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Abstract

In this paper we study the cross-correlation function values of the family of geo-

metric sequences obtained from q-ary m-sequences. These values are determined by

counting the points of intersection of hyperplanes and quadric hypersurfaces of a finite

geometry. The results are applied to obtain the cross-correlations of m-sequences and

GMW sequences with different primitive polynomials.
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1 Introduction

In an earlier paper which was published in this journal, R. Games [4] calculated the cross-

correlation values between an m-sequence and a GMW sequence based on the same primitive

polynomial. He posed the problem of calculating these cross-correlation values when the m-

sequence and the GMW sequence are based on different primitive polynomials. In this paper

we solve Games’ problem together with a number of similar problems for a wide variety of

related pseudorandom binary sequences.

We will be concerned with a binary sequence S which is generated from a q-ary m-

sequence U followed by a nonlinear “feedforward” function f : GF (q) → GF (2), where

q is a power of a prime. This is a very general class of binary pseudorandom sequences

which includes m-sequences [6], GMW sequences [7], geometric sequences [2], and bent

sequences [12], and is closely related to No’s sequences [9]. Sequences of this type have

many applications in modern communication systems and cryptography ([14], [15]). For

example, Chan and Games [2] show that if q is chosen to be a power of an odd prime, then

the linear complexity of the resulting binary pseudorandom sequence is enormous. These

geometric sequences are therefore natural choices for stream cipher systems. One of the

consequences of our analysis is that the average autocorrelation values for the geometric

sequences based on odd primes q is q−2 which may be unacceptably high in applications

involving large amounts of data.
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For ease of exposition, we shall use the term “geometric sequence” for any binary pseudo-

random sequence of the type described above, whether q is even or odd, although the results

in the even and odd cases are quite different. We will consider (a) the cross-correlation func-

tion values of geometric sequences which are obtained from the same q-ary m-sequence but

different nonlinear feedforward functions and (b) the cross-correlation function values of ge-

ometric sequences that are obtained from different q-ary m-sequences and possibly different

nonlinear feedforward functions.

The technique in this paper allow us to compute the cross-correlations of a wide variety

of types of geometric sequences, in a unified way. It is based on counting the points of

intersection of hyperplanes and quadric hypersurfaces in a finite geometry, and was inspired

by the beautiful exposition of Gold codes in [11] and by the analysis of quadrics related to

m-sequences in [5]. (More general correlation problems will involve the counting of points of

intersection of hyperplanes and hypersurface of higher degrees. We have some hope that the

recent technical advances of Kumar and Moreno [9] may be used to solve these problems.)

As an application we find (in Section 8) the periodic cross-correlation of an m-sequence

and a GMW sequence based on different primitive polynomials, a problem posed by Games

[4]. The correlations are three-valued. There are a number of interesting families of geometric

sequences with low cross-correlation and our investigations in Section 3 only scratch the

surface of this fascinating topic.
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In Section 2 we recall the definition and basic properties of geometric sequences, state the

main theorem (Theorem 2) on quadratically decimated geometric sequences, together with

the analogous but simpler result (Theorem 1) on linearly decimated geometric sequences. In

Section 3 we consider several families of geometric sequences and indicate how Theorem 2

may be used to calculate the cross-correlation between any two sequences in the same family.

We also point out that there is an interesting open problem involving the cross-correlation

of families of generalized geometric sequences which are derived from Gold sequences.

Theorems 1 and 2 are proven in similar ways, but Theorem 2 is technically more difficult

since it depends on an understanding of the intersection of a quadric with a hyperplane,

while Theorem 1 involves only the intersections of hyperplanes. Section 4 contains the proof

of Theorem 1, together with the relevant material on hyperplanes in a finite geometry. It is

a model for the proof of Theorem 2, which constitutes the bulk of this paper. In Sections 5

and 6, we develop the mathematical tools in number theory and theory of quadratic forms

that are needed in the proof of Theorem 2. It turns out that we need to know more than

the classification of quadrics ([10]) in a finite geometry: we need to classify and count the

number of different configurations involving a quadric and a hyperplane.

Section 7 contains the proof of Theorem 2. In Section 8 we apply our results to obtain the

cross-correlation function of an m-sequence and a GMW-sequence with different primitive

polynomials. We find that these cross-correlation functions are three-valued.
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2 Geometric Sequences and Correlations

In this section we recall the definition of the geometric sequences and list their basic prop-

erties. We summarize our main result on their cross-correlation functions. Throughout this

paper, q will denote a fixed power of a fixed prime p, and GF (q) will denote the Galois field

of q elements.

Let n be a positive integer and let α and β be primitive elements of GF (qn) with β = αk

(so k is relatively prime to qn−1). The q-ary m-sequences Ur = Trqn

q (αr) and Vr = Trqn

q (βr)

are related by a decimation, Vr = Ukr. Now let f and g be (nonlinear) functions from GF (q)

to GF (2). We consider the geometric sequences [2]

Sr = f(Trqn

q (αr)) and Tr = g(Trqn

q (βr)) = g(Trqn

q (αkr)). (1)

These are (qn − 1)-periodic binary sequences. We say the sequence T is related to the

sequence S with decimation (or exponent) k (and a change of feedforward function).

The periodic cross-correlation function of S and T is the function whose value at τ is

the correlation of the τ -shift of S with T, represented by

θS,T(τ) =
qn−1∑
r=1

(−1)Sr+τ (−1)Tr .

The object of this paper is to compute the cross-correlation function of S and T. In this

paper we consider two types of values for the decimation k:

1. k = 2e is a power of 2: we say that the underlying m-sequences are related by a linear



2 GEOMETRIC SEQUENCES AND CORRELATIONS 6

decimation.

2. k = qi + qj for 0 ≤ i ≤ j < n (and i �= j if q = 2): we say that k has q-adic weight 2,

and that Vr is a quadratic decimation of the m-sequence Ur.

Notice that in case (2), since Vr is an m-sequence we must have gcd(k, qn − 1) = 1. This

implies that q is even, i.e. the characteristic of the field GF (q) is p = 2. We will therefore

make this an underlying assumption in our analysis of quadrics and quadratic forms.

The determination of the cross-correlation of geometric sequences is the main result in

this paper. The answer involves the imbalance

I(f) =
∑

u∈GF (q)

F (u)

and the short cross-correlation function,

∆e
a(f, g) =

∑
u∈GF (q)

F (au)G(upe

)

where F (u) = (−1)f(u), G(u) = (−1)g(u), and a ∈ GF (q).

Theorem 1 Let S and T denote the geometric sequences defined in Equation (1), with q a

power of an arbitrary prime p. Suppose T is linearly related to S with decimation k = pe.

Then the values for the periodic cross-correlation are:

1. θS,T(τ) = qn−2I(f)I(g) − F (0)G(0) which occurs for qn − q values of τ , whenever

ατ �∈ GF (q)
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2. θS,T(τ) = qn−1∆e
a(f, g) − F (0)G(0) which occurs once for each nonzero value of a,

where a = α−τ ∈ GF (q)

In particular, the autocorrelation function of the geometric sequence S is

θS,S(τ) =




qn−2I(f)2 − 1 if ατ �∈ GF (q)

qn−1∆e
a(f, f) − 1 if ατ = a ∈ GF (q)

Theorem 2 Let S and T denote the geometric sequences defined in Equation (1), with

q even. Suppose T is quadratically related to S with decimation k = qi + qj. Let m =

n − gcd(n, j − i). Then m is even and the values for the periodic cross-correlation function

θS,T(τ) are:

1. θS,T(τ) = qn−2I(f)I(g) − F (0)G(0) which occurs for qn − qm+1 + qm − 1 values of τ .

2. θS,T(τ) = (qn−2 − qn−m/2−2)I(f)I(g) + qn−m/2−1∆1
a(f, g) − F (0)G(0) which occurs for

(qm + qm/2)/2 values of τ for each nonzero a ∈ GF (q).

3. θS,T(τ) = (qn−2 + qn−m/2−2)I(f)I(g) − qn−m/2−1∆1
a(f, g) − F (0)G(0) which occurs for

(qm − qm/2)/2 values of τ for each nonzero a ∈ GF (q).

Remarks on Theorem 1. Geometric sequences with q odd have important applica-

tions to stream cipher systems because of their enormous linear complexity (see [2]). How-

ever, in this case the imbalance I(f) cannot be 0. Theorem 1 indicates that the periodic



2 GEOMETRIC SEQUENCES AND CORRELATIONS 8

autocorrelation function for these sequences is unacceptably high. On the other hand, if

the characteristic p is 2, then by choosing f and g appropriately as above we can guarantee

that I(f) = I(g) = 0 and that |∆e
a(f, g)| ≤ √

2q. The cross-correlation θS,T consists of

periodic pulses of magnitude qn−1
√

2q occurring once every (qn − 1)/(q − 1) clock cycles.

Note that Theorem 1 includes the case of two geometric sequences which correspond to the

same m-sequence with no decimation at all (i.e. k = 1) but which use different nonlinear

feedforward functions.

Remarks on Theorem 2. 1. The same result holds for the slightly more general class

of decimations, k = 2e(qi + qj).

2. The underlying primitive elements α and β are related by β = αk, or α = βK where

K = k−1 (mod qn − 1). The q-adic weight of K may be different from 2. Thus by switching

the roles of S and T we find that the same cross-correlation values occur if T is related to

S through a decimation by K (and a change of feedforward function), provided the q-adic

weight of K−1 (mod qn − 1) is 2.

3. By taking q = 2 (and f and g to be the identity map GF (2) → GF (2)), the geometric

sequences S and T become m-sequences and we recover the often calculated cross-correlation

values for quadratically decimated m-sequences [5, 8, 11, 13]. In particular, choosing j − i
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to be relatively prime to n (n odd), and noting that ∆1
1(f, g) = 2 we obtain

θS,T(τ) =




−1 occurring r/2 − 1 times

√
2r − 1 occurring r/4 +

√
r/8 times

−√
2r − 1 occurring r/4 −

√
r/8 times

where r = 2n. Thus we have shown

Corollary 1 Suppose i, j, n are chosen so that gcd(j − i, 2n − 1) = 1. Set q = 2n and

k = 2i + 2j. Consider the functions f, g : GF (q) → GF (2) defined by f(x) = Trq
2(x) and

g(x) = Trq
2(x

k). Then |∆1
a(f, g)| ≤ √

2q and in fact,

|∆1
a(f, g)| =




0 for 2n−1 values of a ∈ GF (q)

√
2q for 2n−1 values of a ∈ GF (q)

4. Choosing f and g so as to have cross-correlation |∆1
a(f, g)| ≤ √

2q as above, and choosing

j − i to be relatively prime to n (n odd), we find that |ΘS,T(τ)| ≤ √
2qn + 1. Better bounds

may be obtained by taking f and g to be appropriately chosen bent functions [12]. Even if f

and g are chosen arbitrarily, the obvious bound |∆1
a(f, g)| ≤ q gives |ΘS,T(τ)| ≤ √

qn+1 + 1.

Thus quadratically related geometric sequences may be easily separated.

Remarks on Partial Correlations. Suppose S and T are binary sequences of period N .

Recall that the partial period cross-correlation of block size K, initial position �, and shift

τ is defined to be

ΘS,T(K, �, τ) =
K−1∑
j=0

(−1)S�+j+τ (−1)T�+j ,
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as in [14]. For many applications, it is this partial period correlation which is important,

rather than the periodic cross-correlation. Theses partial period cross-correlations are usu-

ally very difficult to compute. A statistical description of the partial period correlation may

be obtained by performing a time average:

〈ΘS,T(K, �, τ)〉 =
1

N

N∑
�=1

ΘS,T(K, �, τ).

It is easy to see that this time averaged partial period correlation is related to the periodic

cross-correlation ΘS,T(τ) by the following formula:

〈ΘS,T(K, �, τ)〉 =
K

N
ΘS,T(τ).

The proof is straightforward.

3 Families of Geometric Sequences

Using Theorems 1 and 2 it is possible to construct a wide variety of families of geometric

sequences having interesting properties. We give a few examples below.

1. Families derived from linear decimations If two geometric sequences S and T

are related by a linear decimation k = pe and if R and S are related by a linear decimation

k′ = pd then R and T are related by a linear decimation k′′ = pd+e. Thus we may construct

a family of geometric sequences by varying the feedforward functions f within a family
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{f1, f2, . . . , fr}, and by varying the choice of decimations among various powers of p. The

cross-correlations are then all given by Theorem 1.

2. Families derived from quadratic decimations Using the notation of sec-

tion 2, we fix a quadratic decimation k = qi + qj and a family of feedforward functions

{h1, h2, . . . , hr} mapping GF (q) → GF (2), having the property that the cross-correlation

|∆1
a(h1, h2)| between any two of them is bounded by

√
2q (see remarks on Theorem 2).

Consider the two families of geometric sequences,

S(j)(t) = hj(Trqn

q (αt))

T(j)(t) = hj(Trqn

q (βt))

where β = αk. For any two sequences in the first family, the cross-correlations are given by

Theorem 1. For any two sequences in the second family the cross-correlation is also given

by Theorem 1. Furthermore, the cross-correlation between any sequence in the first family

and any sequence in the second family is ≤ √
2qn + 1 (see remark 4 on Theorem 2).

3. Other families Thusfar, the cross-correlation between generalized geometric se-

quences of the form

SA,B(t) = f(Trqn

q (Aαi + Bβi))

where β = αk, remains open. The problem appears to involve counting the number of points

on the intersection of two quadric hypersurfaces.
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We hope the new techniques introduced by Kumar and Moreno [9] may be used in

answering this question.

4 Hyperplanes in GF (qn)

The geometric sequences are based on the geometry of hyperplanes in the finite field GF (qn).

The cross-correlation of these geometric sequences is calculated by counting the number of

elements in the intersections of two hyperplanes. The use of intersecting hyperplanes for

evaluating cross-correlation of pseudorandom sequences was considered by Games [4] and

our method is similar to his. In this section we review some of the basic facts concerning

hyperplanes and their intersections, and give the proof for Theorem 1.

Let Trqn

q : GF (qn) → GF (q) denote the trace function. For any u ∈ GF (q) we define

Hu = {x ∈ GF (qn)|Trqn

q (x) = u}

Then Hu is an (affine) hyperplane, i.e. it is a translate of an n − 1 dimensional vector

subspace of GF (qn). The hyperplanes Hu and Hv are parallel, i.e. they have no points of

intersection unless u = v, in which case they are equal. Now let b ∈ GF (qn), v ∈ GF (q),

and consider the hyperplane

b−1Hv = {b−1y|y ∈ Hv}
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= {b−1y|Trqn

q (y) = v}

= {x|Trqn

q (bx) = v}.

Lemma 1 The hyperplanes Hu and b−1Hv are parallel if and only if b ∈ GF (q).

Proof. If b ∈ GF (q) then

b−1Hv = {x|Trqn

q (bx) = v}

= {x|bTrqn

q (x) = v}

= Hb−1v.

and these hyperplanes are parallel.

On the other hand, if Hu and b−1Hv are parallel, then we must show that b ∈ GF (q).

Since Hu is parallel to H0, we may assume that u = 0. Let us first consider the case when

the two parallel hyperplanes H0 and b−1Hv actually coincide. Thus,

x ∈ H0 iff Trqn

q (x) = 0 iff Trqn

q (bx) = v.

By taking x = 0 we see that v = 0. Now choose z ∈ GF (qn) − H0. Since H0 is a subspace

of dimension n− 1, the addition of this one more linearly independent element will span all

of GF (qn). Therefore bz may be written as a linear combination involving z and H0,

bz = az + h
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for some a ∈ GF (q) and h ∈ H0. We will show that b = a ∈ GF (q).

If this were false, we would have z = h/(b − a). But multiplication by a preserves H0,

and multiplication by b also preserves H0, so multiplication by (b− a) preserves H0, and so

multiplication by (b − a)−1 preserves H0. Therefore z ∈ H0, and this is a contradiction.

Next we consider the general case, H0 not necessarily equal to b−1Hv. There is a trans-

lation x0 ∈ GF (qn) such that

H0 = b−1Hv − x0.

Define v′ = v − Trqn

q (bx0). Then

b−1Hv − x0 = {b−1x − x0|Trqn

q (x) = v}

= {y|Trqn

q (by + bx0) = v}

= {y|Trqn

q (by) = v′}

= b−1Hv′

Thus b−1Hv′ = H0 and the preceding special case applies to this situation, from which we

conclude that b ∈ GF (q). �

Lemma 2 If b ∈ GF (qn) − GF (q), then for any u, v ∈ GF (q), the number of elements in

the intersection Hu ∩ b−1Hv is precisely qn−2.
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Proof. By Lemma 1, the hyperplanes Hu and b−1Hv are not parallel. If two hyperplanes are

not parallel, then their intersection is a hyperplane inside each, i.e. it is an n−2 dimensional

(affine) subspace of GF (qn). Therefore it contains qn−2 points. �

Proof of Theorem 1. Let S(x) = Trqn

q (x) and T (x) = Trqn

q (xk) where k = 2e. The

cross-correlation function of the sequences S and T is then given by

θS,T(τ) =
qn−1∑
r=1

F (Trqn

q (αr+τ ))G(Trqn

q (βr))

=
∑

x∈GF (qn)

F (S(ατx))G(T (xk)) − F (0)G(0).

since α and β are primitive elements with β = αk. Now let Qv = {x : T (x) = v}. We have

θS,T(τ) =
∑

u∈GF (q)

∑
v∈GF (q)

|a−1Hu ∩ Qv|F (u)G(v)− F (0)G(0).

where a = ατ ∈ GF (qn). But

Qv = {x : Trqn

q (xk) = v} = {x : (Trqn

q (x))k = v} = {x : Trqn

q (x) = v1/k} = Hv1/k

which is also a hyperplane. The intersection of two hyperplanes is an (n − 2)-dimensional

subspace unless the hyperplanes are parallel. Thus |a−1Hu ∩ Qv| = qn−2 unless a = ατ ∈

GF (q) by Lemma 1. If the hyperplanes are parallel, that is, a ∈ GF (q), then a−1Hu = Hau

and its intersection with Qv = Hv1/k is empty unless the two hyperplanes actually coincide,

i.e. unless (au)k = v. In summary the cross-correlation is

θS,T(τ) = qn−2
∑

u∈GF (q)

F (u)
∑

v∈GF (q)

G(v) − F (0)G(0)
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if ατ �∈ GF (q), and

θS,T(τ) = qn−1
∑

u∈GF (q)

F (u)G(akuk) − F (0)G(0)

if ατ = a ∈ GF (q). Substituting v = au and b = a−1, we can rewrite the last sum as

∑
v∈GF (q) F (bv)G(vk) = ∆e

b(f, g). �

5 Number Theoretic Tools

In this section we prove several number theoretic results that will be useful in the proof of

Theorem 2.

Lemma 3 Let b, n and j be non-negative integers and set d = gcd(n, j). Then gcd(bn −

1, bj − 1) = bd − 1.

Proof: This is a standard consequence of the division algorithm. �

Lemma 4 Suppose b is an even integer. Let n, i, and j be non-negative integers, with i ≤ j

and n �= 0, and let d = gcd(n, j − i). Then

gcd(bn − 1, bi + bj) =




1 if n/d is odd

1 + bd if n/d is even.
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Proof: Since b does not divide bn − 1, we have gcd(bn − 1, bi + bj) = gcd(bn − 1, 1 + bj−i).

Thus we may assume that i = 0. The substitution b′ = bd, n′ = n/d, and j′ = j/d may

be used to reduce to the case when n′ and j′ are relatively prime. Thus there are integers

α and β so that αn′ + βj′ = 1. Suppose some integer m divides both b′n
′ − 1 and b′j

′
+ 1.

Then b′n
′ ≡ 1 (mod m) and b′j

′ ≡ −1 (mod m). In particular, m is relatively prime to b′.

Raising these equations to the powers α and β respectively and multiplying them gives

b′ = b′αn′+βj′ ≡ 1α(−1)β (mod m),

hence m divides b′ − (−1)β.

First suppose that n′ = n/d is even. It follows that both j′ and β are odd, so b′ ≡ −1

(mod m), which means that m divides b′+1. On the other hand, using the division algorithm

it is easy to see that b′ + 1 divides b′n
′ − 1 since n′ is even, and that b′ + 1 divides b′j

′
+ 1

since j′ is odd. Thus the g.c.d. is b′ + 1 = bd + 1.

Next suppose n′ = n/d is odd. There are two cases to be considered, depending on the

parity of β. If β is odd then m divides b′ + 1 as above. But using the division algorithm

and b′ being even, we have gcd(b′n
′ − 1, b′ + 1) = 1, thus m = 1. If β is even then m divides

b′ − 1. By the division algorithm we have gcd(b′j
′
+ 1, b′ − 1) = 1 and m = 1. �

For completeness we note that if b is odd then the same result holds with 2 replacing 1

as the value of the gcd when n/d is odd.
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We will need to be able to determine when quadratic polynomials have roots. In odd or

zero characteristic this is straightforward – a quadratic polynomial has roots if and only if its

discriminant is a square, and the roots are given by the quadratic formula. In characteristic

two, however, this fails – the discriminant is always a square (since every element in the field

is a square) and the quadratic formula is undefined (it involves division by two). Instead we

have the following lemma.

Lemma 5 Let c, d, e ∈ GF (q), with q even. Then the quadratic equation cx2 + dx + e = 0

has a nontrivial solution x ∈ GF (q) iff d = 0 or Trq
2(ec/d

2) = 0.

Proof: The case c = 0 or e = 0 is easily handled, so we assume c �= 0 and e �= 0. If

d = 0 then x2 = e/c which has a unique solution in GF (q), so we may also assume that

d �= 0. The substitution x′ = cx/d may be used to convert the quadratic equation to the

form x2 + x + f = 0 where f = ec/d2. Since x2 + x + f is irreducible in GF (q) if and only

if Trq
2(f) �= 0 [10, Corollary 3.79], the result follows. �

As a consequence of Lemma 5 we can reduce quadratic forms in two variables as follows:

Lemma 6 Given c, d, e ∈ GF (q), (with q even), define the quadratic form g(x, y) = cx2 +

dxy + ey2. Then g(x, y) is nonsingular iff d �= 0. In this case, g is equivalent under a linear
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change of variables to the quadratic form



xy if Trq
2(ec/d

2) = 0

x2 + xy + ay2 if Trq
2(ec/d

2) �= 0.

Proof: If d = 0 the substitution x �→ 1√
c
x + e√

c
y converts the quadratic form g(x, y) into

the singular form x2. Now suppose d �= 0. If Trq
2(ec/d

2) = 0 then by Lemma 5 there is a

nonzero solution λ to the quadratic equation cλ2 + dλ + e = 0. The change of coordinates

x �→ x + λy and y �→ y/d + cx/d converts the form g into the quadratic form xy. Finally,

if Trq
2(ec/d

2) = a �= 0, then Trq
2(a + ec/d2) = 0 and x2 + x + ec/d2 = a has a solution

λ ∈ GF (q). Consider the change of variables

1. x → 1√
c
x + λ√

c
y,

2. y →
√

c
d

y.

Then g(x, y) becomes x2 + xy + ay2. �

Throughout the rest of this paper, we fix q a power of 2, and we fix a nonzero element

a ∈ GF (q) such that Trq
2(a) �= 0.

6 Quadratic Forms in Characteristic 2

In this section we count the number of solutions to homogeneous quadratic equations. This

can be thought of as counting the number of points on a quadric hypersurface. We first
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must show that under a change of basis every quadratic form in n variables is equivalent

to one of several standard forms. We then compute the number of roots of each type of

quadratic form. Finally, if S is a linear function from GF (qn) to GF (q), and k is an integer

with q-adic weight two which is prime to qn − 1 (so S(xk) gives rise to an m-sequence), we

identify precisely which standard form S(xk) is equivalent to.

In general we let x̄ denote (x1, . . . , xn) and Bm(x̄) = x1x2 + x3x4 + · · · + xm−1xm. A

quadratic form in n variables, Q(x̄) =
∑

i

∑
j aijxixj , represents zero if it has a nonzero root.

The quadratic form Q has rank m if there is a linear change of variables so that Q may be

expressed as a function of m variables (and no fewer). The quadratic form Q is nonsingular

if rank(Q) = n.

Quadratic forms Q(x̄) in n variables over GF (q) (with q even) have been classified [10,

Theorem 6.30] and are given as follows:

Type I: Bm(x̄),

Type II: Bm(x̄) + x2
m+1,

Type III: Bm(x̄) + x2
m+1 + xm+1xm+2 + ax2

m+2.

where m = rank(Q).

Proposition 1 For any quadratic form Q in n variables, the number of solutions to the

equation Q(x̄) = v is:
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Type I:




qn−1 + qn−m/2 − qn−m/2−1 if v = 0

qn−1 − qn−m/2−1 if v �= 0,

Type II: qn−1,

Type III:




qn−1 − qn−m/2−1 + qn−m/2−2 if v = 0

qn−1 + qn−m/2−2 if v �= 0.

Proof: Any solution (x1, x2, . . . , xm) to the equation

Q(x1, x2, . . . , xm) = v. (2)

gives rise to qn−m solutions x̄ = (x1, x2, . . . , xn) of the equation Q(x̄) = v by allowing the last

n−m coordinates to have arbritrary values. This reduces the problem to the case where Q

is nonsingular. The number of solutions to Q(x̄) = v for nonsingular quadratic forms have

been calculated [10, Theorem 6.32] and our results follow. �

Any choice of basis e1, e2, . . . , en for GF (qn) as a vectorspace over GF (q) determines

an identification GF (q)n → GF (qn) by x̄ = (x1, x2, . . . , xn) �→ ∑
i xiei = x. When such a

basis has been chosen, we shall write x̄ if the element x is to be thought of as a vector in

GF (q)n, and we shall write x when the same vector is to be thought of as an element of

the field GF (qn). Fix c ∈ GF (qn) c �= 0 and define the function T : GF (q)n → GF (q) by

T (x̄) = Trqn

q (cxk).
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Theorem 3 Suppose k = qi +qj (so k has q-adic weight 2). Then T (x̄) is a quadratic form.

Moreover, if n/ gcd(n, j − i) is odd, then it is a type II quadratic form, with

m =




n − gcd(n, j − i) if i �= j

0 if i = j

and m is even.

Proof: Let e1, e2, . . . , en denote the chosen basis, then

T (x̄) = Trqn

q (c(
n∑

h=1

xheh)
qi+qj

)

= Trqn

q (c(
n∑

h=1

xhe
qi

h )(
n∑

l=1

(xle
qj

l ))

=
n∑

h=1

n∑
l=1

ahlxhxl

where ahl = Trqn

q (ceqi

h eqj

l ), and T (x̄) is a quadratic form.

If n/ gcd(n, j − i) is odd, then by Lemma 4, k is relativelly prime to qn − 1 and the

function x �→ xk is invertible. It follows that Trqn

q (cxk) takes on every value in GF (q) the

same number of times. This rules out types I and III quadratic forms. Thus T is a type II

quadratic form.

It only remains to determine m, which in this case is equal to rank(T ) − 1. In the

determination of the rank of T , we may assume that i = 0 because xk = (xqi
)(1+qj−i) and

the map x �→ xqi
is invertible.

Suppose first that j = 0 and let c = d2. Then T (x̄) = Trqn

q (cx2) = (Trqn

q (dx))2 = x2
1,

where x1 = Trqn

q (dx). This is the the desired form.
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Now suppose j > 0. The type II quadratic form Bm(x̄) +x2
m+1 has rank m + 1. Consider

the set

W = {w ∈ GF (qn) : T (w) = 0 and ∀y ∈ GF (qn), T (w + y) = T (y)}.

W is a GF (q)-vector subspace in GF (qn), and the dimension of W is the co-rank of T. We

must show that W has dimension gcd(n, j) − 1.

Let w ∈ GF (qn). Expanding out the expression (w + y)1+qk
, we see that w ∈ W if

and only if Trqn

q (cwk) = 0 and for every y ∈ GF (qn), Trqn

q (cwyqj
) = Trqn

q (cwqj
y). Since

Trqn

q (x) = Trqn

q (xq), the right hand side of this equation is unchanged if we raise its argument

to the power qj, which gives

Trqn

q (cwyqj

) = Trqn

q (cqj

wq2j

yqj

)

or

Trqn

q ((cw + cqj

wq2j

)yqj

) = 0

for all y ∈ GF (qn). This implies that cw = cqj
wq2j

, or, if w �= 0, that (dw)q2j−1 = 1, where

c = dqj+1. Such a d exists, by Lemma 4. Thus dw ∈ GF (q2j) and since dw ∈ GF (qn),

we conclude that dw ∈ GF (qgcd(n,2j)) = GF (qgcd(n,j)) by our assumption that n/gcd(n, j) is

odd. In summary,

dW =
{
w′ ∈ GF (qgcd(n,j)) : Trqn

q (cw′/d) = 0
}

.

This is a vectorspace over GF (q) of dimension gcd(n, j) − 1. �
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7 Proof of Theorem 2

We return to the situation of Theorem 2: q is a power of 2, α and β are primitive elements

of GF (q), β = αk where k = qi + qj is relatively prime to qn − 1, f and g are nonlinear

feedforward functions from GF (q) to GF (2). Let S(x) = Trqn

q (x), and T (x) = Trqn

q (xk).

Then the geometric sequences S and T are given by S = f(S(1)), f(S(α)), f(S(α2)), . . .

and T = g(S(1)), g(S(β)), g(S(β2)), . . . = g(T (1)), g(T (α)), g(T (α2)), . . .. We will write

F (x) = (−1)f(x) and G(x) = (−1)g(x), where we consider GF (2) to be {0, 1} as a subset of

the integers. The cross-correlation function of S and T is the function whose value at τ is

the periodic correlation of the τ -shift of S with T,

θS,T(τ) =
qn−1∑
r=1

F (Trqn

q (ατ+r))G(Trqn

q (βr))

=
qn−1∑
r=1

F (S(ατ+r))G(T (αr))

=
∑

x∈GF (qn)

F (S(ατx))G(T (x)) − F (0)G(0).

Now let Hu = {x : S(ατx) = u}, and Qv = {x : T (x) = v}. By Theorem 3, T is a quadratic

form of type II with m = n − gcd(n, j − i) so Qv is a quadric hypersurface and Hu is a

hyperplane in GF (qn). We have

θS,T(τ) =
∑

u,v∈GF (q)

|Hu ∩ Qv|F (u)G(v)− F (0)G(0).

Thus in order to compute the cross-correlation of S and T, we must compute the cardinalities

of the intersections of various hyperplanes and quadric hypersurfaces in affine n-space over
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GF (q).

By Proposition 1, the quadratic form T (x) can be represented in some basis as Bm(x̄) +

x2
m+1, where m = n − gcd(n, j − i). We fix such a basis from here on and write S(ατx) =

∑n
r=1 crxr for some {cr} ⊆ GF (q). There is a one-to-one correspondence between the shift

τ and the coefficients {cr}. This correspondence can only be computed by determining the

basis that puts T (x) in standard form. We will express the cross-correlation value θS,T(τ) as

a function of {cr}, rather than as a function of τ and will count the number of occurrences

of each value.

We now proceed with a case by case analysis, depending upon the {cr}.

Proposition 2 Suppose that cr �= 0 for some r ≥ m + 2. Then

θS,T(τ) = qn−2I(f)I(g) − F (0)G(0)

which contributes to case 1 of Theorem 2.

Proof: If we fix a solution (x1, x2, . . . xm+1) to the equation Q(x̄) = v, then we can always

find exactly qn−m−2 values of xm+2, . . . , xn that make S(x̄) = u. By Proposition 1 there are

qm solutions to Q(x̄) = v. Thus,

∑
u,v∈GF (q)

|Hu ∩ Qv|F (u)G(v) = qn−m−2qm
∑

u∈GF (q)

F (u)
∑

v∈GF (q)

G(v) = qn−2I(f)I(g).

�



7 PROOF OF THEOREM 2 26

¿From now on we assume cm+2 = · · · = cn = 0. The number of simultaneous so-

lutions (x1, . . . , xn) to the equations S(x̄) = u and Q(x̄) = v is thus qn−m−1 times the

number of simultaneous solutions (x1, . . . , xm+1) to the equations S(x1, . . . , xm+1) = u and

Q(x1, . . . , xm+1) = v, since xm+1, . . . , xn may be chosen arbitrarily.

Proposition 3 Suppose that c1 = · · · = cm = cm+2 = · · · = cn = 0, cm+1 �= 0. Then

θS,T(τ) = (qn−2 − qn−m/2−2)I(f)I(g) + qn−m/2−1∆1
cm+1

(f, g) − F (0)G(0)

which contributes to case 2 of Theorem 2.

Proof: In this case the equation S(x̄) = u uniquely determines xm+1 = u/cm+1. Thus the

second equation becomes

Bm(x̄) = v + u2/c2
m+1.

By Proposition 1, this equation has qm−1 + qm/2 − qm/2−1 solutions if v + u2/c2
m+1 = 0, and

has qm−1 − qm/2−1 solutions otherwise. Thus

|Hu ∩ Qv| =




qn−2 − qn−m/2−2 + qn−m/2−1 if v + u2/c2
m+1 = 0

qn−2 − qn−m/2−2 otherwise.

and

∑
u∈GF (q)

∑
v∈GF (q)

|Hu ∩ Qv|F (u)G(v) = (qn−2 − qn−m/2−2)
∑

u∈GF (q)

∑
v∈GF (q)

F (u)G(v)

−qn−m/2−1
∑

u∈GF (q)

F (u)G(u2/c2
m+1).
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The proposition follows. �

Proposition 4 Suppose cm+2 = · · · = cn = 0 and ci �= 0 for some i ≤ m.

1. If cm+1 �= 0 and Trq
2(Bm(c̄)/c2

m+1) �= 0, then

θS,T(τ) = (qn−2 + qn−m/2−2)I(f)I(g)− qn−m/2−1∆1
cm+1

(f, g) − F (0)G(0)

which contributes to case 3 of Theorem 2.

2. If cm+1 �= 0 and Trq
2(Bm(c̄)/c2

m+1) = 0, then

θS,T(τ) = (qn−2 − qn−m/2−2)I(f)I(g) + qn−m/2−1∆1
cm+1

(f, g) − F (0)G(0)

which contributes to case 2 of Theorem 2.

3. If cm+1 = 0, then

θS,T(τ) = qn−2I(f)I(g)− F (0)G(0)

which contributes to case 1 of Theorem 2.

Proof: By symmetry, we may assume that cm �= 0. We count the number of simultaneous

solutions (x1, . . . , xm+1) to the equations S(ατx) = u and T (x) = v. The equation S(ατx) =

u implies that

xm =
m−1∑
r=1

cr

cm

xr +
u

cm

+
cm+1

cm

xm+1.
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Substituting for xm in T (x), it remains to count the number of solutions to

Bm−2(x̄) +
m−1∑
r=1

cr

cm
xrxm−1 +

u

cm
xm−1 +

cm+1

cm
xm−1xm+1 + x2

m+1 = v (3)

among the variables x1, . . . , xm−1, xm+1. We can nearly put this in standard form by the

change of basis that replaces xr by xr+(cφ(r)/cm)xm−1 for r = 1, . . . , m−2, where φ(r) = r−1

if r is even, and φ(r) = r + 1 if r is odd (i.e., φ interchanges the indices 1 with 2, 3 with 4,

etc.). Equation (3) becomes

Bm−2(x̄) +
Bm(c̄)

c2
m

x2
m−1 +

u

cm

xm−1 +
cm+1

cm

xm−1xm+1 + x2
m+1 = v. (4)

Unfortunately this is an inhomogeneous quadratic equation and it is necessary to elimi-

nate the linear term before we can count the number of solutions.

Case 1. Suppose cm+1 �= 0. Then, without changing the count on the number of solutions,

we can perform an affine change of coordinates by replacing xm+1 by xm+1+u/cm+1. Equation

(4) becomes

Bm−2(x̄) +
Bm(c̄)

c2
m

x2
m−1 +

cm+1

cm
xm−1xm+1 + x2

m+1 = v +
u2

c2
m+1

. (5)

Suppose further that Trq
2(Bm(c̄)/c2

m+1) �= 0. Then the part of Equation (5) involving the

variables xm−1 and xm+1 is a quadratic form that does not represent zero, and by Lemma 6

there is a change of basis which puts the equation in the standard form

Bm−2(x̄) + x2
m−1 + xm−1xm+1 +

Bm(c̄)

c2
m+1

x2
m+1 = v +

u2

c2
m+1

.
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This is a type III homogeneous equation so it has qm−1−qm/2+qm/2−1 solutions if v = u/c2
m+1,

and it has qm−1 + qm/2−1 solutions otherwise. The asserted value for the cross-correlation

follows.

Case 2. Suppose that cm+1 �= 0 and Trq
2(Bm(c̄)/c2

m+1) = 0. Then the part of Equation (5)

involving xm−1 and xm+1 represents zero and is not a square. By Lemma 6 there is a change

of basis which puts the equation in the form

Bm−2(x̄) + xm−1xm+1 = v +
u2

c2
m+1

.

This is a type I homogeneous equation so it has qm−1+qm/2−qm/2−1 solutions if v = u/c2
m+1,

and qm−1 − qm/2−1 solutions otherwise. The asserted value for the cross-correlation follows.

Case 3 Suppose cm+1 = 0 and let d2 = Bm(c̄)/c2
m. Then the change of basis that replaces

xm+1 by xm+1 + dxm−1 puts Equation (4) in the form

Bm−2(x̄) + uxm−1 + x2
m+1 = v.

If we choose values for x1, . . . , xm−1 then we can always find a unique xm+1 that gives a

solution to the equation, so this equation always has qm−1 solutions. The asserted value for

the cross-correlation follows. �

It is straightforward to count the number of occurences of each of the values (letting the
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coefficients cr vary). We summarize these preceding cases and their appearance in Theorem

2:

Theorem 2 The cross-correlation with shift τ of the geometric sequences S and T of equa-

tion 1 is:

1. θS,T(τ) = qn−2I(f)I(g) − F (0)G(0) if cr �= 0 for some r ≥ m + 2, or cm+1 = · · · =

cn = 0. This occurs for qn − qm+1 + qm − 1 values of τ .

2. θS,T(τ) = (qn−2 − qn−m/2−2)I(f)I(g) + qn−m/2−1∆1
a(f, g) − F (0)G(0) if cm+2 = · · · =

cn = 0, cm+1 �= 0, and Trq
2(Bm(c̄)/c2

m+1) = 0. This occurs for (qm + qm/2)/2 values of

τ for each nonzero a ∈ GF (q).

3. θS,T(τ) = (qn−2 + qn−m/2−2)I(f)I(g) − qn−m/2−1∆1
a(f, g) − F (0)G(0) if cm+2 = · · · =

cn = 0, cm+1 �= 0, and Trq
2(Bm(c̄)/c2

m+1) �= 0. This occurs for (qm − qm/2)/2 values of

τ for each nonzero a ∈ GF (q).

8 Application: GMW Sequences

In this section we apply the previous results to the calculation of the cross-correlation func-

tions of GMW sequences [7, 14]. They exhibit the same autocorrelation statistics as m-

sequences, but have much greater linear complexity.
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Definition 1 Let q be a power of 2, � and n be positive integers with gcd(�, q − 1) = 1. Let

β be a primitive element of GF (qn). The sequence T whose ith element is Trq
2([Trqn

q (βi)]�)

is called a GMW sequence.

Recently Games [4] calculated the cross-correlation function of the GMW sequence T

and an m-sequence Si = Trqn

2 (αi) based on the same primitive element α = β. We will

find the cross-correlation function in the case that the primitive elements α and β are

linearly or quadratically related, β = αk (where k has q-adic weight 1 or 2). Note that

the GMW sequence T is a special case of a geometric sequence, with feedforward function

g(x) = Trq
2(x

�), and the m-sequence S is a geometric sequence with feedforward function

f(x) = Trq
2(x). In order to apply Theorem 2, we will consider the case in which � has dyadic

weight 1 or 2. This gives rise to four possibilities:

1. (quadratic-quadratic) k = qi + qj and � = 2s + 2t

2. (linear-quadratic) k = 2i and � = 2s + 2t

3. (quadratic-linear) k = qi + qj and � = 2s

4. (linear-linear) k = 2i and � = 2s.

Of these possibilities, cases (2), (3), and (4) have already been covered previously: by

observing Trqn

q (x2) = (Trqn

q (x))2 and Trq
2(x

2) = Trq
2(x), we see that the GMW sequence T

in case (4) is precisely the m-sequence S, the GMW sequence T in case (3) is a qudratic
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decimation of S, and the GMW sequence T in case (2) is based on the same primitive

element as the m-sequence S. For completeness, we will again summarize the results at the

end of this section.

We now concentrate on case 1. The imbalances of f and g are 0 since gcd(k, qn − 1) = 1

and gcd(�, q − 1) = 1. To simplify the answer, let us assume that gcd(n, j − i) = 1 and

gcd(n1, t − s) = 1 where q = 2n1.

The short correlation ∆1
a(f, g) may be calculated by applying Theorem 2 to the short

sequences S′
i = Trq

2(γ
i) and T′

i = Trq
2(γ

i�), where γ is a primitive element of GF (q). We

find that

∆1
a(f, g) =




0 occurring q/2 − 1 times

√
2q occurring q/4 +

√
q/8 times

−√
2q occurring q/4 −

√
q/8 times.

Applying Theorem 2 to S and T we obtain the following result.

Theorem 4 (Part 1) The cross-correlation function of the m-sequence Si = Trqn

2 (αi) with

the GMW sequence Ti = Trq
2([Trqn

q (βi)]�) in case (1) above is three valued, given by

θS,T(τ) =




−1 occurring qn/2 − 1 times

√
2qn − 1 occurring qn/4 +

√
qn/8 times

−√
2qn − 1 occurring qn/4 −

√
qn/8 times.

For case (2) we apply Theorem 2 under the simplifying assumption that gcd(n1, t−s) = 1

and obtain ∆s
a(f, g) = ∆1

a(f, g) which was tabulated above. Applying Theorem 1 to S and
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T we obtain the following result.

Theorem 4 (Part 2) The cross-correlation in case (2) is three-valued,

θS,T(τ) =




−1 occurring qn − q/2 − 1 times

qn−1
√

2q − 1 occurring q/4 +
√

q/8 times

−qn−1
√

2q − 1 occurring q/4 −
√

q/8 times.

For cases (3) and (4) we find that

∆1
a(f, g) = ∆s

a(f, g) =




0 for q − 2 nonzero values of a ∈ GF (q)

q when a = 1.

Applying Theorems 2 and 1, and assuming that gcd(n, j − i) = 1 we obtain

Theorem 4 (Parts 3 and 4) The cross-correlation in case (3) is three-valued,

θS,T(τ) =




−1 occurring qn − qn−1 − 1 times

√
qn+1 − 1 occurring 1

2
(qn−1 +

√
qn−1) times

−√
qn+1 − 1 occurring 1

2
(qn−1 −√

qn−1) times

while in case (4) the GMW sequence T is a decimation of the m-sequence S and the cross-

correlation is

θS,T(τ) =




−1 occurring qn − 1 times

qn − 1 occurring 1 time.
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Remarks. For any (q−1)-periodic pseudorandom sequence T we may write Ti = F (αi)

for some (nonlinear) function F : GF (q) → GF (2), where α denotes a primitive element

of GF (q). Since the cross-correlation function θS,T(τ) with an m-sequence Si = Trq
2(α

i)

is simply the discrete Fourier transform of (−1)F , Parseval’s equality gives the usual lower

bounds on the possible values of the cross-correlation [16]:

Proposition 5 For any (q − 1)-periodic pseudorandom sequence of bits T, and for any

m-sequence S, we have

q−2∑
τ=0

|θS,T(τ) + 1|2 = q2 − I2

where I denotes the imbalance of the sequence T ′, obtained from T by adding a 0.

We conclude that for balanced sequences, the smallest uniform bound on the cross-correlations

occurs when they are all equal, in which case θS,T(τ) =
√

q − 1 (and F is a bent function

[12]).
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