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Matrix Tensor

=

Tensors are 3-d arrays



Complexity of Matrix Multiplication

Understanding Entanglement

Cap set problem

Tensors play a central role in computer science, mathematics and physics

Algebraic Complexity Theory:

Quantum Information Theory:

Extremal Combinatorics:



Geometric Rank

Motivated by these problems we introduce a new tensor parameter



Geometric Rank of tensors extends the classical rank of matrices

Matrix Rank Geometric Rank

Slice Rank

Subrank

Analytic Rank

Tensor Rank

Border Rank



• basic properties and invariances

• develop tools to reason about, and sometimes exactly compute it

• intimate connections to the other important notions for tensors

• answer an old question of Strassen on the (Border) Subrank of
matrix multiplication, the “dual” of the more famous Tensor Rank.

Main results on Geometric Rank



Geometric Rank provides new interesting route to upper bound 

important in complexity theory for matrix multiplication and barriers

important in combinatorics in the context of specific natural hypergraphs,

as in cap set problem and Erdős–Szemerédi sunflower problem

• Subrank of tensors

• Independence number of Hypergraphs



=

Geometric Rank
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Geometric Rank
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Geometric Rank
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Dimension measures continuous degrees of freedom

• If 𝑉 is a linear space then the dimension equals the one from linear algebra

• If 𝑉 = ∪$ 𝑊$ then dim𝑉 = max$ dim𝑊$

Computational intuition:

dim 0
dim 2

dim 1

• If 𝑉 ⊆ 𝑊 then dim𝑉 ≤ dim𝑊

“length of maximal chain of irreducible subvarieties”
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Example of Geometric Rank (W-tensor)

𝑀!

𝑀"𝑇
𝑥!, 𝑥" 𝑀!

𝑦!
𝑦"

=
⇝

𝑥!, 𝑥" 𝑀"
𝑦!
𝑦"

= 𝑥"𝑦! + 𝑥!𝑦" = 0

GR(𝑇) = 4 − dim𝑉(𝑇) = 4 − 2 = 2

𝑥!𝑦! = 0

𝑉(𝑇) = {𝑥!𝑦! = 0, 𝑥"𝑦! + 𝑥!𝑦" = 0}

= {𝑥! = 0, 𝑥" = 0} ∪ {𝑥! = 0, 𝑦! = 0}∪ {𝑦! = 0, 𝑦" = 0}



Geometric Rank takes values between 0 and 𝑛 because the system is bilinear

GR 𝑇 = 2𝑛 − dim𝑉 𝑇 ≤ 𝑛

𝑥!, … , 𝑥# 𝑀!

𝑦!
⋮
𝑦#

= 0

⋯
𝑥!, … , 𝑥# 𝑀"
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⋮
𝑦#

= 0

𝑥!, … , 𝑥# 𝑀#

𝑦!
⋮
𝑦#

= 0

{𝑥! = ⋯ = 𝑥# = 0} ⊆ 𝑉 𝑇
𝑛 ≤ dim𝑉 𝑇

Always:



Macaulay2 Sage

Computing Geometric Rank is easy in practice for small tensors

𝑥!𝑦! = 0
𝑥"𝑦! + 𝑥!𝑦" = 0

system of equations:

⇝

dimension:

2⇝
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01

0
00
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NP-hard ≤ dimension of general variety  ≤ PSPACE
Koiran:

general: hard

Computing dimension of variety that is:

Computational complexity of Geometric Rank is not known

bilinear: not known to be easy or hard

linear: easy

(at least we are not aware)



The outline of this talk:

Tensors and Applications

Fundamental Properties of Geometric rank

As upper bound on Subrank

I.

II.

III.



I. Tensors and Applications



Guassian elimination
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≥

“Guassian order” on matrices

1 0
10

1 2
12

≥ GG

any matrix

any matrix

Example:

𝑀 𝑀



≥𝑀 𝑁 if and only if rank 𝑀 ≥ rank(𝑁)

Matrix Rank completely determines the Gaussian order



not necess. invertible
column operations

not necess. invertible
row operations

≥

Recall once more:

𝑀 𝑀



≥𝑇 𝑇
not necess. invertible
slice operations in any of
the three directions

𝑇 = = =

Gaussian order on Tensors generalizes the one on matrices



Examples of slice operations:

1 0
000 1

01

1 1
01≥ 0 1

01

≥

≥



≥𝑆 𝑇

Gaussian order in Mathematics, Physics and Computer Science

Complexity of Matrix Multiplication

Classifying Quantum Entanglement

Hypergraph Independence Number

≥ matrix multiplication
tensor

diagonal
tensor

SLOCC
≥3-partite

pure state
3-partite
pure state

diagonal
tensor

≥tensor supported
on hypergraph



≥𝑀 𝑁 ⟺ R 𝑀 ≥ R(𝑁)

Matrix Rank completely determines the Gaussian order on matrices

≥𝑆 𝑇 ?⟺

For tensors that level of complete understanding is out of reach

(NP-hard problem)



Our aim is to find monotones for the Gaussian order:

≥𝑆 𝑇 ⟹ 𝐹 𝑆 ≥ 𝐹(𝑇)

⟸ 𝐹 𝑆 < 𝐹(𝑇)≱𝑆 𝑇

Monotones serve as obstructions:



II. Fundamental Properties of Geometric Rank



Theorem 1

(Geometric Rank is monotone under the Gaussian order on tensors)

≥𝑆 𝑇 ⟹ GR 𝑆 ≥ GR(𝑇)



Theorem 2
(“Fundamental Theorem of Multilinear Algebra”, by analogy)

GR 𝑇 = codim { 𝑢, 𝑣 ∶ ∀𝑖 𝑢T𝑀$𝑣 = 0}

𝑇 = = =
𝑀$ 𝑁$ 𝐿$

= codim { 𝑢, 𝑣 ∶ ∀𝑖 𝑢T𝑁$𝑣 = 0}

= codim { 𝑢, 𝑣 ∶ ∀𝑖 𝑢T𝐿$𝑣 = 0}

(definition)



Theorem 1 (Monotonicity) 𝑇 ≥ 𝑇′ ⟹ GR 𝑇 ≥ GR(𝑇′)

Proof:

𝑇 =
𝑀$

𝑇′=

𝑀$′
≥

𝑁$ 𝑁$′

𝐿$ 𝐿$′

≥

≥

=

=
By Fundamental Theorem we may focus on the first step.



𝑉(𝑇) = { 𝑢, 𝑣 ∶ ∀𝑖 𝑢T𝑀$𝑣 = 0}
𝑉(𝑇′) = { 𝑢, 𝑣 ∶ ∀𝑖 𝑢T𝑀$′𝑣 = 0}

• 𝑉(𝑇) ⊆ 𝑉(𝑇%)

• dim𝑉(𝑇) ≤ dim𝑉(𝑇%).

• GR 𝑇 = codim𝑉(𝑇) ≥ codim𝑉(𝑇%) = GR(𝑇′).

𝑇 =
𝑀$

𝑇′=
𝑀$′

≥

Focus on one step:

∎

• By assumption: 𝑀$′ are in the span of the 𝑀$



Theorem 3
(Method for computing Geometric Rank)

GR 𝑇 = min
&
codim 𝑢 ∶ rank 𝑇 𝑢 = 𝑗 + 𝑗

𝑇 𝑢 ∶= 𝑢!𝑀! +⋯+ 𝑢#𝑀#

𝑇 =
𝑀$

Proof: relies on a fiber dimension theorem applied to the 
projection (𝑢, 𝑣) 𝑢⟼

Fundamental Theorem follows from:



Theorem 1 ≥𝑆 𝑇 ⟹ GR 𝑆 ≥ GR(𝑇)

Theorem 2 𝑇 = = =
𝑀$ 𝑁$ 𝐿$

Theorem 3
GR 𝑇 = min

&
codim 𝑢 ∶ rank 𝑇 𝑢 = 𝑗 + 𝑗

𝑇 𝑢 ∶= 𝑢!𝑀! +⋯+ 𝑢#𝑀#
𝑇 =

𝑀$

same notion of GR⇝

Summarizing



III. As upper bound on Subrank



≥

Strassen 1987

𝑇

The Subrank of 𝑇 is the size of the largest diagonal tensor smaller than 𝑇

𝐸""

𝐸!!

𝐸$$

𝑖

𝑖

1

0

⋯

𝐸''

0

⋯

0 0 0
00

0 0 0
Q 𝑇 is the largest possible 𝑞



Complexity theory 
matrix multiplication and barriers

Combinatorics
Hypergraph independence number, cap set problem, 
and Erdős–Szemerédi sunflower problem

Subrank of tensors

Quantum Information
distilling GHZ states by SLOCC



Subrank upper bounds hypergraph independence number

Hypergraph: symmetric subset 𝐸 ⊆ 𝑉×𝑉×𝑉

Independent set: 𝐴 ⊆ 𝑉 such that 𝐸 ∩ 𝐴×𝐴×𝐴 = ∅

Tensor 𝑇 supported on 𝐸 ∪ { 𝑖, 𝑖, 𝑖 ∶ 𝑖 ∈ 𝑉}.

𝑇 ≥ 𝐴

𝐴
𝐴

𝑉
𝑉

𝑉

Q 𝑇 ≥ |𝐴|



Geometric Rank

Slice Rank

Analytic Rank

Upper bounds on Subrank



Slice rank one tensor has slices that are multiples of one slice

Tao   

Slice Rank is the smallest number of slice rank one tensors summing to 𝑇

m
ult

ipl
es multiples

m
ultiples

or or



Proof: Monotone

(SR 𝐼# = 𝑛)

Slice Rank upper bounds Subrank

Q

SR

Tao

+ Normalized

(𝑇 ≥ 𝑆 ⇒ SR 𝑇 ≥ SR 𝑆 )

Application to cap set problem
(Gijswijt–Ellenberg)

≤



AR 𝑇 ∶= − log" bias(𝑇)

bias 𝑇 ∶= 𝔼(,*,+ −1 *T, ( + ∈ (0,∞)

Analytic Rank for tensors over finite fields 𝔽-

Gowers and Wolf

𝑇 𝑢 ∶= 𝑢!𝑀! +⋯+ 𝑢#𝑀#

𝑇 =
𝑀$

(say 𝔽")



Q

AR/AR(𝐼!)

Lovett

Analytic Rank upper bounds Subrank

Proof: Monotone + Normalized

Briët: application in combinatorics



liminf
-→/

AR 𝑇 mod 𝑝 = GR(𝑇)

Geometric Rank “extends” Analytic Rank to characteristic 0

• AR 𝑇 mod 𝑝 = 2𝑛 − log- |𝑉(𝑇 mod 𝑝)(𝔽-)|

• Bertini–Noether Theorem:

• Lang–Weil Theorem 
• Generalized Schwartz–Zippel lemma (Dvir–Kollár–Lovett )

𝑉(𝑇) ⇝ 𝑉(𝑇 mod 𝑝)

|𝑉 𝔽- | ↭ dim𝑉

Theorem

Proof ingredients:



Proof: Monotone

Geometric rank upper bounds Subrank

+ Normalized

Q

SR

GR

and is at most Slice Rank



Example (matrix multiplication)

Matrix multiplication tensor

As quantum state: triangle of level-𝑛 EPR pairs

𝑇 =𝑛!

𝑛!

𝑛!

𝐼 𝑖

𝑗

0
𝑀($,&) =

𝑀($,&)



Q 𝑇 ≤ 𝑛" − 𝑛 + 1

(Christandl, Lucia, Vrana and Werner)Previously

Example (matrix multiplication)

≥
SLOCC

𝑛

𝑛

𝑛

EPR pairs GHZ

Q 𝑇



Strassen 1987Q 𝑇 ≥ 2
3𝑛

"

Q 𝑇 ≥ 𝑛"45(!)

SR 𝑇 = 𝑛"

GR(𝑇) = 2
3𝑛

"
Q 𝑇 ≤ 𝑛" − 𝑛 + 1

dim𝑉(𝑇) = max
6
dim 𝑀 ∈ 𝔽#×# ∶ rank 𝑀 = 𝑟 + 𝑛 − 𝑟 𝑛

Improves:

Proof uses Theorem 3:

Strassen 1987

Example (matrix multiplication)



Q

SR

GR

Computational complexity of GR?

(SR is NP-hard.)

How much smaller than SR can GR be?

Is GR(𝑇) the limit of analytic ranks?

Question 1

Question 2

Question 3

(Big open problem for SR and AR.)


