Geometric Rank of Tensors
 and Subrank of Matrix Multiplication

Swastik Kopparty (Rutgers)
Guy Moshkovitz (DIMACS, Rutgers and IAS)
Jeroen Zuiddam (IAS)

Tensors are 3-dimensional arrays

Tensor

Tensors play a central role in Computer Science, Mathematics and Physics

- Algebraic complexity theory

Matrix Multiplication

- Quantum information theory

Entanglement

- Extremal combinatorics

Cap set problem, Sunflower problem

Motivated by these problems we introduce a new tensor parameter

Geometric Rank

Geometric Rank extends classical Matrix Rank

Matrix Rank
Geometric Rank
Tensor Rank
Slice Rank [Tao]
Subrank [Strassen]
Analytic Rank [Gowers-Wolf, Lovett]

Geometric Rank is the geometric counterpart to Analytic Rank

$1,-1,-1,1,1,1,-1,1, \ldots$

Analytic Rank
Geometric Rank

Main results on Geometric Rank

- Basic properties and invariances
- Develop tools to reason about, and sometimes exactly compute it
- Intimate connections to the other important notions of rank for tensors
- Answer a question of Strassen (1987) on the Subrank of matrix multiplication

Applications: Geometric Rank provides new interesting route to

- Prove upper bounds on Subrank of tensors important in complexity theory in the context of fast matrix multiplication and barriers
- (As a result) prove upper bounds on Independence Number of hypergraphs central in combinatorics in the context of the cap set problem and Erdős-Szemerédi sunflower problem

I. Geometric Rank

Geometric Rank

$$
\begin{gathered}
\left(x_{1}, \ldots, x_{n}\right) M_{1}\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)=0 \quad \begin{array}{c}
\text { set of all } \\
\text { solutions }
\end{array} \\
\left(x_{1}, \ldots, x_{n}\right) M_{2}\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)=0 \\
\vdots \\
\left(x_{1}, \ldots, x_{n}\right) M_{n}\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)=0
\end{gathered}
$$

$\operatorname{GR}(T)=2 n-$ dimension of set of solutions $V(T)$

Dimension measures continuous degrees of freedom

"length of maximal chain of irreducible subvarieties"

Computational intuition for dimension

- Dimension of linear space equals the notion of dimension from linear algebra
$\operatorname{dim} 2$
- Dimension of a finite union equals the maximum of the dimensions

dim 2
- Dimension does not increase under taking subsets

Example

$$
\left(x_{1}, x_{2}\right) M_{2}\binom{y_{1}}{y_{2}}=x_{2} y_{1}+x_{1} y_{2}=0
$$

$w \rightarrow$

$$
\left(x_{1}, x_{2}\right) M_{1}\binom{y_{1}}{y_{2}}=x_{1} y_{1}=0
$$

Union of linear spaces of dimension 2:

$$
\left\{x_{1}=0, y_{1}=0\right\}
$$

$$
\operatorname{GR}(T)=4-2=2
$$

Observation: Geometric Rank takes values between 0 and n

$$
\begin{gathered}
\left(x_{1}, \ldots, x_{n}\right) M_{1}\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)=0 \\
\left(x_{1}, \ldots, x_{n}\right) M_{2}\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)=0 \\
\vdots \\
\left(x_{1}, \ldots, x_{n}\right) M_{n}\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)=0 \\
y_{1}=\star, \ldots, y_{n}=\star \\
n \leq \operatorname{dim} V(T) \leq 2 n \\
0 \leq 2 n-\operatorname{dim} V(T) \leq n
\end{gathered}
$$

Computing Geometric Rank is easy in practice for small tensors

system of equations:
dimension:

$$
\begin{align*}
& x_{2} y_{1}+x_{1} y_{2}=0 \\
& x_{1} y_{1}=0 \tag{2}
\end{align*}
$$

Macaulay2

```
R = CC[x1,x2,y1,y2];
dim ideal(x1*y1, x2*y1 + x1*y2)
```


Sage

A. $\langle x 1, x 2, y 1, y 2\rangle=$ AffineSpace (4, CC) ; Ideal([x1*y1, $x 2 * y 1+x 1 * y 2]) . d i m e n s i o n()$

We do not know whether computing dimension of bilinear system is NP-hard.

Theorem 1

Slicing the tensor in a different direction gives the same notion of Geometric Rank
"Fundamental Theorem of Multilinear Algebra"

II. Main technical result: Monotonicity

Gaussian elimination

1	-2			
0	1	\cdot	1	2
:---	:---			
2	1	\cdot	1	$2 / 3$
:---	:---			
0	$-2 / 3$	$=$	1	0
:---	:---			
0	1			

"Gaussian order" on Matrices

by taking some linear combinations of the rows and columns of M we obtain N

Example

1	-2			
0	1	\cdot	1	2
:---	:---			
2	1	\cdot	1	$2 / 3$
:---	:---			
0	$-2 / 3$	$=$	1	0
:---	:---			
0	1			

$$
\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 2 & 1 \\
\hline
\end{array} \geq \begin{array}{|l|l|}
\hline 1 & 0 \\
\hline 0 & 1 \\
\hline
\end{array}
$$

Matrix Rank completely determines the Gaussian order
$M \geq \quad N \quad$ if and only if $\quad \mathrm{R}(M) \geq \mathrm{R}(N)$

Gaussian order on Tensors generalizes row and column operations

by taking some linear combinations of the slices of T we obtain S

Gaussian order in Mathematics, Physics and Computer Science

- Complexity of Matrix Multiplication
identity tensor \geq matrix multiplication tensor
- Classifying Quantum Entanglement

$$
\text { tensor } \geq \text { tensor }
$$

- 3-Uniform Hypergraph Independence Number
tensor fitting hypergraph \geq identity tensor

Matrix Rank completely determines the Gaussian order on matrices

For tensors that level of complete understanding is out of reach

(NP-hard problem)

An important question is to find monotones for the Gaussian order on tensors:

Monotones give obstructions:

Theorem 2
Geometric Rank is monotone

III. Applications: Subrank and Independence number

Subrank $\mathrm{Q}(T)$ of T is the size of the largest identity tensor smaller than T

- Strassen (1987): central in theory of fast matrix multiplication
- Naturally leads to Haemers bound for hypergraphs:

Subrank
$\mathrm{Q}(T)$
:---:
of hypergraph for which T fits

Geometric Rank upper bounds Subrank

Geometric Rank GR

\geq	Subrank
	Q

Proof:

- Monotonicity
- Geometric Rank of diagonal tensor equals its size

In fact, Geometric Rank upper bounds Border Subrank

How Geometric Rank connects to other Ranks

Geometric Rank "extends" Analytic Rank to characteristic 0

Theorem

For any tensor T with integer coefficients:

$$
\operatorname{GR}(T)=\liminf _{p \rightarrow \infty} \operatorname{AR}(T \bmod p)
$$

Proof ingredients:

- Lang-Weil Theorem (good bounds on $\# \mathbb{F}_{p}$-points for nice varieties in terms of dim)
- Bertini-Noether Theorem (relating \mathbb{F}_{p}-dimension to \mathbb{C}-dimension)
- Generalized Schwartz-Zippel lemma (coarse bound on \# \mathbb{F}_{p}-points for all varieties) [Bukh-Tsimerman, Dvir-Kollár-Lovett]

Application of Geometric Rank: Matrix multiplication tensors

We compute the border subrank of matrix multiplication

Theorem
$\underline{Q}(\langle n, n, n\rangle)=\left\lceil\left[\frac{3}{4} n^{2}\right\rceil\right.$

Proof:

- Lower bound: Strassen (1987)
- Upper bound: Geometric Rank

Matrix Rank

Geometric Rank

