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Matrix Tensor

=

Tensors are 3-dimensional arrays



Matrix Multiplication

Entanglement

Cap set problem, Sunflower problem

Tensors play a central role in Computer Science, Mathematics and Physics

• Algebraic complexity theory

• Quantum information theory

• Extremal combinatorics



Geometric Rank

Motivated by these problems we introduce a new tensor parameter

↦ nonnegative integer



Geometric Rank extends classical Matrix Rank

Matrix Rank Geometric Rank

Slice Rank

Subrank

Analytic Rank

Tensor Rank

[Gowers–Wolf, Lovett]

[Strassen]
[Tao]



Geometric Rank is the geometric counterpart to Analytic Rank

Geometric RankAnalytic Rank

1, −1, −1, 1, 1, 1, −1, 1, …



• Basic properties and invariances

• Develop tools to reason about, and sometimes exactly compute it

• Intimate connections to the other important notions of rank for tensors

• Answer a question of Strassen (1987) on the Subrank of matrix multiplication

Main results on Geometric Rank



Applications: Geometric Rank provides new interesting route to 

important in complexity theory in the context of fast matrix multiplication
and barriers

central in combinatorics in the context of the cap set problem and
Erdős–Szemerédi sunflower problem

• Prove upper bounds on Subrank of tensors

• (As a result) prove upper bounds on Independence Number of hypergraphs



I. Geometric Rank
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Dimension measures continuous degrees of freedom

dim 0
dim 2

dim 1

“length of maximal chain of irreducible subvarieties”



• Dimension of linear space equals the notion
• of dimension from linear algebra

• Dimension of a finite union equals the maximum
• of the dimensions

Computational intuition for dimension

dim 2

dim 2

• Dimension does not increase under taking subsets



0 1
01

0
00

1

Example

#$

#%
&$, &% #$

($
(%

=
⇝

&$, &% #%
($
(%

= &%($ + &$(% = 0

GR(/) = 4 − 2 = 2

&$($ = 0

Union of linear spaces of dimension 2:

{($ = 0, (% = 0} {&$ = 0, &% = 0}

{&$ = 0, ($ = 0}



Observation: Geometric Rank takes values between 0 and "
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Macaulay2 Sage

Computing Geometric Rank is easy in practice for small tensors
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system of equations:
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We do not know whether computing dimension of bilinear system is NP-hard.



Theorem 1

Slicing the tensor in a different direction gives the same notion
of Geometric Rank 

! = = =
#$ %$ &$

“Fundamental Theorem of Multilinear Algebra”



II. Main technical result: Monotonicity



Gaussian elimination
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“Gaussian order” on Matrices

=""

some matrix

some matrix

# $≥# $ if

by taking some linear combinations of the
rows and columns of # we obtain $

& '
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≥" # if and only if R " ≥ R(#)

Matrix Rank completely determines the Gaussian order



≥" #

Gaussian order on Tensors generalizes row and column operations

if " #=

some matrix

some matrix

some matrix

by taking some linear combinations of the
slices of " we obtain #



Gaussian order in Mathematics, Physics and Computer Science

• Complexity of Matrix Multiplication

• Classifying Quantum Entanglement

• 3-Uniform Hypergraph Independence Number

≥ matrix multiplication tensoridentity tensor

≥tensor tensor

identity tensor≥tensor fitting hypergraph



≥" # ⟺ R " ≥ R(#)

Matrix Rank completely determines the Gaussian order on matrices

≥( ) ?⟺

For tensors that level of complete understanding is out of reach

(NP-hard problem)



An important question is to find monotones for the Gaussian order on tensors:

≥" # ⟹ % " ≥ %(#)

⟸ % " < %(#)≱" #

Monotones give obstructions:



Theorem 2
Geometric Rank is monotone

≥" # ⟹ GR " ≥ GR(#)



III. Applications: Subrank and Independence number



≥"

Subrank Q(") of " is the size of the largest identity tensor smaller than "

• Naturally leads to Haemers bound for hypergraphs: 

Independence number
of hypergraph for which T fits

• Strassen (1987): central in theory of fast matrix multiplication

Subrank
Q(") ≥

1 1 1 1 1
11

1



Subrank
Q

Geometric Rank
GR ≥

Geometric Rank upper bounds Subrank

Proof:

• Monotonicity

• Geometric Rank of diagonal tensor equals its size



In fact, Geometric Rank upper bounds Border Subrank

Border Subrank
Q

Geometric Rank
GR ≥ Subrank

Q≥

approximative version of Subrank



How Geometric Rank connects to other Ranks

Subrank
Q

Slice Rank
SR ≥ ∗

Analytic Rank
AR

≤
Geometric Rank

GR
≥

Gowers–Wolf

Briët: Application in combinatorics

Tao: Cap set problem
≤

Lovett



GR # = liminf*→, AR # mod 0

Geometric Rank “extends” Analytic Rank to characteristic 0

• Generalized Schwartz–Zippel lemma

Theorem

Proof ingredients:

For any tensor # with integer coefficients:

• Bertini–Noether Theorem

[Bukh–Tsimerman, Dvir–Kollár–Lovett]

(relating 1*-dimension to ℂ-dimension)

• Lang–Weil Theorem (good bounds on # 1*-points for nice varieties in terms of dim)

(coarse bound on # 1*-points for all varieties)
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Application of Geometric Rank: Matrix multiplication tensors
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We compute the border subrank of matrix multiplication

Theorem

• Lower bound:  Strassen (1987)

• Upper bound:  Geometric Rank

Proof:



Matrix Rank Geometric Rank


