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1. Introduction

1.1. Suppose D is a Hermitian symmetric domain, Γ is a neat arithmetic group of automor-
phisms of D, and X = Γ\D is the corresponding locally symmetric space. The Baily-Borel

Satake compactification X̂ of X is a projective algebraic variety. The Zucker conjecture
(proven by Looijenga [L], Saper and Stern [SS]) states that the complex of sheaves of L2

differential forms on X̂ is canonically isomorphic to the complex of sheaves IC•(X̂) of in-

tersection chains on X̂. Both proofs proceed by showing that, in some sense, these two

complexes of sheaves have the same stalk cohomology at any point x ∈ X̂. These stalk
cohomology groups IH i

x(X̂) are usually viewed as being extremely complicated objects. In
this paper (Theorem 6.3) we give an explicit interpretation for the stalk cohomology, to-
gether with its weight filtration which arises from mixed Hodge theory. In Theorem 7.8, we
evaluate the formula of Theorem 6.3 for the case X = Γ(p)\Sp4(R)/U2.

The identity mapping X → X has a unique continuous extension Φ : X → X̂ to the
“reductive Borel- Serre compactification” X, which may be thought of as a (nonalgebraic)

partial resolution of singularities of X̂. The projection Φ is stratified by the natural strat-

ifications of X and of X̂, but the singularities of X are particularly explicit and easy to

understand. The fiber Φ−1(x) over a boundary point x ∈ X̂ is itself the reductive Borel-
Serre compactification X� of a certain “linear” locally symmetric space (6.1.2),

X� = Γ�\Q�/AQK�. (1.1.1)

Our formula expresses the stalk cohomology of the intersection cohomology of X̂ as a direct
sum of weighted cohomology groups of this auxiliary space Φ−1(x).

1.2. Weighted cohomology groups for locally symmetric spaces were introduced in [GHM]
and the present paper relies heavily on the results and notations of [GHM] and[GM2]. Like
intersection cohomology, the weighted cohomology W pH∗(X) is the hypercohomology of a
complex of sheaves WpC•(X) which is obtained by “truncation” of the direct image sheaf
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Ri∗(C) (where i : X → X denotes the inclusion). However the weighted cohomology complex
is obtained by truncating with respect to weights of a certain torus action, rather than with
respect to dimension.
A central result in [GHM] states that the pushforward Φ∗WνC•(X) of the weighted coho-

mology complex (with “middle” weight ν) on X is canonically isomorphic to the (“middle”)

intersection complex IC•(X̂) of X̂. It follows that the stalk intersection cohomology at a

point x ∈ X̂ is isomorphic to the hypercohomology of the restriction

WνC•|Φ−1(x) (1.2.1)

of the weighted cohomology complex to the fiber Φ−1(x) :

1.3. The key technical achievement in this paper is the identification of the restriction
(1.2.1) as a sum of shifted weighted cohomology complexes of the reductive Borel-Serre
compactification X�. In Theorem 4.3 and Corollary 4.6 we show, more generally, that for
any weight profile p, the restriction WC•(X)|XQ of the weighted cohomology complex to
the closure XQ of any boundary stratum XQ ⊂ X breaks into a direct sum of weighted coho-
mology complexes of XQ with shifts. (This result even holds when we drop the assumption
that D is Hermitian.)
Combining this with (1.2.1) gives a formula (6.5.1) (notation explained in §6) for the local

intersection cohomology at a point x in the Baily-Borel compactification,

IH i
x(X̂,E) ∼=

⊕
β≥−ρQ

⊕
i

W ν�βHk−i(X�,H
i(NQ,E)β). (1.3.1)

Theorem 4.3 is one of several properties which make weighted cohomology a somewhat
simpler object to study than intersection cohomology. The analogous statements which may
be formulated for the intersection cohomology of X̂ or of X are false. (The restriction of

the intersection complex IC•(X̂) to the closure Ŷ ⊂ X̂ of a boundary stratum Y ⊂ X̂ may

fail to be isomorphic to a sum of intersection cohomology complexes of Ŷ .)
The results of [LR] show that the weight filtration from mixed Hodge theory on the stalk

cohomology IH i
x(X̂) is given by the torus weights which define the truncation for weighted

cohomology. This gives a precise formula (6.3.1) for the associated graded of the weight
filtration of the stalk cohomology.
In [F], J. Franke introduced an important family of invariants, the weighted L2 cohomology

groups of X, which are the Lie algebra cohomology groups of a certain space of functions
on X. In [N] it was shown that Franke’s weighted L2 cohomology groups coincide with
the weighted cohomology groups. Consequently, the above formula (1.3.1) for the stalk

cohomology IH∗
x(X̂) may be translated into Lie algebra cohomology.

Finally, in §7 we evaluate the local cohomology and intersection cohomology Euler char-
acteristic for the Siegel modular threefolds given by principal congruence subgroups of level
≥ 3.
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2. Some linear algebra

2.1. Suppose X is a Q-vector space. Denote by X∗ = Hom(X,Q) the dual vector space.
Let ∆ ⊂ X∗ be a finite collection of linearly independent functionals. Define

C(∆) =

{
Σ

α∈∆
mαα

∣∣∣∣mα ≥ 0

}
and ker(∆) =

⋂
α∈∆

ker(α).

The set C(∆) is called the positive cone spanned by the elements of ∆. If ν ∈ X∗ define

(X∗)≥ν(∆) = {γ ∈ X∗ |γ − ν ∈ C(∆)} . (2.1.1)

Every element γ ∈ (X∗)≥ν(∆) satisfies γ| ker(∆) = ν| ker(∆).
Let W = ker(∆) and let {tα |α ∈ ∆} ⊂ X/W be the basis of X/W which is dual to

the basis determined by ∆. If γ ∈ X∗ satisfies γ|W = ν|W then γ − ν passes to a linear
functional on X/W. Hence

(X∗)≥ν(∆) = {γ ∈ X∗| γ|W = ν|W and 〈γ − ν, tα〉 ≥ 0, ∀α ∈ ∆} (2.1.2)

where 〈·, ·〉 : (X/W )∗ × (X/W )→ Q is the canonical pairing.
Fix a subset J ⊂ ∆ and set Y = ker(J) and Z = ker(∆− J). The sequence

0→ W → Y ⊕ Z → X → 0

is exact, where the maps are given by w �→ (w,−w) and y⊕ z �→ y+ z. It follows by duality
that if ν ∈ X∗ and if β ∈ Y ∗ and if ν|W = β|W then there is a unique element

q = ν � β ∈ X∗

so that q(y + z) = β(y) + ν(z) for all y ∈ Y and z ∈ Z. Moreover, q|W = ν|W = β|W.
If α ∈ ∆− J then tα ∈ Y/W. The elements of ∆− J restrict to a basis of (Y/W )∗ whose

dual basis is {tα |α ∈ ∆− J } . The composition Z/W ⊂ X/W → X/Y is an isomorphism.
If α ∈ J then tα ∈ Z/W projects to a nonzero element t̄α ∈ X/Y. The elements of J
determine a basis of (X/Y )∗ whose dual basis is {t̄α |α ∈ J } .
2.2. Proposition. Let X be a rational vector space, let ∆ ⊂ X∗ be a finite set of linearly
independent elements, and set W = ker(∆). Let J ⊂ ∆ and let Y = ker(J). Fix ν, γ ∈ X∗

with ν|W = γ|W. Let β = γ|Y ∈ Y ∗. Then

γ ∈ (X∗)≥ν(∆) ⇐⇒ β ∈ (Y ∗)≥ν(∆−J) and γ ∈ (X∗)≥ν�β(J)

(where we have also written ν for its restriction to Y ).
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2.3. Proof. If α ∈ ∆− J then tα ∈ Y/W and the first condition says that 〈β − ν, tα〉 ≥ 0.
But β = γ|Y so 〈γ − ν, tα〉 ≥ 0 for all α ∈ ∆− J.
If α ∈ J then tα ∈ Z/W. Let t̂α ∈ Z ⊂ X be any lift of tα; then ν � β(t̂α) = ν(t̂α).

Therefore the second condition says

0 ≤ 〈γ − ν � β, t̄α〉 = 〈γ − ν � β, t̂α〉 = 〈γ − ν, t̂α〉 = 〈γ − ν, tα〉
for all α ∈ J. The reverse implication is similar. �

3. Weighted cohomology

3.1. Locally symmetric spaces. Algebraic groups will be designated by bold face type
(G,P, etc.). If an algebraic group is defined over the real numbers R then its group of real
points will be in Roman (G = G(R)). Throughout this paper we fix a connected reductive
group G which is defined over Q. Let SG be the maximal Q-split torus in the center of G and
let AG = SG(R)0 be the identity component of its group of real points. Let K be a maximal
compact subgroup of G, set K ′ = KAG and D = G/K ′. This is a homogeneous space on
which G acts transitively. The group K ′ corresponds to a choice of basepoint x0 ∈ D. We
also fix a neat arithmetic subgroup Γ ⊂ G(Q) and set X = Γ\D. By abuse of terminology
we will refer to X as a locally symmetric space.

In this paper, X̃ denotes the Borel-Serre compactification of X ([BS]) and X denotes the

reductive Borel-Serre compactification ([Z3] §4.2, [GHM] §8). If X is Hermitian then X̂ will
denote the Baily-Borel Satake compactification.

3.2. Parabolic subgroups. Let P be a rationally defined parabolic subgroup of G. Then
we have the following groups:

• UP = unipotent radical of P
• NP = Lie(UP)
• RdP = the Q-split radical of P ([BS] §0.3)
• LP = the Levi quotient, νP : P → LP the projection
• SP = RdP/UP

• χ∗
Q(SP) = χ∗(SP)⊗Z Q

• χQ∗ (SP) = Hom(χ∗
Q(SP),Q)

• AP = SP(R)0

• ΓP = Γ ∩ P and ΓL = νP (ΓP )
• KP = KP (x0) = K ∩ P and K ′

P = K ′ ∩ P.
The torus SP may also be identified as the greatest Q-split torus in the center of LP. It
contains SG and we denote the quotient by S′

P = SP/SG.
The choice of basepoint x0 ∈ D determines a Cartan involution θ : G → G with fixed

point set K(x0). There is a unique lift ([BS] §1.6, §1.9) ix0 : LP → P of the Levi quotient
such that the image LP (x0) = ix0(LP ) is θ-stable. This determines a lift of SP(R). Note
that KP ⊂ LP (x0).
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Fix once and for all a minimal rational parabolic subgroup P0 ⊂ G. The (rational
“relative”) root system Φ(SP0 ,G) admits a linear order such that the positive roots are those
in N0 = Lie(UP0). Let ∆ denote the set of simple (rational) roots. The rational parabolic
subgroups containing P0 are called standard. They form a unique set of representatives of
the G(Q) conjugacy classes of rational parabolic subgroups of G. They are in one to one
correspondence with subsets J ⊂ ∆, with the parabolic subgroup P(J) corresponding to J
determined by the condition that

SP(J) ⊂ ker(α) for all α ∈ J.

The (restrictions of the) roots α ∈ ∆ − J form a basis of the rational (quasi-) character
module χ∗

Q(S
′
P(J)). Denote by ∆P(J) the collection of restrictions

{
α|SP(J)

}
(for α ∈ ∆−J),

which we refer to as the set of simple roots of P(J) occurring in NJ = Lie(UP(J)). These
notions extend to arbitrary rational parabolic subgroups P ⊂ G by conjugation.

3.3. Two parabolic subgroups. If P ⊂ Q ⊆ G are rational parabolic subgroups of G,
then UQ ⊂ UP and RdQ ⊂ RdP. This gives an embedding SQ ↪→ SP. Let νQ : Q → LQ

denote the projection to the Levi quotient and set P = νQ(P) = P/UQ. Then UP = UP/UQ

and the resulting isomorphism

LP = P/UP = (P/UQ)/(UP/UQ) ∼= LP

induces an isomorphism SP
∼= SP. However, P is regarded as a parabolic subgroup of G, so

S′
P = SP/SG, while P is regarded as a parabolic subgroup of LQ so S′

P
= SP/SQ.

3.4. Boundary strata. Let X̃ denote the Borel-Serre compactification of X ([BS]) and
let X denote the reductive Borel-Serre compactification of X ([Z3] §4.2, [GHM] §8). These
spaces are Whitney stratified by their boundary strata YP ⊂ X̃ and XP ⊂ X which are in
one to one correspondence with Γ-conjugacy classes of proper rational parabolic subgroups
of G. A choice of representative P in this Γ-conjugacy class determines an identification

YP = ΓP\P/KPAP (x0) (3.4.1)

and an identification

XP = ΓP\P/UPKPAP (x0) (3.4.2)

The identity map X → X has a unique continuous extension to a mapping π : X̃ → X.
Then π is surjective, takes strata to strata, and its restriction to each boundary stratum YP
is the smooth proper fiber bundle πP : YP → XP which is given by collapsing the “orbits”
of UP ([GHM] §7.4).
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3.5. Weighted cohomology. Fix a minimal rational parabolic subgroup P0 ⊂ G. A weight
profile is an element of χ∗

Q(SP0). (This is slightly more general than the definition in [GHM],
but it agrees with the definition in [GKM] and [GM2].) For any standard rational parabolic
subgroup P ⊃ P0 the weight profile together with the set ∆P ⊂ χ∗

Q(SP) determines a “high”
subset of weights as in (2.1.1) and (2.1.2),

χ∗
Q(SP)≥p(∆P ) =

{
γ ∈ χ∗

Q(SP)
∣∣ γ|SG = p|SG and 〈γ − p, tα〉 ≥ 0, ∀α ∈ ∆P

}
(3.5.1)

where {tα | α ∈ ∆P} is the basis of the rational co-character module χQ∗ (S
′
P) which is dual

to the basis of χ∗
Q(S

′
P) determined by ∆P . When there is no possibility of confusion we will

abbreviate the notation to χ∗
Q(SP)≥p (which agrees with the notation of [GKM] and [GM2],

and which was denoted χ∗
Q(SP)+ in [GHM]). If a rational vectorspace V is a module over

SP let Vα be the subspace of weight α ∈ χ∗
Q(SP) and set

V≥p = V≥p(∆P ) =
⊕

α∈χ∗
Q
(SP)≥p

Vα. (3.5.2)

Let ψ : G → GL(E) be an irreducible representation of G on some finite dimensional
complex vectorspace E and let E = E ×Γ D be the resulting local coefficient system on X.
Since E is irreducible, the torus SG acts by a single character λE ∈ χ∗

Q(SG). Let p be a
weight profile such that p|SG = λE. The construction of [GHM] defines a weighted complex
of sheaves WpC•(X,E) on the reductive Borel-Serre compactification X of X. This is a
(cohomologically) constructible complex of sheaves on X which is obtained by truncating
the sheaf of smooth differential forms i∗Ω•(X,E) along the boundary strata XP so as to
keep only the differential forms with “weights” in χ∗

Q(SP)≥p. (Here, i : X → X denotes the
inclusion of X into its reductive Borel-Serre compactification.)
Let NP = Lie(UP ) be the Lie algebra of the unipotent radical of P. The Lie algebra

cohomology H i(NP , E) is a module over LP and hence also over SP. The torus SG acts on
H∗(NP , E) via the weight λE . Then ([GHM] §17) the stalk cohomology at a (singular) point
x ∈ XP of the weighted cohomology complex WpC•(X,E) is the (finite) sum,

W pH i
x
∼= H i(NP , E)≥p =

⊕
β∈χ∗

Q
(SP)≥p

H i(NP , E)β. (3.5.3)

3.6. For some purposes it is necessary to consider weight truncations of the form

χ∗
Q(SP)>p =

{
γ ∈ χ∗

Q(SP)
∣∣ γ|SG = p|SG and 〈γ − p, tα〉 > 0, ∀α ∈ ∆P

}
.

Since only finitely many weights occur in H∗(NP , E), for any ε > 0 sufficiently small we
have ⊕

β∈χ∗
Q
(SP)≥p+ε

H i(NP , E)β =
⊕

β∈χ∗
Q
(SP)>p

H i(NP , E)β.

The weighted cohomology sheaf constructed with respect to this weight truncation will be
denoted Wp+εC

•
(X,E).
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Choose a Cartan subgroup H and a Borel subgroup B of G so that

SP0 ⊂ H ⊂ B ⊂ P0 ⊂ G.

Let Φ+ = Φ+(H(C),G(C)) be the resulting set of positive roots and let ρ = 1
2

Σ
α∈Φ+

. The

“lower middle” weight profile is ν = −ρ|SP0 , the “upper middle” weight profile is ν =
−ρ|SP0 + ε. (The modification by ε corresponds exactly to the ± log modification which
occurs in the weighted L2 theory.) The “dualizing” weight profile is d = −2ρ|SP0 + ε. The
weighted cohomology sheaf WdC

•
(X,C) is canonically (quasi-) isomorphic ([GHM] §19.4)

to the dualizing complex DX on X.

3.7. Duality. A morphism E1 ⊗ E2 → E of irreducible representations of G induces a
morphism of (complexes of) sheaves,

WpC•(X,E1)⊗WqC•(X,E2)→ Wp+qC
•
(X,E).

Let E be an irreducible representation of G and let p ∈ χ∗
Q(S0) be a weight profile such

that p|SG coincides with the character λE by which SG acts on E. Let E∗ be the dual
representation and let q = d− p be the “dual” weight profile. Then the resulting morphism

WpC•(X,E)⊗WqC•(X,E∗)→ WdC
•
(X,C) = DX

is a (Borel-Moore-) Verdier dual pairing. In particular, the upper and lower middle weight
profiles are dual.

3.8. One may drop the assumption that the representation E is irreducible, requiring in-
stead that in the SG-isotypical decomposition E =

⊕
λEλ, each weight λ ∈ χ∗

Q(SG) appears
at most once and each summand Eλ is irreducible. Sums of this form (with shifts) appear
in the restriction to the boundary (Theorem 4.3).

3.9. The singularities of X are relatively easy to understand and the weighted cohomology
complex on X is relatively simple. If X is Hermitian then the identity mapping X → X has

a unique continuous extension Φ : X → X̂ [Z3]. The pushforward RΦ∗(WνC•(X,E)) of the
middle weighted cohomology is canonically isomorphic to the middle intersection complex

IC•(X̂,E) which, by the Zucker conjecture ([L], [SS]) is canonically isomorphic to the sheaf
of L2 differential forms with coefficients in E. So the weighted cohomology complex on X

may be thought of as a sort of (non algebraic) partial resolution of singularities of X̂ together
with its sheaf of L2 differential forms. (In fact, the relation with L2 cohomology may be
described ([N]) completely in terms of X.)
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3.10. Weighted L2 cohomology. For completeness we sketch how the results in this paper
may be translated into the language of Lie algebra cohomology using Franke’s theory [F] of
weighted L2 cohomology groups.
An element λ ∈ χ∗

Q(SP0) determines (via reduction theory) a certain real-valued weight
function ([N] §1.6) wλ on ΓAG\G. When λ = 0 we have wλ = 1. For any element D in the
universal enveloping algebra of g = Lie(G) there is a left-invariant differential operator RD

which acts on the smooth functions on Γ\G. (For D ∈ g this is simply the derivative of the
right regular representation). Let ξ ∈ χ∗

Q(SG). Let Sλ,ξ(Γ) be the space of smooth C-valued
functions f on Γ\G satisfying

(1) f(ag) = ξ(a)f(g) for all a ∈ AG and
(2) wλξ

−1RDf is square-integrable on ΓAG\G for every D.

This space is a (g, K)-module ([V]). When λ = 0 it is the familiar space of smooth uniformly
L2 functions. Its (g, K)-cohomology is often infinite-dimensional.
Let ε ∈ χ∗

Q(SP0) be any dominant weight. Let Sλ+log,ξ(Γ) ⊃ Sλ,ξ(Γ) be the module of
smooth functions for which

wλ log(wε)
mξ−1RDf ∈ L2(ΓAG\G) (3.10.1)

for every positive integer m and for every D. This is also a (g, K)-module and it always has
finite-dimensional cohomology. The main result of [N], extended to reductive groups, gives
an isomorphism

W pH i(X,E) ∼= H i(g, K;Sλ+log,ξ(Γ)⊗E) (3.10.2)

where λ = (−ρ − p)|SP0 and ξ = −(p|SG) = −λE . Here ρ is the half-sum of positive roots
(see 4.5). In fact, there is a cohomologically constructible complex of sheaves on X with
(hyper)cohomology equal to the right-hand side of (3.10.2). The isomorphism (3.10.2) is
induced from an (explicit and natural) quasi-isomorphism of this object with WpC•(X̄,E).

4. Computations along boundary strata

4.1. The boundary stratum. In this section we restrict the weighted cohomology sheaf to
the closure of a boundary stratum in the reductive Borel-Serre compactification, and state
(in Theorem 4.3) that this restriction decomposes as a direct sum of weighted cohomology
sheaves of the closure of the boundary stratum. Throughout this section we fix a weight
profile p ∈ χ∗

Q(SP0) and we fix a local system E on X which corresponds to an irreducible
complex representation of G for which SG acts through the character λE = p|SG. Fix a
boundary stratum XQ (corresponding to a proper rational parabolic subgroup Q ⊂ G).
The closure XQ coincides with the reductive Borel-Serre compactification of XQ which we
consider to be the locally symmetric space

XQ = ΓL\LQ/KQAQ
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associated to the reductive group LQ (notation as in §3.2). The restriction WpC•(X,E)|XQ

to the interior of the boundary stratum is quasi-isomorphic to the sheaf of differential forms
Ω•(XQ,H

∗(NQ, E)≥p)) (see [GHM] §14.1.2). Here, H∗(NQ, E)≥p is the local system on XQ

associated to the LQ module H∗(NQ, E)≥p.

4.2. Weight profile on the boundary stratum. The boundary stratum XQ corresponds
to a rational parabolic subgroup Q ⊂ G which we may assume to be standard (Q ⊃ P0)
and which therefore corresponds to a subset J ⊂ ∆ of the simple roots, so that

χ∗
Q(SG) = ker(∆) ⊂ χ∗

Q(SQ) = ker(J) ⊂ χ∗
Q(SP0)

in the notation of §2. The elements of ∆ − J restrict to a linearly independent set ∆Q ⊂
χ∗
Q(SQ) and determine a basis of χ∗

Q(S
′
Q) (where S′

Q = SQ/SG). Let {tα| α ∈ ∆Q} denote
the dual basis of χ∗

Q(S
′
Q). Let β ∈ χ∗

Q(SQ)≥p, that is, β|SG = p|SG and 〈β − p, tα〉 ≥ 0 for
all α ∈ ∆Q. The projection νQ : Q → LQ determines an identification SP0

∼= SP0
where

P0 = νP (P0) ⊂ LQ

is the corresponding minimal rational parabolic subgroup of LQ. The elements of J ⊂ ∆
may be identified with the set ∆P 0

of simple rational roots of SP0
occurring in the unipotent

radical of P0.
As in §2 define

p� β ∈ χ∗
Q(SP0

) (4.2.1)

to be the unique rational (quasi-) character such that p � β(y + z) = β(y) + p(z) for all
y ∈ χQ∗ (SQ) and all z ∈ ker(∆ − J). We may consider p � β to be a weight profile for the
reductive Borel-Serre compactification XQ of the locally symmetric space corresponding to
the reductive group LQ. It satisfies (p� β)|SQ = β. The proof of the following theorem will
appear in §5.
4.3. Theorem. Let p ∈ χ∗

Q(S0) be a weight profile. The restriction of the weighted cohomol-
ogy complex to the closure of the boundary stratum XQ is quasi-isomorphic to the (finite)
direct sum of weighted cohomology sheaves:

WpC•(X,E)|XQ
∼=

⊕
β∈χ∗

Q
(SQ)≥p

⊕
i

Wp�βC
•
(XQ,H

i(NQ, E)β)[−i] (4.3.1)

where [−i] denotes a shift in degree: Ck[−i] = Ck−i.

4.4. The following remarks will be needed for the proof of Theorem 4.3. Suppose P ⊂ Q
is another standard rational parabolic subgroup. Then SG ⊂ SQ ⊂ SP ⊂ SP0 . Let p ∈
χ∗
Q(SP0), β ∈ χ∗

Q(SQ), and suppose β|SG = p|SG as above. We claim that

(p� β)|SP = (p|SP) � β (4.4.1)

where, for the sake of notational simplicity, we confuse the restriction to SP with the re-
striction to χQ∗ (SP). The right hand side of this equation needs some explanation.
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Let ∆P be the simple roots for P. They determine a basis of χ∗
Q(SP/SG). Let J

′ ⊂ ∆P

be the subset corresponding to Q, that is,

χQ∗ (SQ) = ker(J ′). (4.4.2)

Here, we consider the elements of J ′ to be linear functionals on the vectorspace

X = χQ∗ (SP). (4.4.3)

Then we may apply the construction of §2 with

Y = χQ∗ (SQ) = ker(J ′)

Z = ker(∆P − J ′) ⊂ χ∗
Q(SP)

to obtain an element (p|SP) � β ∈ χ∗
Q(SP) such that

(p|SP) � β(y + z) = β(y) + p(z)

for all y ∈ Y and all z ∈ Z. This defines the right hand side of (4.4.1).
The proof of the claim is a straightforward matter of bookkeeping. The sets J ′ ⊂ ∆P may

be considered as subsets of ∆, that is, as characters of the larger torus SP0 . Set

∆P = ∆− I so χQ∗ (SP) = ker(I)

∆Q = ∆− J so χQ∗ (SQ) = ker(J).

It follows that J = J ′ ∪ I (disjoint union) and that

Y = ker(J ′) ∩ χ∗
Q(SP) and Z = ker(∆P − J ′) ∩ χ∗

Q(SP).

To verify the claim we have to check that the subspaces Y and Z used to define the right
hand side of (4.4.1) agree with the subspaces (say, Y ′ and Z ′) used to define (p� β)|SP on
the left hand side. Clearly, Y = Y ′ = χQ∗ (SQ). Moreover,

Z ′ = ker(∆− J) ∩ χQ∗ (SP) = ker(∆− I − J ′) ∩ χQ∗ (SP) = ker(∆P − J) ∩ χQ∗ (SP)

which completes the proof of (4.4.1).

4.5. Kostant’s theorem. Fix a Cartan subgroup and a Borel subgroup, H(C) ⊂ B(C) ⊂
LQ(x0)(C). Let Φ+ = Φ+(H(C),G(C)) be the resulting system of positive roots for G and
let WQ = W (H(C),LQ(C)) be the Weyl group for LQ(C). For each w ∈WQ set

Φ+(w) =
{
α ∈ Φ+

∣∣ w−1α ∈ Φ−}
.

Then |Φ+(w)| = 2(w) is the length of w. The set

W 1
Q =

{
w ∈WQ

∣∣ Φ+(w) ⊂ Φ(H,NQ(C))
}

(4.5.1)

consists of the unique element of minimal length from each of the cosets WQx ∈ WQ\W
([Sp] §10.2, [V] §3.2.1). (Here, Φ(H,NQ(C)) denotes the set of (positive) roots which occur
in the nilradial NQ(C).) Let Λ be the highest weight of the irreducible representation ψ :
G → GL(E) and let Vµ be the irreducible LQ(C) module with highest weight µ. Then
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Kostant’s theorem ([K] §5.14, [V] §3.2.16) states that, as a representation of LQ, the Lie
algebra cohomology H∗(NQ, E) is given by

H∗(NQ, E) ∼=
⊕
w∈W 1

Q

Vw(Λ+ρ)−ρ[−2(w)]

where ρ = 1
2

∑
α∈Φ+ α is one-half the sum of the positive roots of G. (In this formula, we

view Vw(Λ+ρ)−ρ as a trivial complex concentrated in degree 0, so that Vw(Λ+ρ)−ρ[−2(w)] is
concentrated in degree 2(w). We use H∗ rather than H• to indicate that the cohomology is
viewed as a complex with trivial differential.)
It follows that the expression (4.3.1) may be rewritten as⊕

w∈W p
Q(E)

Wp�β(w)C
•
(XQ,Vw(Λ+ρ)−ρ)[2(w)] (4.5.2)

where the symbol Vα denotes the local system Vα ×ΓL
(Q/KQAQ)→ XQ which arises from

an irreducible representation Vα of LQ with highest weight α, and where

β(w) = (w(Λ + ρ)− ρ)|SQ ∈ χ∗
Q(SQ) (4.5.3)

W p
Q(E) =

{
w ∈W 1

Q

∣∣ β(w) ∈ χ∗
Q(SQ)≥p

}
. (4.5.4)

See [GHM] §11.5, §11.7. This gives the following
4.6. Corollary. Suppose E is an irreducible representation of G with highest weight Λ. Then
the restriction of the weighted cohomology sheaf to the closure XQ of the boundary stratum
XQ decomposes as the sum

WpC•(X,E)|XQ
∼=

⊕
w∈W p

Q(E)

Wp�β(w)C•−�(w)(XQ,Vw(Λ+ρ)−ρ).

5. Proof of Theorem 4.3

5.1. Special differential forms. Let Q ⊂ P be a rational parabolic subgroup, let eQ =
Q/KQAQ be the Borel-Serre boundary component and let YQ = ΓQ\eQ be the corresponding

stratum in the Borel-Serre compactification X̃ of X, with τ : eQ → YQ the projection. Let
E = E ×ΓQ

eQ be the local system on YQ arising from some irreducible representation

G → GL(E). Recall ([GHM] §12.3) that a differential form ωQ ∈ Ωi(YQ,E) is “invariant” if
its pullback τ ∗(ωQ) ∈ Ωi(eQ,E) is invariant under UQ. The invariant differential forms give
rise to a complex of sheaves Ω•

inv(YQ,E) on YQ.
Recall ([GHM] §13) that a differential i-form ω on X = Γ\D with values in E is called

special if for each stratum YQ of the Borel-Serre compactification X̃, there exists a neighbor-

hood of YQ in X̃ (which depends on the differential form ω), such that in this neighborhood,
the following two conditions hold:

11



1. the differential form ω is the pull-up of a differential form ωQ ∈ Ωi(YQ,E) from the
boundary stratum, via the geodesic retraction, and

2. the form ωQ is UQ-invariant, i.e. ωQ ∈ Ωi
inv(YQ,E).

We denote by Ω•
sp the complex of pre-sheaves of special differential forms on X, whose

sections over an open set U ⊂ X are

Γ(U ;Ω•
sp) =

{
ω ∈ Ω•(U,E)

∣∣∣∣ ω is the restriction to U
of a special differential form

}

Let Sh denote the sheafification functor, let j : X ↪→ X̃ be the inclusion of X into its

Borel-Serre compactification, and let π : X̃ → X denote the projection from the Borel-Serre
compactification to the reductive Borel-Serre compactification. Then

Ω̃
•
sp(X̃,E) = Sh(j∗Ω•

sp) (5.1.1)

is the complex of sheaves of special differential forms on X̃, and

Ω
•
sp(X,E) = π∗(Ω̃

•
sp(X̃,E)) (5.1.2)

is the complex of sheaves of special differential forms on X ([GHM] §13.8).
For any boundary stratum YQ ⊂ X̃ the restriction π|YQ : YQ → XQ is a smooth fiber

bundle with nilmanifold fiber π−1(x) ∼= NQ = (Γ ∩ UQ)\UQ. The complex C•(NQ,E) of UQ-
invariant differential forms along the fibers of π constitute a complex of flat vectorbundles
over the stratum XQ which is associated (see [GHM] §12.5) to the adjoint representation of
LQ on the (Koszul) complex

C•(NQ, E) = HomR(
∧•NQ, E) = HomC(

∧•NQ(C), E). (5.1.3)

In fact, the choice of basepoint x0 ∈ D determines an isomorphism ([GHM] §12.13)
C•(NQ,E) ∼= C•(NQ, E)×ΓL

(LQ/KQAQ). (5.1.4)

The theorem of Nomizu and van Est identifies the cohomology of this complex with the flat
vectorbundle on XQ which is determined by the representation of LQ on H∗(NQ,E).

5.2. Lemma. The restriction Ω
•
sp(X,E)|XQ of this sheaf to the closure of the boundary

stratum XQ decomposes as a direct sum

Ω
•
sp(X,E)|XQ

∼=
⊕
q+r=•

Ω
q

sp(XQ,C
r(NQ,E))

where the differential is given by the differential of the double complex.
12



5.3. Remark. In [GHM] §12.6, it is shown that the integrable connection on the vector-
bundle Cq(NQ,E) determines an isomorphism

Ω•
sp(X,E)|XQ

∼=
⊕
q+r=•

Ωq(XQ,C
r(NQ,E))

over the interior of the stratum XQ. The content of Lemma 5.2 is that this decomposition
extends over the closure of the stratum XQ.

5.4. Proof of Lemma 5.2. Restricting (5.1.2) to the closure XQ of the boundary stratum,
we have

Ω
•
sp(X,E)|XQ = π∗(Ω̃

•
sp(X̃,E)|ỸQ). (5.4.1)

where ỸQ is the closure in X̃ of the Borel-Serre stratum YQ. The sheaf Ω̃
•
sp(X̃,E)|ỸQ may

be canonically identified with the sheaf Ω̃
•
sp,inv(ỸQ,E) of UQ-invariant differential forms ωQ

on YQ (with values in E) which are “special” near each boundary stratum YP ⊂ ỸQ and for

which the resulting differential form ωP ∈ Ω•(YP ,E) is UP -invariant. The map π : ỸQ → X̃Q

(from the closure of the Borel-Serre boundary stratum to the closure of the reductive Borel-

Serre boundary stratum) factors through the Borel-Serre compactification X̃Q of XQ as the
composition,

ỸQ
α−−−→ X̃Q

β−−−→ XQ. (5.4.2)

The map α is a fibration with fiber NQ and the integrable connection on α|YQ = π|YQ :

YQ → XQ extends to an integrable connection on the closure, ỸQ → X̃Q. It may be verified

that for any boundary stratum YP ⊂ ỸQ, the geodesic retraction to YP preserves the flat
connection on YQ. It follows that the isomorphism [GHM] §(12.6),

T•
Q = π∗Ω

•
inv(YQ,E) ∼=

⊕
q+r=•

Ωq(XQ,C
r(NQ,E)) (5.4.3)

extends uniquely to an isomorphism

α∗Ω̃
•
sp,inv(ỸQ,E) ∼=

⊕
q+r=•

Ω̃
q

sp(X̃Q,C
r(NQ,E)). (5.4.4)

Now apply β∗ to obtain an isomorphism,

Ω
•
sp(X,E)|XQ

∼= β∗α∗(Ω̃
•
sp,inv(ỸQ,E))

∼=
⊕
q+r=•

β∗Ω̃
q

sp(X̃Q,C
r(NQ,E)) by (5.4.4)

∼=
⊕
q+r=•

Ω
q

sp(XQ,C
r(NQ,E)) by (5.1.2).

This completes the proof of Lemma 5.2. �
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5.5. The flat bundle C•(NQ,E) decomposes ([GHM] §12.8.1) as a sum of flat subbundles,

C•(NQ,E) ∼=
⊕

β∈χ∗
Q
(SQ)

C•(NQ,E)β (5.5.1)

according to the weights of SQ. The weight subbundle ([GHM] §12.9) is defined to be

C•(NQ,E)≥p =
⊕

β∈χ∗
Q
((SQ)≥p

C•(NQ,E)β (5.5.2)

(where p denotes the weight profile chosen in Theorem 4.3).
Recall ([GHM] §14) that the weighted cohomology sheaf is defined to be the subsheaf of

Ω
•
sp(X,E) (5.1.2) which is obtained by truncating with respect to the weight profile p on

G. In other words, it is the unique subsheaf such that for every boundary stratum XP ,

WpC•(X,E)|XP = (T•
P )≥p =

⊕
q+r=•

Ωq(XP ,C
r(NP ,E)≥p), (5.5.3)

the identification being determined by the choice of basepoint x0 ∈ D. If β ∈ χ∗
Q(SQ) then

the weight profile p� β (4.2.1) is defined on LQ.

5.6. Definition. Using Lemma 5.2, define the subsheaf Θ• ⊂ Ω•
sp(X,E)|XQ as follows:

Θ• =
⊕

β∈χ∗
Q
(SQ)≥p

⊕
q+r=•

Wp�βCq(XQ,C
r(NQ,E)β) ⊂

⊕
q+r=•

Ω
q

sp(XQ,C
r(NQ,E)) (5.6.1)

5.7. Lemma. For any boundary stratum XP ⊆ XQ the restriction

Θ•|XP ⊂ Ω
•
sp(X,E)|XP

coincides with the subsheaf

(T•
P )≥p =

⊕
q+r=•

Ωq(XP ;C
r(NP ,E)≥p).

Consequently,
Θ• = WpC•(X,E)|XQ. (5.7.1)

5.8. Proof. First consider the case P = Q. The restriction Θ•|XQ is given by

Θ•|XQ =
⊕

β∈χ∗
Q
(SQ)≥p

⊕
q+r=•

Ωq(XQ,C
r(NQ,E)β) (5.8.1)

since the weight conditions at the edge of XQ do not affect the sections of this sheaf over
the interior of XQ. But this is precisely the weight subcomplex (T •

Q)≥p.

Now suppose that P ⊂ Q is a proper parabolic subgroup. As in §3.3, set P = νQ(P). Con-
sider the restriction to XP of a single weighted cohomology sheaf Wp�βC

q
(XQ,C

r(NQ,E)β)
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which occurs in (5.6.1). The choice of basepoint x0 ∈ D determines an isomorphism (5.5.3)
between this restriction and⊕

a+b=r

⊕
γ∈χ∗

Q
(SP)≥p�β

Ωq(XP ,C
a(NP ,C

b(NQ,E)β)γ).

Thus we obtain an identification

Θ•|XP
∼=

⊕
β∈χ∗

Q
(SQ)≥p

⊕
q+r=•

⊕
a+b=r

⊕
γ∈χ∗

Q
(SP)≥p�β

Ωq(XP ;C
a(NP ;C

b(NQ,E)β)γ) (5.8.2)

Let us compare this with (T •
P )≥p. It suffices to show that the coefficient subbundles coincide.

This amounts (by (5.1.4)) to comparing the following two representations of LP:

Θ =
⊕
a+b=r

⊕
β∈χ∗

Q
(SQ)≥p

⊕
γ∈χ∗

Q
(SP)≥p�β

Ca(NP , C
b(NQ,E)β)γ) (5.8.3)

and

Cr(NP , E)≥p. (5.8.4)

The basepoint also determines a splitting i : UP → UP of the sequence

1→ UQ → UP → UP → 1

and hence a decomposition NP
∼= NP ⊕NQ. Therefore, we obtain an isomorphism

C•(NP , E) = Hom(∧•NP , E) ∼=
⊕
a+b=•

Hom(∧aNP ,Hom(∧bNQ, E)) (5.8.5)

and hence an isomorphism

Cr(NP , E)≥p
∼=

⊕
a+b=r

Ca(NP ;C
b(NQ, E))≥p (5.8.6)

where “≥ p” indicates the direct sum of those SP-isotypical components with weights α ∈
χ∗
Q(SP)≥p.
Now it is important to keep track of which simple roots are involved in the weight trunca-

tions. The parabolic subgroup Q corresponds to a subset J ⊂ ∆P of the simple roots with
χQ∗ (SQ) = ker(J). The elements of ∆P−J restrict to a linearly independent set ∆Q ⊂ χ∗

Q(SQ)
and determine a basis of χ∗

Q(S
′
Q). The elements of J may be identified with the set ∆P of

simple (rational) roots of SP occurring in the unipotent radical of P.
Let α ∈ χ∗

Q(SQ) and let β = α|SQ. By taking X = χQ∗ (SP), Y = ker(J) = χQ∗ (SQ) and
Z = ker(∆P − J), and by forming the restriction p|SP ∈ χ∗

Q(SP), the construction of §2
defines an element (p|SP) � β ∈ χ∗

Q(SP) such that (p|SP) � β(y + z) = β(y) + p(z) for all
y ∈ Y and z ∈ Z. By (4.4.1), this agrees with the restriction (p�β)|SP of the weight profile
p � β ∈ χ∗

Q(SP0) defined in §4.2, so we may refer to it simply as p � β. Let γ ∈ χ∗
Q(SP)
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be the element corresponding to α ∈ χ∗
Q(SP)) under the canonical isomorphism SP

∼= SP.
Then Proposition 2.2 says:

α ∈ χ∗
Q(SP)≥p(∆P ) iff β ∈ χ∗

Q(SQ)≥p(∆Q) and γ ∈ χ∗
Q(SP)≥p�β(∆P ). (5.8.7)

Let us regard the double complex (5.8.6) as a module over LP and decompose it into
SP-isotypical components. We obtain

Cr(NP , E)≥p(∆P )
∼=

⊕
a+b=r

⊕
β

⊕
γ

Ca(NP , C
b(NQ, E)β)γ

where the second sum is over those β ∈ χ∗
Q(SQ)≥p(∆Q

) and the third sum is over those
γ ∈ χ∗

Q(SP)≥p�β(∆P ). This is exactly (5.8.3).
It is easy to see that the isomorphisms and splittings are compatible, so that the repre-

sentations (5.8.3) and (5.8.4) are actually the same subspace of Cr(NP , E). In fact, as in
[GHM] §10.4, these splittings do not depend on the choice of basepoint. This completes the
proof of Lemma 5.7. �

5.9. Proof of Theorem 4.3. By [GHM] §12.15 the complex of local systems C•(NQ,E)β
is quasi-isomorphic to its cohomology sheaves, H∗(NQ,E)β (where we use ∗ rather than • to
indicate that this is to be considered a complex of sheaves with trivial differentials). From
(5.6.1) this determines a quasi-isomorphism

Θ• ∼=
⊕

β∈χ∗
Q
(SQ)≥p

⊕
q+r=•

Wp�βC
q
(XQ,H

r(NQ,E)β). (5.9.1)

On the other hand, (5.7.1) identifies Θ• with the desired weighted cohomology complex. �

6. Local intersection cohomology

6.1. Baily-Borel compactification. In this section we suppose (until §6.11) that G is a
semi-simple Q-algebraic group, and that D = G/K is a Hermitian symmetric space (where
K ⊂ G is a maximal compact subgroup corresponding to a choice of basepoint x0 ∈ D).

Let Φ : X → X̂ be the projection from the reductive Borel-Serre compactification of X =
Γ\G/K to the Baily-Borel Satake compactification ([Z3], [GHM] §22). Fix a boundary

stratum F ⊂ X̂. Then F corresponds to a Γ-conjugacy class of proper maximal rational
parabolic subgroups of G, from which we choose one and denote it by Q. Let us consider
the reductive Borel-Serre stratum XQ to be a locally symmetric space associated to the
connected reductive algebraic group LQ (3.2. By [AMRT] III §4 (see also [LR] §6.1) the
group LQ decomposes as an almost direct product,

LQ = QhQ�

of commuting algebraic subgroups with finite intersection. The compact factors (if any) of
LQ may be distributed among Qh and Q� so that both Qh and Q� are defined over Q. The
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group Qh acts by holomorphic automorphisms of the boundary component F. It contains
no rational anisotropic subgroup of positive dimension. The group Q� is reductive with
split center SQ, and it acts by linear automorphisms on a certain self-adjoint homogeneous
symmetric cone. Set

KQ = K ∩Q ⊂ K� ⊂ LQ(x0) ΓL = νQ(Γ ∩Q)
K� = KQ ∩Q� Kh = µ(KQ)

Γ� = ΓL ∩Q� Γh = µ(ΓL)

where νQ : Q → LQ and µ : LQ → Qh are the projections. Then the boundary stratum
F is diffeomorphic to Γh\Qh/Kh. For any x ∈ F , a choice of q ∈ Qh which projects to x
determines a stratum preserving homeomorphism ([GHM] §22.6),

f q : Φ
−1(x)→ X� (6.1.1)

(which is smooth on each stratum) between the fiber Φ−1(x) and the reductive Borel-Serre
compactification of the locally symmetric space

X� = Γ�\Q�/AQK�. (6.1.2)

The restriction (Φ|XQ) : XQ → F agrees with the projection determined by µ.

6.2. Weight profiles. A weight profile for LQ = QhQ� determines weight profiles for Qh

and Q�. In fact, if S0h ⊂ Qh and S0� ⊂ Q� are maximal Q-split tori then their product defines
a maximal Q-split torus S0L in LQ and a canonical isomorphism χ∗

Q(S0L) ∼= χ∗
Q(S0h) ⊕

χ∗
Q(S0�). So for any weight profile p for LQ we may speak of the weight profile p which is

obtained by restriction to the linear factor Q�.
Now, fix an algebraic irreducible representation G → GL(E) with highest weight Λ. It

determines a local system E on X and by restriction, a local system (which we also denote
by E) on X�. An irreducible LQ-module Vα of highest weight α may be considered, by
restriction, as a module over Q� and hence determines a local system Vα over the space X�.
The following is the second main result in this paper.

6.3. Theorem. Let p be a weight profile for the reductive Borel-Serre compactification, X of
X = Γ\G/K. Let RΦ∗WpC•(X,E) denote the pushforward of the weighted cohomology sheaf

to the Baily-Borel compactification X̂. Let F ⊂ X̂ be a boundary component, corresponding
to a maximal rational parabolic subgroup Q ⊂ G. Then the stalk cohomology Hk

x(RΦ∗WpC•)
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of this sheaf at a point x ∈ F ⊂ X̂ is given by⊕
β∈χ∗

Q
(SQ)≥p

⊕
i

W p�βHk−i(X�;H
i(NQ, E)β) (6.3.1)

∼=
⊕

w∈W p
Q(E)

W p�β(w)Hk−�(w)(X�;Vw(Λ+ρ)−ρ) (6.3.2)

where χ∗
Q(SQ)≥p is given by (3.5.1), β(w) is given by (4.5.3), and W p

Q(E) is given by (4.5.4).

6.4. Proof. Since Φ : X → X̂ is proper, the stalk cohomology of RΦ∗WpC•) at a point

x ∈ X̂ is canonically isomorphic to the cohomology of the fiber, H∗(Φ−1(x);WpC•(E)). If

F denotes the stratum of X̂ which contains x and if Q denotes a corresponding maximal
rational parabolic subgroup of G, then Φ−1(F ) is a union of strata in XQ and the restriction
Φ : Φ−1(F ) → F is a fiber bundle. Using the Poincaré lemma, it is not hard to show
that the restriction of the weighted cohomology sheaf WpC•(XQ;E

′) to a fiber Φ−1(x) is

quasi-isomorphic to the weighted cohomology sheaf WpC•(X�;E) (where p also denotes the
restriction of the weight profile to the linear factor.) Thus,

Hk(Φ−1(x);WpC•(E)) ∼= Hk(Φ−1(x);WpC•(E)|XQ)

∼= Hk(Φ−1(x);
⊕

w∈W p
Q(E)

Wp�β(w)C•(XQ;Vw(Λ+ρ)−ρ))[2(w)]

∼=
⊕

w∈W p
Q(E)

W p�β(w)Hk−�(w)(Φ−1(x), Vw(Λ+ρ)−ρ)

by (4.5.2), as desired. �
6.5. Corollary. Let p = µ or p = ν denote the upper middle or lower middle weight profile,
respectively (3.6). Let ρQ = ρ|SQ be the restriction of ρ. Then the stalk cohomology of the

intersection cohomology, at a point x ∈ F ⊂ X̂ is given by Theorem 6.3. In other words,

IHk
x(X̂,E) ∼=

⊕
β≥−ρQ

⊕
i

Wp�βHk−i(Γ�\Q�/AQK�;H
i(NQ, E)β). (6.5.1)

The first sum may be replaced by
⊕

β>−ρQ
.

This expression may also be evaluated as in (6.3.2) using Kostant’s theorem and it may be
translated as in §3.10 into Lie algebra cohomology.

6.6. Proof. The proof follows by combining Theorem 6.3 above and Theorem 23.2 of [GHM]
which constructs a canonical isomorphism

RΦ∗WµC•(E) ∼= RΦ∗WνC•(E) ∼= IC•(X̂,E) (6.6.1)
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between the pushforward of the middle weighted cohomology on X with the intersection
cohomology of X̂. �
Taking p = −∞ gives the following well known result [LR], the étale version of which is

proven in [P1], [P2]:

6.7. Corollary. Let ı̂ : X ↪→ X̂ be the inclusion of the locally symmetric space into the
Baily-Borel compactification. Then the stalk cohomology of the sheaf Rı̂∗(E) is given by

Hk
x(Rı̂∗(E)) ∼=

⊕
w∈W 1

Q

Hk−�(w)(Γ�;Vw(Λ+ρ)−ρ).

Here, W 1
Q is given by (4.5.1), and Vα is the irreducible LQ-module with highest weight α.

It is considered as a module over Γ� by way of the inclusion Γ� ⊂ ΓL = νQ(ΓQ) ⊂ LQ.

6.8. Proof. In Theorem 6.3, take p = −∞ to be the weight profile which involves no
truncation. Then W p

Q(E) = W 1
Q. The weighted cohomology W pH i(X�;Vα) is equal to the

ordinary cohomology of X�, (with coefficients in Vα) which (since Γ is neat) in turn coincides
with the group cohomology H i(Γ�, Vα). �

6.9. Remarks. The vanishing of the stalk cohomology of the intersection cohomology, and
more generally, the purity theorem of Looijenga (i.e. that the stalk cohomology in degree i
of the intersection cohomology has weight ≤ i) may be translated into vanishing theorems
for certain weighted cohomology groups of the fibers Φ−1(x) using Theorem 6.3. A general
framework for such vanishing theorems has been developed in [S]. See [B2] for a related
vanishing theorem for the L2 cohomology of linear locally symmetric spaces.

6.10. Mixed Hodge weights. By [LR], the direct sum (6.5.1) over β ∈ χ∗
Q(SQ) is a

splitting of the weight filtration (on the stalk cohomology) which comes from Saito’s theory
of mixed Hodge modules.

6.11. The L2 Euler characteristic. When G/K is Hermitian, the Zucker conjecture
([L],[SS]) implies that the L2 cohomology Euler characteristic L2χ(Γ, E) is equal to the inter-
section cohomology Euler characteristic of the Baily-Borel compactification, i.e. L2χ(Γ, E) =

Iχ(X̂,E) =
∑

i(−1)i dim IH i(X̂,E). By (6.6.1) this is equal to the Euler characteristic of
the weighted cohomology complex of the reductive Borel-Serre compactification,

L2χ(Γ, E) =
∑
i

(−1)i dimW µH i(X,E) (6.11.1)

In fact this relation holds more generally. Suppose only that G is a reductive Q-algebraic
group such that the derived group of G possesses a compact Cartan subgroup. Then
W µH∗(X,E) is isomorphic to the L2 cohomology of Γ by [N], and therefore (6.11.1) holds.
As in [GM1], (6.11.1) is equal to a sum over strata of X, with the contribution from a

single stratum XP being given by the compactly supported Euler characteristic χc(XP ) of
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the stratum XP times the stalk Euler characteristic of the weighted cohomology at any point
x ∈ XP . Moreover, χc(XP ) = χ(XP ). Let P1,P2, . . . ,Pl be a collection of representatives,
one from each Γ−conjugacy class of proper rational parabolic subgroups of G. For each
representative Pj, let ΓLj

= ν(Γ∩Pj) be the projection of Γ∩Pj to the Levi quotient. Since
Γ is neat, the Euler characteristic χ(XPj

) = χ(ΓLj
) is equal to the Euler characteristic of

the discrete group ΓLj
. Let V

(j)
α be the irreducible Lj-module with highest weight α. Let

us suppose that E is the local system associated to an irreducible representation of G with
highest weight Λ. Evaluating (3.5.3) using Kostant’s theorem gives the following formula
(which is in [GHM] §17.9, [S] for Hermitian X):

6.12. Theorem. Let G be a reductive Q-algebraic group and suppose the derived group of
G has a compact Cartan subgroup. Them the Euler characteristic of the L2 cohomology of
the locally symmetric space X = Γ\G/AGK is given by

L2χ(Γ, E) = χ(Γ) dim(E) +

l∑
j=1

χ(ΓLj
) ·

∑
w∈Wµ

Pj

(−1)�(w) dim(V
(j)
w(Λ+ρ)−ρ)

7. Computations for Sp4

7.1. The symmetric space. Throughout this section we fix a prime p ≥ 3 and we take
Γ = Γ(p) to be the principal congruence subgroup of Sp4(Z) consisting of matrices which are
congruent to the identity modulo p. Define X = Γ\Sp4(R)/U2 to be the associated (real)

6-dimensional Hermitian locally symmetric space. The Baily-Borel compactification X̂ has
boundary strata of real dimension 2 and of real dimension 0. In this section we will compute

the intersection Euler characteristic of X̂ and also the local L2 (or intersection) cohomology

(with constant coefficients) at a most singular point (i.e. at a 0-dimensional stratum) of X̂.

Denote by Φ : X → X̂ the projection from the reductive Borel-Serre compactification to the
Baily-Borel compactification. Let h denote the upper half plane.

7.2. Parabolic subgroups. There are three types of rational proper parabolic subgroups
P of G.

(A) P is the stabilizer of a rational 1-dimensional (and hence isotropic) subspace F 1 ⊂ Q4.
Such a parabolic subgroup is maximal with Hermitian Levi factor L = Ph. The
associated reductive Borel-Serre stratum XP is (real) 2-dimensional, in fact it is a
modular curve.

(B) P is the stabilizer of a rational Lagrangian subspace F 2 ⊂ Q4. Such a parabolic
subgroup is maximal with linear Levi factor L = P�. The associated reductive Borel-
Serre stratum XP is (real) 2-dimensional and is diffeomorphic to a modular curve.

(C) P is a rational Borel subgroup: it is the stabilizer of a rational isotropic flag F 1 ⊂
F 2 ⊂ Q4. The associated reductive Borel-Serre stratum XP is a point. Such a point
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is simultaneously a cusp for a single type A stratum and a single type B stratum in
the reductive Borel-Serre compactification.

The projection Φ takes each type A stratum XP ⊂ X isomorphically to a (real) two dimen-

sional stratum YP ⊂ X̂. The projection Φ collapses each type B stratum XP to a single point

in X̂. The preimage Φ−1(x) of such a point is the reductive Borel-Serre compactification of
the type B stratum XP , and it is obtained by adding type C strata as cusps of XP .

7.3. Consider the case of the trivial local system E = C. By Corollary 6.5, the L2 coho-

mology, or the intersection cohomology of X̂ is isomorphic to either of the middle weighted
cohomology groups of X. In fact, the upper and lower middle weight profiles µ, ν give rise
to the same weighted cohomology sheaf on X since in this case, the middle weight does not
appear in the NP cohomology for any parabolic subgroup P .

7.4. First we consider the weighted Euler characteristic. Let ni be the number of Γ(p)-
conjugacy classes of rational parabolic subgroups of type i (for i = A,B,C). Let Γi denote
the projection of Γ into the Levi quotient L = P/UP for each parabolic subgroup P of type
i = A,B,C. Let

χi =
∑
w∈Wµ

P

(−1)�(w)dim(Vwρ−ρ)

be the factor which appears in Theorem (6.12) and which arises from a parabolic subgroup

P of type i = A,B,C. Then the Euler characteristic of the intersection cohomology of X̂ is
given by

Iχ(X̂) = χ(Γ) + nAχ(ΓA)χA + nBχ(ΓB)χB + nCχ(ΓC)χC (7.4.1)

7.5. These constants will now be evaluated. From the root system for Sp4 we find

χA = −1, χB = −2, χC = −1. (7.5.1)

The groups ΓA and ΓB both turn out to be Γ(p) ⊂ SL2(Z), i.e. the principal congruence
subgroup consisting of elements which are congruent to the identity modulo p. The modular
curve Γ(p)\h has (p2 − 1)/2 cusps ([Sh] Lemma 1.42) and Euler characteristic

χ(ΓA) = χ(ΓB) = −1

2

(
p+ 1

3

)
(7.5.2)

by [Sh] (1.6.4). From this we conclude that

dim(H1(ΓA)) =
1

2

(
p+ 1

3

)
+ 1 (7.5.3)

Each type C boundary component is simultaneously a cusp of a type A boundary component
and of a type B boundary component of the reductive Borel-Serre compactification so nA =
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nB and nC = nA(p
2 − 1)/2. Moreover, nC is the number of double cosets B(Z)\Sp4(Z)/Γ

which is (p4 − 1)(p2 − 1)/4 (where B denotes the standard Borel subgroup), hence

nA =
p4 − 1

2
nB =

p4 − 1

2
nC =

(p4 − 1)(p2 − 1)

4
(7.5.4)

Finally, Harder’s Gauss-Bonnet formula ([H], p.453) gives χ(Γ) = ζ(−1)ζ(−3) · |Sp4(Fp)|
(where ζ is Riemann’s zeta function), which is

−p4(p− 1)(p+ 1)(p4 − 1)

25 · 32 · 5 . (7.5.5)

(Note that this an integer precisely when p ≥ 3, i.e. when Γ is neat.) From (7.4.1), (7.5.1),
(7.5.4) and (7.5.5), we obtain

7.6. Theorem. The Euler characteristic of the intersection cohomology of the Baily-Borel
compactification is

Iχ(X̂) =
(p4 − 1)(p2 − 1)

23

( −p4

22 · 32 · 5 + p− 2

)
(7.6.1)

7.7. Stalk cohomology. Now consider the stalk cohomology of the intersection cohomol-

ogy at a 0-dimensional boundary stratum in X̂. By Corollary 6.6, this is a sum of two
weighted cohomology groups of a boundary stratum of type B,

IH i
x
∼= WH i(Γ(p)\h;H0(NP ))⊕WH i−1(Γ(p)\h;H1(NP )) (7.7.1)

A calculation with the root system for Sp4 shows that the weight profile for the first factor
(with coefficients in the trivial local system H0(NP )) involves no cutoff at all, while the
weight profile for the second factor cuts off all the stalk cohomology in degree 1 at each cusp
point, so

IH i
x
∼= H i(Γ(p)\h;C)⊕ IH i−1(Γ(p)\h;H1(NP )) (7.7.2)

The cohomology groups of the first term were computed in (7.5.3). We will use two tricks
to evaluate the second factor. First, the local system H1(NP ) has weight χ

−2, where χ is
the canonical positive generator of the character group of AP . In fact, it is the irreducible 3-
dimensional representation of SL2. By Looijenga’s purity theorem, weight 2 classes cannot
occur in the stalk of the intersection cohomology except in degree 2 or more. Therefore
IH0(Γ(p)\h;H1(NP )) = 0. Also, IH2(Γ(p)\h;H1(NP )) = 0 since IH3

x = 0 by the usual
vanishing property for intersection cohomology. Therefore the second factor in (7.7.2) is
completely determined by the Euler characteristic of this (compactified) modular curve,
which we now calculate: the stalk of the intersection cohomology at each cusp point has
cohomology C in degree 0, and 0 in all other degrees. So each cusp contributes 1 to the
Euler characteristic while the interior contributes dim(H1(NP )).χ(Γ(p)). Hence,

Iχ(Γ(p)\h;H1(NP )) = −3

2

(
p+ 1

3

)
+
p2 − 1

2
(7.7.3)
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7.8. Theorem. The Betti numbers of the stalk intersection cohomology at a 0-dimensional
stratum of X̂ are given by:

dim(IH0
x) = 1

dim(IH1
x) =

1

2

(
p+ 1

3

)
+ 1

dim(IH2
x) =

3

2

(
p+ 1

3

)
− (p2 − 1)

2

7.9. Remark. The same result holds with p replaced by an arbitrary integer N , provided
N is sufficiently large.

7.10. Remark. For p = 3 we obtain the local intersection cohomology Betti numbers Iβ0 =
1, Iβ1 = 3, Iβ2 = 2. These numbers agree with the intensive computations which were
carried out by M. McConnell on the Symbolics computer at Brown University in 1986.

7.11. Discrete series multiplicities. The computation of the intersection Euler character-
istic (7.6.1) gives some information about multiplicities. The group Sp4(R) has two discrete
series representations with nonzero (g, K)-cohomology (see [T] for a list of all representations
with cohomology and for other facts used below). Let us denote these πH (belonging to the
holomorphic discrete series) and πW (having a Whittaker model). Via the isomorphisms

IH i(X̂) ∼= H i
(2)(X) ∼= H i(g, K;L2

dis(Γ(p)\G))
both of these contribute to IH3 (in bidegrees (3, 0), (0, 3) and (2, 1), (1, 2) respectively). Here
L2
dis stands for the discrete spectrum of the L2 space. The other representations of Sp4(R)

with cohomology contribute in degrees 0, 2, 4, 6. Using the decomposition of the discrete
spectrum we write

Iχ(X̂) =
∑
π

mdis(π, p)
∑
i

(−1)idim H i(g, K; π) =
∑
π

mdis(π, p)χ(π)

where mdis(π, p) is the multiplicity of π in the discrete spectrum of Γ(p) and χ(π) is the
(g, K)-Euler characteristic. If π is not either πH or πW then χ(π) is positive while χ(πH) =
χ(πW ) = −2. It follows that

2(mdis(π
H , p) +mdis(π

W , p))

is at least as large as the negative of (7.6.1). Since πH and πW are tempered, an observation of
Wallach [W] implies that mdis(π

H , p) = mcusp(π
H , p) (multiplicity in the cuspidal spectrum)

and similarly for πW . So
mcusp(π

H , p) +mcusp(π
W , p)

is at least
(p4 − 1)(p2 − 1)
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(
p4

22 · 32 · 5 − p+ 2

)
.
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(This is positive for p > 3.) Hence, for p > 3, there are nonzero cusp forms with infinity
type either πW or πH .
In particular, in the adelic situation, there is an irreducible admissible representation π of

the group Sp4(Af ) of finite adeles such that mcusp(π⊗πH)+mcusp(π⊗πH) > 0 (where mcusp

now stands for multiplicity in L2
cusp(Sp4(Q)\Sp4(A))). To such a π Taylor [T] has associated

a representation of Gal(Q/Q) occurring in degree 3 2-adic cohomology of the associated
Shimura variety. (Under the added hypothesis that both multiplicities mcusp(π ⊗ πH) and
mcusp(π ⊗ πH) are positive, Taylor shows it to have the correct characteristic polynomial
of Frobenius at many primes. However one would need a Hodge (p, q) analog of (7.6.1) in
order to verify this hypothesis by evaluating these multiplicities.)
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