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Lecture 7: Expanders

Lecturer: Dana Moshkovitz Scribe: Andrey Grinshpun and Dana Moshkovitz

In this lecture we give basic background about expander graphs. Expanders are graphs with
strong connectivity properties: every two large subsets of vertices in an expander have many
edges connecting them. Surprisingly, one can construct very sparse graphs that are expanders,
and this is what makes them so useful.

Expanders have a huge number of applications in theoretical computer science: in construc-
tion of fault-tolerant networks, in proofs of complexity-theoretic results like SL = L, in design
of error correcting codes, etc. We use expanders to amplify the soundness of PCPs, and in
subsequent lectures, to obtain PCPs with a constant number of queries.

1 Basic Definitions

When we have a graph G = (V,E) and it is unambiguous to which graph we are referring, we
use n = |V |. The graphs we consider are all regular, and we denote their degree by D.

Definition 1. Given G = (V,E) a regular graph of degree D, and given S, T ⊆ V , define

E(S, T ) = {(u, v) ∈ E : u ∈ S ∧ v ∈ T} = E ∩ (S × T )

and note that 0 ≤ |E(S, V \ S)| ≤ |S|D

Definition 2. The Edge Expansion or Cheeger Constant of G is

Φ(G) = min
S⊆V, 0<|S|≤n

2

|E(S, V \ S)|
|S|

Intuitively, the above computes the worst bottleneck in the graph.

Definition 3. A sequence of graphs {Gn}n∈N is a constant degree expander if there exist con-
stants D ≥ 1, ε > 0, such that:

• ∀n,Gn is on n vertices

• ∀n,Gn is D-regular

• ∀n,Φ(Gn) ≥ ε

1.1 Examples

For the cycle on n vertices,

Φ(Cn) =
2
n
2

=
4

n

which is seen by taking S to be a half-cycle. Thus, {Cn} is not a constant degree expander.
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2For the complete graph on n vertices,

Φ(Kn) = min
S⊆V, |S|≤n

2

|E(S, V \ S)|
|S|

= min
S⊆V, |S|≤n

2

(
|S| |V \ S|

|S|
)

= min
S⊆V, |S|≤n

2

(|V \ S|) = ⌈n
2
⌉

That is, the complete graph has an optimal Cheeger constant Θ(D). However, Kn has super-
constant degree D = n − 1, so the family {Kn} is not a constant degree expander. That said,
constant degree expanders are frequently thought of as sparse approximators of {Kn}.

2 Constructions

For n natural, a random D-regular graph on n vertices satisfies, with high probability, Φ(G) ≥ ε
for some constant ε which depends on D.

There are explicit constructions of constant degree expanders as well (we do not go into the
proofs):

1. (Margulis, ’73) We create a graph on vertices Zm × Zm. The neighbors of (x, y) are

(x+ y, y), (x− y, y), (x+ y + 1, y), (x− y + 1, y)

(x, y + x), (x, y − x), (x, x+ y + 1), (x, y − x+ 1)

2. (Lubotzky, Phillips, Sarnak, ’86) Use vertices Zp for p prime, p = 1( mod 4). The
neighbors of x are x + 1, x − 1, x−1. This construction creates Ramanujan Expanders
(defined later).

3. (Reingold, Vadhan, Wigderson, ’00) They show an iterative combinatorial construction:
repeatedly, square the adjacency matrix of the graph and reduce its degree (by an operation
they call “Zig Zag Product”).

3 Linear Algebra View

The adjacency matrix of a graph G = ([n], E) is the matrix A defined by

Ai,j = χ(i,j)∈E

That is, Ai,j is 1 if (i, j) ∈ E and 0 otherwise.
We write 1⃗ for (1, 1, . . . , 1). If G is D-regular with adjacency matrix A, then

A1⃗ = D1⃗

so 1⃗ is an eigenvector with associated eigenvalue D. This eigenvector corresponds to a uniform
distribution over the vertices of the graph.

Take
D = λ0 ≥ λ1 ≥ · · · ≥ λn−1 ≥ −D



3to be the eigenvalues of A. It may be checked that λ0 = λ1 iff the graph is not connected, and
that λn−1 = −D iff the graph is bipartite. Recall that since A is symmetric, its eigenvectors
may be normalized to form an orthonormal basis.

Define the second eigenvalue λ of A by

λ = max
0<i≤n−1

|λi| = max(λ1,−λn−1)

The following claim, which we often use in the sequel, says that the 2-norm of a vector parallel
to 1⃗ shrinks by at least λ after being multiplied by A:

Claim 3.1. For v ∈ Rn with ⟨v, 1⃗⟩ = 0,

∥Av∥ ≤ λ∥v∥.

Proof. We choose {wi} orthonormal eigenvectors of A such that the eigenvalue associated to wi

is λi, and we may write.

v =
∑
i

αiwi

and note in the above sum, since ⟨v, 1⃗⟩ = 0, we have that α0 = 0. We also have that
∑

i α
2
i =

∥v∥2.

∥Av∥2 = ⟨Av,Av⟩ = ⟨
∑
i

αiAwi,
∑
i

αiAwi⟩ =
∑
i,j

αiαj⟨Awi, Awj⟩

=
∑
i,j

αiαjλiλj⟨wi, wj⟩ =
∑
i

α2
iλ

2
i ≤

∑
i

α2
iλ

2 = λ2
∑
i

α2
i = λ2∥v∥2

Define the spectral gap of A by D−λ. The following theorem, presented here without a proof,
connects the expansion of the graph with its spectral gap:

Theorem 4 (Cheeger).
Φ(G)2

2D
≤ D − λ ≤ 2Φ(G)

The following theorem, also without a proof, bounds the possible size of the spectral gap.

Theorem 5.
λ ≥ (1− o(1))

√
D

Graphs that achieve the bound of Theorem 5 are called Ramanujan Expanders.
The following useful lemma shows that small second eigenvalue guarantees that between any

two subsets of vertices in the graph, the number of edges resembles the number of edges in a
random graph with the same number of edges:

Lemma 3.2 (Expander Mixing Lemma).

∀S, T ⊆ V

∣∣∣∣ |E(S, T )|
Dn

− |S|
n

|T |
n

∣∣∣∣ ≤ λ

D

√
|S|
n

|T |
n



4Proof. (Below whether a vector is interpreted as a column vector or as a row vector should be
clear from context.)

Take f to be the indicator vector on S; i.e. fi = 1 ⇔ i ∈ S and take g to be the indicator
vector on T . Then we have

|E(S, T )| = fAg

Choose f∥, f⊥ (similarly, g∥, g⊥) such that the following three conditions hold:

f = f∥ + f⊥

∃c ∈ R s.t. f∥ = c⃗1

⟨f∥, f⊥⟩ = 0

i.e., we have f∥ = ⟨f, 1⃗√
n
⟩ 1⃗√

n
= |S|

n 1⃗. Then,

fAg = (f∥ + f⊥)A(g∥ + g⊥) = f∥Ag∥ + f∥Ag⊥ + f⊥Ag∥ + f⊥Ag⊥

Next we analyze these four terms. The first term corresponds to the uniform distributions on
S and T , and yields the main term:

f∥Ag∥ =
|S| |T |

n

1⃗√
n
A

1⃗√
n
=

|S| |T |D
n

We wish to show the remaining 3 summands are small.

f⊥Ag∥ = f⊥
|T |
n

1⃗ =
|T |
n

⟨f⊥, 1⃗⟩ = 0

Similarly, we get f∥Ag⊥ = 0.
Finally, the error term comes from the following:

|f⊥Ag⊥| ≤ ∥f⊥∥2∥Ag⊥∥2 (Cauchy-Schwarz)

≤ λ∥f⊥∥2∥g⊥∥2 (Claim 3.1)

≤ λ∥f∥2∥g∥2
= λ

√
|S| |T |

4 Random Walks on Expanders

Throughout this section, we will use α = λ
D , and we will take u to be the uniform distribution

over the vertices, i.e. u = 1⃗
n .

Define a random walk on a graph G = (V,E) w.r.t. p a distribution over V to be a sequence
Xi of random variables with X0 distributed according to p and Xi+1 a neighbor of Xi chosen
uniformly at random.

The random walk defines a Markov process over the vertices of the graph with transition
matrix Â = A

D .
Intuitively, the following theorem says that a random walk on an expander quickly forgets

where it started.



5Theorem 6. For any distribution p over the vertices and for any t ≥ 0,

∥Âtp− u∥2 ≤ αt∥p− u∥2 ≤ αt

Proof. We proceed by induction on t. The case for t = 0 is clear. Note that Âtp is a distribution,
so ⟨Âtp− u, 1⃗⟩ = ⟨Âtp, 1⃗⟩ − ⟨u, 1⃗⟩ = 1− 1 = 0. Hence,

∥Ât+1p− u∥2 = ∥Â(Âtp− u)∥2 (Âu = u)

≤ α∥Âtp− u∥2 (Claim 3.1)

≤ αt+1∥p− u∥2 (Induction hypothesis)

We now prove that a random walk on an expander has an exponentially small probability to
stay in any small subset of the vertices:

Theorem 7. For B ⊆ V, |B| = βn, the probability that a random walk of length t starting from
the uniform distribution over the vertices stays in B is at most (β + α)t.

Note that the uniform distribution is a stationary distribution: Âu = u.
Define P = PB to be the projection onto B, that is (PB)i,j is 1 if i = j ∈ B and 0 otherwise.

Note P 2 = P and that for any vector v, ∥Pv∥2 ≤ ∥v∥2. Note also that the probability that the

random walk stays in B is
∣∣∣(PÂ)tPu

∣∣∣.
Claim 4.1. For any vector v such that Pv = v,

∥PÂv∥2 ≤ (β + α)∥v∥2

Proof. This is trivial if v = 0⃗. Otherwise, without loss of generality, take
∑

i vi = 1. Then we
may write v = u+ z with ⟨u, z⟩ = 0. Then, by a triangle inequality,

∥PÂv∥2 = ∥PÂu+ PÂz∥2 ≤ ∥PÂu∥2 + ∥PÂz∥2.

We have that PÂu = Pu, and so ∥PÂu∥2 =
√

β
n . By Cauchy-Schwarz, using Pv = v,

1 =
∑
i∈B

vi ≤
√∑

v2i
√

βn = ∥v∥2
√

βn.

Thus, ∥v∥2 ≥ 1√
βn

, and

∥PÂu∥2 ≤ β∥v∥2.

By assumption ⟨z, u⟩ = 0 and so ⟨z, 1⃗⟩ = 0 and thus, by Claim 3.1, we get

∥PÂz∥2 ≤ ∥Âz∥2 ≤ α∥z∥2 ≤ α∥v∥2

Combining the bounds on ∥PÂu∥2 and ∥PÂz∥2, the claim follows.

We now prove Thoerem 7:



6Proof. From Jensen’s inequality,(
1

n
(PÂ)tPu

)2

≤ 1

n
∥(PÂ)tPu∥22,

and so
∣∣∣(PÂ)tPu

∣∣∣ ≤ √
n∥(PÂ)tPu∥2.

We prove by induction that for every t ≥ 0, for vt = (PÂ)tPu, it holds that Pvt = vt and
∥vt∥2 ≤ (β + α)t∥Pu∥2: The case t = 0 is clear. Assume the claim holds for t, and let us prove
it for t+ 1:

∥(PÂ)t+1Pu∥2 = ∥(PÂ)vt∥2
≤ (β + α)∥vt∥2 (Claim 4.1, using Pvt = vt)

≤ (β + α)t+1∥Pu∥2 (Induction hypothesis)

Overall, ∣∣∣(PÂ)tPu
∣∣∣ ≤ √

n(β + α)t∥Pu∥2 =
√

β(β + α)t ≤ (β + α)t.

5 Randomness-Efficient Amplification for PCPs

Expanders can be used to amplify the success probability of randomized algorithms in a randonmess-
efficient way. We next show a similar application of expanders to amplification of soundness of
PCPs.

Amplification of PCP soundness refers to taking a result like:

NP ⊆ PCP1,s[r, q]

And obtaining from it a result with a much smaller soundness error (though, perhaps, slightly
worse other parameters):

NP ⊆ PCP1,≈sk [r
′, q′]

Amplification can be done by running the initial PCP verifier k times independently. Unfortu-
nately, this causes the randomness to become r′ = rk. We achieve much smaller randomness
r′ = r + k logD using degree-D expanders.

We use expander graphs {G2r}. As usual, we use D to denote their degree, λ to denote their
second eigenvalue, and α for λ/D.

Let V be a verifier with completeness 1, soundness s, randomness r and q queries. The new
verifier V ′ uses the same proof V does, and proceeds as follows:

1. Perform a random walk r0, . . . , rk on G2r starting from a uniformly distributed vertex r0.

2. Run V with randomness ri for all 0 ≤ i ≤ k.

3. If V rejects in any of its applications, reject. Otherwise, accept.

The verifier V ′ uses r′ = r+k logD bits of randomness, and makes q′ = qk queries to the proof.
It has perfect completeness, and as to its soundness – let B ⊆ {0, 1}r be the set of random
strings that cause V to accept. We just saw that the probability that ri ∈ B for all 0 ≤ i ≤ k
is bounded by (s+ α)k, so this is our new soundness.


