F}_{p} (say \mathbb{F}_{2})

Gowers and Wolf

$$
T(u):=u_{1} M_{1}+\cdots+u_{n} M_{n}
$$

$$
\begin{aligned}
& \operatorname{bias}(T):=\mathbb{E}_{u, v, w}\left[(-1)^{v^{\top} T(u) w}\right] \in(0, \infty) \\
& \operatorname{AR}(T):=-\log _{2} \operatorname{bias}(T)
\end{aligned}
$$

Analytic Rank upper bounds Subrank

Proof: Monotone + Normalized

Geometric Rank "extends" Analytic Rank to characteristic 0

Theorem
$\liminf _{p \rightarrow \infty} \operatorname{AR}(T \bmod p)=\operatorname{GR}(T)$

Proof ingredients:

- $\operatorname{AR}(T \bmod p)=2 n-\log _{p}\left|V(T \bmod p)\left(\mathbb{F}_{p}\right)\right|$
- Generalized Schwartz-Zippel lemma (Dvir-Kollár-Lovett)
- Lang-Weil Theorem
$\left|V\left(\mathbb{F}_{p}\right)\right| \rightsquigarrow \operatorname{dim} V$
- Bertini-Noether Theorem: $V(T) w v(T \bmod p)$

Geometric rank upper bounds Subrank and is at most Slice Rank

Proof: Monotone + Normalized

Example (matrix multiplication)

Matrix multiplication tensor

As quantum state: triangle of level-n EPR pairs

Example (matrix multiplication)

Previously (Christandl, Lucia, Vrana and Werner)

$$
\mathrm{Q}(T) \leq n^{2}-n+1
$$

EPR pairs

GHZ

Example (matrix multiplication)

Proof uses Theorem 3:
$\operatorname{dim} V(T)=\max _{r} \operatorname{dim}\left\{M \in \mathbb{F}^{n \times n}: \operatorname{rank} M=r\right\}+(n-r) n$

Question 1
Computational complexity of GR?
(SR is NP-hard.)

Question 2
How much smaller than SR can GR be?
(Big open problem for SR and AR.)

Question 3

Is $\operatorname{GR}(T)$ the limit of analytic ranks?

