
LANGLANDS’ CONJECTURES FOR PHYSICISTS

MARK GORESKY

1. Introduction

This is an expanded version of several lectures given to a group of physicists at the I.A.S.
on March 8, 2004. It is a work in progress: check back in a few months to see if the
empty sections at the end have been completed. This article is written on two levels. Many
technical details that were not included in the original lectures, and which may be ignored on
a first reading, are contained in the end-notes. The first few paragraphs of each section are
designed to be accessible to a wide audience. The present article is, at best, an introduction
to the many excellent survey articles ([Ar, F, G1, G2, Gr, Kn, K, R1, T] on automorphic
forms and Langlands’ program. Slightly more advanced surveys include ([BR]), the books
[Ba, Be] and the review articles [M, R2, R3].

2. The conjecture for GL(n, Q)

Very roughly, the conjecture is that there should exist a correspondence{
nice irreducible n dimensional
representations of Gal(Q/Q)

}
−→

{
nice automorphic representations

of GL(n, AQ)

}
(2.0.1)

such that

{eigenvalues of Frobenius} −→ {eigenvalues of Hecke operators}(2.0.2)

The purpose of the next few sections is to explain the meaning of the words in this
statement. Then we will briefly examine the many generalizations of this statement to other
fields besides Q and to other algebraic groups besides GL(n).

3. Fields

3.1. Points in an algebraic variety. If E ⊂ F are fields, the Galois group Gal(F/E) is
the set of field automorphisms φ : E → E which fix every element of F. Let E[x1, x2, . . . , xn]
be the algebra of polynomials in n variables, with coefficients in E. If f1, f2, . . . , fr ∈
E[x1, x2, . . . , xn] are polynomials, denote by X(E) the set of solutions

{x ∈ En| f1(x) = f2(x) = · · · = fr(x) = 0} .
We may also view the fi as polynomials with coefficients in F, so the set X(F ) of solutions
with coordinates in F makes sense. The Galois group Gal(F/E) acts on X(F ), fixing X(E).
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Then X(F ) is called the set of points of the algebraic variety X in the field of F. We refer
to the algebraic variety X as representing the set of solutions over all extension fields of E
simultaneously, but we say that X is defined over E. The same applies to the case when the
fi are homogeneous polynomials and X(E) is the corresponding set of solutions in projective
space Pr−1(E).

In particular, if X is an algebraic variety defined over the integers Z then it lives in both
worlds: X(C) is a complex algebraic variety, and X (mod p) is an algebraic variety defined
over Fp (obtained by reducing the equations for X modulo p). Moreover, for any extension
field Fpr one may consider the set of points X (mod p)(Fpr ) with coordinates in Fpr . The
amazing relation between these two worlds will be described in §4.3.

3.2. Finite fields. For every prime number p and every positive integer n there is a unique
field Fpn with pn elements. If n = 1 then Fp = Z/(p) is the integers modulo p. If p1 and p2

are prime numbers then Fpn
1
⊂ Fpm

2
if and only if p1 = p2 and n divides m. Now let q = pn

(with p a prime number). Then

px = 0 and xq = x

for every x ∈ Fq. We say that Fq has characteristic p. The Galois group Gal(Fqr/Fq) is
isomorphic to Z/(r) and is generated by the Frobenius σq(x) = xq. This is an automorphism,
for

(x + y)q = xq + qxq−1y +

(
q

2

)
xq−2y2 + · · · + yq.

Each of these binomial coefficients is divisible by p so (x + y)q = xq + yq. As r varies, these
Frobenius automorphisms are compatible. Taking p = q we obtain a particular element

σp ∈ Gal(Fp/Fp).

3.3. Number fields. A number field is a finite extension of Q. Each number field may be
obtained by adjoining to Q the roots of a polynomial f(x) with rational coefficients. The
algebraic closure Q ⊂ C is the “union” of all number fields: it is the set of all roots of
all polynomials with rational coefficients. Just as the rational numbers Q consists of all
fractions a/b where a, b ∈ Z, any number field E consists of all fractions a/b where a, b ∈ oE

where oE is the ring of integers in E. For example, if E = Q[i] then oE is the set of all a+ bi
where a, b ∈ Z.

3.4. Local function fields. Let Fq be a finite field and let Fq[[t]] be the ring of formal power
series with coefficients in Fq, and with the obvious operations of addition and multiplication.
An element a =

∑
n≥0 ant

n is invertible if and only if a0 6= 0. In this case the inverse may be
found by writing b =

∑
m≥0 bmtm, expanding the equation ab = 1 and solving the resulting

linear equations for the coefficients bm. The mapping Fq[[t]] → Fq, which takes the above
element a to its constant term a0, is a surjective ring homomorphism, so Fq is referred to as
the residue field.
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The field Fq((t)) consists of all fractions a/b where a, b ∈ Fq[[t]], and we refer to Fq[[t]] as
the ring of integers in the field Fq((t)). It is easy to see that any element A ∈ Fq((t)) may
be expressed as a formal Laurent series

A =
∞∑

n=N

Ant
n

(where N ∈ Z is any integer, possibly negative) with at most finitely many terms involving
negative powers of t The valuation of such an element A is the smallest integer n such that
An 6= 0.

Similarly one can form the function field C((t)) and its ring of integers C[[t]], however this
case is of less interest to number theorists (and of more interest to physicists).

3.5. p-adic fields. Fix a prime number p. A p-adic integer is a formal power series a =
a0 + a1p + a2p

2 + · · · where 0 ≤ ai ≤ p − 1. The set of such is denoted Zp. Addition and
multiplication are performed using power series manipulations but with a “carry”, meaning
that whenever we come across a coefficient a that is greater than p, we write it as a0 + a1p,
keep the a0 part, and carry the a1 part on to the next term. As a consequence, the mapping
a→ a0 defines a surjective ring homomorphism Zp → Z/(p), the residue field. The ring Zp

contains most of the rational numbers. It clearly contains the integers, but it also contains
the fraction a/b whenever b is not divisible by p. For example, in Z5 the inverse of 3 is

3−1 = 2 + 3 · 5 + 1 · 52 + 3 · 53 + 1 · 54 + · · ·
as can be easily seen by multiplying the right hand side by 3.

However the number 5 is not invertible in Z5 so in order to make a field we need to include
its inverse, as well as that of 52 and so on. This leads to two descriptions of Qp : as set of
fractions a/b where a, b ∈ Zp, or as the set of formal Laurent series

c =
∞∑

n=N

cnp
n

consisting of all formal series with finitely many negative powers of p. The valuation val( c)
of c is the “degree” of the leading term in this expansion. In particular, Qp contains Q. The
p-adic numbers can also be realized as the (topological) completion1 of the rational numbers
Q with respect to a certain2norm | |p. With this metric space structure, the field Qp is locally
compact.

Note that Qp has characteristic 0 and in fact it is possible to embed Qp into the complex
numbers C, which, from now on, we will assume to have been done3.

There are also many finite extensions of Qp and these are referred to as p-adic fields. Each
such may be obtained by “completing” a number field E at a prime ideal p which contains
(or “lies over”) p. The p-adic field Ep contains a ring of integers o which then projects to a
residue field oE → F which is a finite extension of Fp. If deg(Ep/Qp) = deg(F/Fp) then Ep
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is said to be an unramified extension of Qp. The field Qp has a unique unramified extension
of each degree, but there are other extensions as well. The p-adic fields are referred to as
local fields.

3.6. Global Function fields. Let Y be a compact Riemann surface. Then the meromor-
phic functions C(Y ) on Y form a field. Such a Y admits the structure of a (smooth) complex
projective algebraic variety which may be realized as a subvariety of P2(C). As such, it has a
field of “rational functions”, and this also coincides with C(Y ). If Y = P1(C) then its func-
tion field is the field C(x) of “rational functions”, consisting of quotients p(x)/q(x) where
p, q are polynomials. If Y ′ → Y is a (possibly ramified) finite covering of compact Riemann
surfaces then C(Y ′) is a finite extension of C(Y ).

Similarly, suppose Y is a smooth projective algebraic curve defined over a finite field F(q).
Let Fq(Y ) be its field of (“rational”) functions. If Y = P1 then Fq(Y ) = Fq(x) is the set
of quotients p(x)/q(x) where p, q ∈ Fq[x] are polynomimals with coefficients in Fq. For any
point y ∈ Y (Fq) a choice of coordinate ty at y determines a completion of Fq(Y ) which is
isomorphic to the local function field Fq((t)). For this reason the points y ∈ Y are called
places.

3.7. Higher dimensional fields. The above collection of fields (together with their finite
extensions and various sorts of algebraic closures) pretty much exhausts the list of fields
that people have traditionally been interested in. But it is possible to construct an endless
variety of new fields K from old fields k by iterating the following: two constructions (a)
completing the ring of integers ok with respect to a norm, or (b) forming a field of functions,
K = k((t)) or K = k(Y ). So, for example there is a function field

Qp(Y )((t))

consisting of formal Laurent polynomials with coefficients in the function field Qp(Y ) of
p-adic functions on an n-dimensional algebraic variety Y defined over Qp.

3.8. The big picture. In summary the fields of primary interest to number theorists fit
into a chart (where E is a number field and Ep is a p-adic field obtained by completing E
at a prime ideal; where p is a prime number and q = pr is a power of p).

base field extension base field extension
global Q E Fp(X) Fq(X)
local Qp Ep Fp((t)) Fq((t))

integers Zp Op Fp[[t]] Fq[[t]]
residue Fp Fq Fp Fq

The number fields Q and E also have completions “at infinity” which give local fields R (as
the only infinite completion of Q) and R, C (as possible infinite completions of E).
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4. Galois representations

4.1. How they arise. We wish to consider representations of the Galois group Gal(Q/Q)
and similar things. These arise naturally in the theory of étale cohomology, a truly marvel-
lous theory that we will now briefly describe.

Suppose Y is an d-dimensional algebraic variety defined over a field E. Let ` be a prime
number, ` 6= char(E). Then for 0 ≤ i ≤ 2d the étale cohomology

H i
ét(Y, Q`)

is defined. It is a Q` vector space on which Gal(E/E) acts. (Originally, attempts were made
to find an good cohomology theory with “coefficients” in the rational numbers Q. It was
later discovered that this was impossible.)

4.2. The étale cohomology enables us to think about a variety Y defined over a finite field
(such as may occur in the study of coding theory or cryptography) as if it were a complex
variety. And in this case, the Galois module structure on the étale cohomology has some
amazing properties. Suppose the algebraic variety Y is defined over Fq (of characteristic p)
and that it is nonsingular and projective. Then a series of conjectures of A. Weil, eventually
proven by P. Deligne states that

(1) The eigenvalues αj of the Frobenius σq on H2i(Y, Q`) have absolute value |αj| = qi.
(2) The eigenvalues βk of σq on H2i+1(Y, Q`) have absolute value |βk| = qi√q.
(3) The number of points

(4.2.1) #(Y (Fqr)) =
∑

j

αr
j −

∑

k

βr
k

(the sum being over all eigenvalues of σq on all étale cohomology groups).
(4) The eigenvalues αj, βk ∈ C are uniquely determined by this equation.

In particular, rankH2i
ét (Y, Q`) is the number of α occurring in (4.2.1) with |α| = qi and

rankH2i+1
ét (Y, Q`) is the number of β occurring in (4.2.1) with |β| = qi√q.

The elementary symmetric functions of the eigenvalues of σq on H i
ét(Y, Q`) are the coef-

ficients of the characteristic polynomial of the action of σq on H i. It is common to encode
the eigenvalues in a ζ function,

ζq(Y, t) =

∏
i odd det(1 − tσq) on H i

ét(Y, Q`)∏
i even det(1 − tσq) on H i

ét(Y, Q`
.

Another way to express part(3) of Deligne’s theorem is:

ζq(Y, t) = exp

(
∞∑

n=1

#(Y (Fqn))
tn

n

)
.
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The zeta function is independent of the choice of ` (for almost all `). It satisfies the
following functional equation, which may be interpreted as the statement of Poincaré duality
for the étale cohomology,

ζ(
1

qdt
) = ±q

d
2
χ(Y )tχ(Y )ζ(t)

where d = dim(Y ) and χ(Y ) is the Euler characteristic,

χ(Y ) =

d∑

i=0

(−1)irankH i
ét(Y, Q`).

4.3. Varying the p. Now suppose Y is an algebraic variety defined over Z. The equations
defining Y can be reduced modulo p, to give an algebraic variety Y (mod p) (sometimes
denoted Y/Fp) defined over Fp. In this case, it turns out that for almost all primes p (and
for ` 6= p),

H i(Y (C), Q)⊗Q`
Q`
∼= H i

ét(Y/Fp, Q`)

where the cohomology on the left hand side denotes the usual (singular, or simplicial) co-
homology for Y (C). For example, complex projective space is obtained as the quotient
Pn(C) = Cn+1 − {0} /C∗. So the analogous construction over Fq has

#Pn(Fq) =
qn+1 − 1

q − 1
= 1 + q + q2 + . . . + qn

which is the polynomial that describes the singular cohomology of projective space. (They’re
not all this easy, but it always seems like magic whenever you are able to count points.)

The Frobenius eigenvalues for different p can then be encoded in the L-function,

(4.3.1) L(Y, s) = Π
p

ζp(Y, p−s).

(In practice, finitely many primes are “bad”. The factors corresponding to bad primes must
be defined in a different way.)

4.4. Frobenius eigenvalues of a Galois representation. If Y is a nonsingular algebraic
variety defined over the integers then H i

ét(Y, Q`) has an action of Gal(Q/Q). It is possible
to recover the eigenvalues of σq on H i

ét(Y/Fp, Q`) from this Galois module directly, and this
leads to a definition of an L function for an abstract Galois representation.

First note that there is a diagram

Gal(Qp/Qp) −−−→
r

Gal(Q/Q)
yπ

Gal(Fp/Fp)

where π is surjective and r is injective. The mapping r exists because Q ⊂ Qp and Q ⊂ Qp;

any automorphism of Qp which fixes Qp restricts to an automorphism of Q which fixes Q.
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The mapping π is similarly induced from the projection (mod p) : Zp → Fp. One would
like to say that there is a canonical lift of the Frobenius σp ∈ Gal(Fp/Fp) whose image in

Gal(Q/Q) is denoted Frp and is called the Frobenius element at p. Unfortunately this is not
quite true, due to the existence of “ramification”.

Let H be a finite dimensional vector space over Q`. A representation4 ρ : Gal(Q/Q) →
GL(H) is said to be unramified at p (where ` 6= p) if its restriction to Gal(Qp/Qp) factors

through Gal(Fp/Fp). So in this case we have a mapping

ρp : Gal(Fp/Fp)→ GL(H)

and we define the Frobenius element Frp = ρp(σp) ∈ GL(H). The inverse of the character-
istic polynomial of the action of Frp on H defines a function,

ζp(ρ, t) =
1

det(I − tFrp)
.

Using the embedding Q` → C we may consider this to be a rational function with complex
coefficients. The coefficients of the characteristic polynomial are the eigenvalues of Frp, so
this function “encodes” the Frobenius eigenvalues, which may be combined for different
values of p by defining

(4.4.1) L(ρ, s) = Π
p

ζp(p
−s).

(For ramified primes p a slight modification5 is needed.) If ρ is the trivial 1-dimensional
representation then

L(ρ, s) = Π
p

1

1 − p−s

which is the Riemann zeta function.
If Y is a nonsingular algebraic variety defined over the integers Z and if p is a “good”

prime (which excludes only finitely many primes) then the repesentation of Gal(Fp/Fp)
on H i

ét(Y/Fp, Q`) (obtained by reducing Y modulo p) coincides with the representation on
H i

ét(Y, Q`) determined by the Frobenius element so the L function (4.3.1) is

L(Y, s) =
Πi oddL(H i, s)

Πi evenL(H i, s)

where H i is the representation of Gal(Q/Q) on the étale cohomology H i
ét(Y, Q`).

An excellent survey article on Galois representations is [T].

5. Modular forms for SL(2)

5.1. The purpose of this section and the next is to show that each modular form f gives rise
to a representation of GL(2, A) such that the action of the Hecke operators (on modular
forms) translates into an action of the Hecke algebra. We will also describe three ways
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to view a Hecke operator: as a geometrically defined correspondence, as an operator on
modular forms given by a certain equation, and as an integral operator on functions.

The group that we wish to study, GL(2, R), has two connected components, and it has
a nontrivial center Z(R) consisting of the scalar matrices. These properties are responsible
for several technicalities that we would just as soon avoid. So in this section we will instead
consider the theory of modular forms for SL(2, R), which is similar but simpler.

5.2. Classical theory. The group SL(2, R) acts on the upper half plane h by fractional
linear transformations: (

a b
c d

)
· z =

az + b

cz + d
.

The stabilizer of the “basepoint” i is the maximal compact subgroup SO(2) which can be
identified with the circle group by eiθ 7→

(
cos θ sin θ
− sin θ cosθ

)
.

A modular form f of weight k is a holomorphic mapping f : h → C, meromorphic at
infinity, such that for every g = ( a b

c d ) ∈ SL(2, Z),

f(g · z) = (cz + d)−k f(z).

The modular form f is cuspidal if f(z) → 0 as z → ∞. The space Sk of cuspidal modular
forms of weight k is finite dimensional. Each modular form f : h → C of weight k may be
interpreted as a section of a certain line bundle Ek on the quotient

X = SL(2, Z)\h.

This quotient, not coincidentally, may be interpreted as the moduli space of elliptic curves,
and as such, it carries the natural structure of a complex algebraic variety defined over Q.

In [Se] a few of the many marvelous number theoretic properties of individual modular
forms are described in an elementary way.

5.3. Modular forms give representations. Each integer k corresponds to a representa-
tion j : SO(2)→GL(1, C) = C∗, namely

(5.3.1) j

(
a b
c d

)
= (ci + d)k .

There is a simple trick6, perhaps first expressed in [GF], for converting a modular form f of

weight k into a function f̂ : SL(2, R)→ C such that

f̂(γgh) = j(h)−1f̂ (g)

for all γ ∈ SL(2, Z), all g ∈ SL(2, R) and all h ∈ SO(2), namely

f̂

(
a b
c d

)
= (ci + d)−k f

(
ai + b

ci + d

)
.

In other words, view (5.3.1) as a function on SL(2, R) and set f̂(g) = j(g)f(g · i).
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Then we may also view f̂ as a function

f̂ : SL(2, Z)\SL(2, R)→ C.

The group SL(2, R) acts on the space of such functions by the “regular” representation, that
is, the action of g ∈ SL(2, R) on such a function φ is the function

Rg(φ)(x) = φ(g−1x).

The collection of all translates Rg(f̂) of f̂ by elements g ∈ SL(2, R) span a sub-representation

of SL(2, R). If f is a cuspidal Hecke eigenform (see below) of weight k then f̂ is an L2

function, and the resulting representation turns out to be irreducible and isomorphic to the
discrete series representation (with trivial central character) of weight k.

5.4. Hecke operators. Write Γ = SL(2, Z). Each g ∈ GL(2, Q) defines a Hecke correspon-
dence whose action on functions (or on modular forms) is called a Hecke operator, as follows.
Let Γ′ = Γ∩ gΓg−1. It has finite index in both Γ and Γ′ so the following mappings are finite
coverings:

Γ′\h −−−→ (gΓg−1)\h

s
y ↙

Γ\h
where the diagonal isomorphism is given by multiplication by g−1. Setting X ′ = Γ′\h we
obtain two mappings (s, t) : X ′ ⇒ X or, equivalently, a mapping X ′ → X × X, which
turns out to be an embedding whose image may be thought of as the graph of a multi-
valued mapping (or correspondence) X → X. It turns out that this correspondence X ′ ⇒ X
depends only on the double coset ΓgΓ. This correspondence acts on a function f : Γ\h→ C
to give the function7

(5.4.1) Tg(f) = s∗t
∗f.

5.5. Hecke algebra. If (s1, t1) : Y1 ⇒ X and (s2, t2) : Y2 ⇒ X are two correspondences,
their composition is the correspondence Y3 defined to be the fiber product,

Y3 −−−→ Y2
t2−−−→ X

y ys2

Y1 −−−→
t1

X

s1

y

X
9



that is, Y3 = {(y1, y2) ∈ Y1 × Y2| t1(y1) = s2(y2)} . If Y1 = Γ1\h and Y2 = Γ2\h are Hecke
correspondences associated to elements g1, g2 ∈ GL(2, Q) then Y3 = Γ3\h with Γ3 = Γ2 ∩
g1Γ2g

−1
1 . The action of the composition Y3 on functions is given by the composition Tg2 ◦Tg1.

However this does not necessarily coincide with the action of Tg2g1. Rather, the product of
double cosets (Γg1Γ)(Γg2Γ) decomposes into a union of finitely many double cosets ΓhiΓ
with multiplicities mi (1 ≤ i ≤ k for some k), and

(5.5.1) Tg1 ◦ Tg2 =

k∑

i=1

miThi.

Thus we are led to define the Hecke algebra to be the set of all finite formal linear combina-
tions (with rational coefficients) of double cosets

ΓgΓ ∈ SL(2, Z)\GL(2, Q)/SL(2, Z),

with the composition law (5.5.1) and an action on functions given either by (5.4.1) or by
(8.7.1). Variations on this construction are obtained by replacing GL(2, Q) with its identity
component GL(2, Q)+, (the elements of positive determinant) or with integer matrices with
positive determinant M2(Z)+; or by replacing SL(2, Z) with GL(2, Z).

The structure of such a Hecke algebra is completely understood. It has no zero divisors,
it is abelian, and it decomposes into a sum of algebras Hp for each prime number p. Each
Hp is isomorphic to the ring of polynomials on certain generators 8.

Returning to GL(2), let T (n) be the Hecke operator corresponding to the matrix ( 1 0
0 n ) .

A modular form f is a Hecke eigenform if it is a simultaneous eigenvector for all elements
of the Hecke algebra. Each modular form f is automatically an eigenfunction for the Hecke
correspondences corresponding to scalar matrices, so f is a Hecke eigenform iff there exist
λp ∈ C so that T (p)f = λpf for all primes p, from which it also follows that f is an eigenform
for all T (n).

5.6. Fourier coefficients. If f : h→ C is a modular form, then it is periodic near infinity,
so it admits a Fourier expansion

f(z) =

∞∑

i=0

aie
2πiz.

The form f is cuspidal if a0 = 0 or equivalently, if f(z)→ 0 as z →∞. Suppose, moreover,
that f is a simultaneous eigenfunction for all Hecke operators: Tn(f) = λnf, and that f is
normalized so that a1 = 1. Then an = λn, that is, the Fourier coefficients of f coincide with
its Hecke eigenvalues.

5.7. Summary. In summary, the vector space Sk of cuspidal modular forms of weight
k decomposes under the Hecke algebra into 1-dimensional subspaces consisting of Hecke
eigenforms. The Hecke eigenvalues of such a cusp form coincide with its Fourier coefficients.
Such a cusp form gives rise to a discrete series representation of SL(2, R).
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6. Adelic point of view

6.1. The concept of a modular form may be generalized by a two step procedure: (a) to
that of an automorphic form and (b) to that of an automorphic representation. An auto-
morphic representation (of GL(n)) is an irreducible representation of GL(n, A) occurring in
a space of complex valued functions (on GL(n, A)) having certain growth, smoothness, and
equivariance properties. Langlands, and Jacquet-Langlands [JL] discovered how to assign
Hecke eigenvalues to such a representation so that the following diagram commutes:

modular form −−−→ automorphic form
y y

Hecke eigenvalues ←−−− automorphic representation

These constructions involve the adèles,

A = AQ = R×Π
p

′Qp.

This is the restricted product of the real numbers with the p-adic numbers for all primes p,
meaning that a sequence (a∞, a2, a3, a5, · · · ) of elemenets ap ∈ Qp is in A if there exists N > 0
so that ap ∈ Zp for all p ≥ N. The object A forms a locally compact ring under coordinate-
wise multiplication, and it contains the rational numbers Q, embedded diagonally, as a
discrete subring. (That is, each q ∈ Q corresponds to the sequence (q, q, q, · · · ).) We refer
to the real numbers R as the infinite component and the remainder Af = Π′

pQp as the finite
adeles.

The group GL(2, A) is locally compact and it breaks into a restricted product

GL(2, A) = GL(2, R)×Π
p

′GL(2, Qp)

meaning that a sequence g∞, g2, g3, g5, · · · is in GL(2, A) if, for all p sufficiently large, gp ∈
GL(2, Zp). The diagonally embedded subgroup GL(2, Q) is discrete in GL(2, A) and we may
form the quotient GL(2, Q)\GL(2, A). A modular form may be considered as a function on
this quotient. In fact, there is a natural (although not entirely obvious) identification

GL(2, Z)\GL(2, R) ∼= GL(2, Q)\GL(2, A)/Kf

where

Kf = Π
p

GL(2, Zp)

is a compact open subgroup of the finite adelic group GL(2, Af ). This identification induces
an isomorphism

(6.1.1) X = SL(2, Z)\h ∼= GL(2, Q)Z(A)\GL(2, A)/O(2) ×Kf .

Moreover the manifold X admits the structure of a complex algebraic variety defined over
the rational numbers Q. With this algebraic strucutre, X is referred to as a Shimura variety9.
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6.2. Automorphic forms in the adelic setting. As in §5.3, each (holomorphic) cuspidal
modular form f lifts to a function

(6.2.1) f̂ : GL(2, Q)Z(A)\GL(2, A)→ C.

The functions obtained this way satisfy certain growth10, smoothness11, and equivariance12

properties. The cuspidality condition for f can be rephrased in terms of certain integrals13

of f̂ . In general, a cuspidal automorphic form φ on GL(n, A) is a function

(6.2.2) φ : GL(n, Q)Z(A)\GL(n, A)→ C
which satisies the analogous growth14, smoothness15, equivariance16, and cuspidal conditions17.
Denote the vector space of cuspidal automorphic forms by A0 = A0(GL(n, A)).

6.3. Automorphic representations. Elementary references for this section include [K],
[G1] and [G2]. A more complete reference is [Bu] §3.2. Given an automorphic form φ (6.2.2),
the collection of all translates Rg(φ) (as g varies in GL(n, A)) spans a vector subspace of

(6.3.1) L2(GL(n, Q)Z(A)\GL(n, A))

whose closure we denote by Vφ. The group GL(n, A) acts on Vφ. If the automorphic form
φ arose from a cuspidal modular Hecke eigenform (for n = 2) then the representation Vφ is
irreducible. So one would like to define an automorphic representation to be any irreducible
representation that occurs in (6.3.1). There are two problems with this plan. The first is
that any reasonable decomposition of (6.3.1) will have a continuous spectrum. This creates
enormous difficulties that must eventually be addressed, however for the present purpose we
will avoid these difficulties by restricting to the Hilbert space

(6.3.2) L2
0(GL(n, A)Z(A)\GL(n, A))

consisting of L2 measurable functions that satisfy the cuspidal condition. This space de-
composes into a discrete sum18 of irreducible unitary representations of GL(n, A).

Each irreducible constituent π of (6.3.2) decomposes as a product π = π∞ ⊗ ⊗pπp of
irreducible unitary representations of GL(n, R) and GL(n, Qp) respectively, and each πp

has eigenvalues associated to the Hecke algebra Hp (see below) associated to the group
GL(n, Qp). Here is how these eigenvalues are constructed. The space

(6.3.3) A0 = A0(GL(n, A))

of cuspidal automorphic forms is a subspace of (6.3.2) which also admits a decomposition
into a (Hilbert space direct) sum of irreducibles, each of which we refer to as a cuspidal au-
tomorphic representation19. Moreover, there is a natural one to one correspondence between
the irreducibles appearing in (6.3.2) and the irreducibles appearing in (6.3.3): if

π : GL(n, A)→GL(V )

is an irreducible unitary representation occurring in (6.3.2) then the subspace V (K) of K-
finite vectors20 constitutes an irreducible cuspidal automorphic representation π′ appearing
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in (6.3.3). Moreover, this automorphic representation π′ decomposes as a restricted21 tensor
product,

π′ = π′
∞ ⊗⊗pπ

′
p

where π′
p is an irreducible (admissible22) representation of GL(n, Qp) and π′

∞ is an irreducible
(g∞,K∞) module (see note 20). The plan, now, is to assign Hecke eigenvalues to each
component π′

p.
Not every such tensor product of irreducibles appears in (6.3.2). The manner in which

the various factors appear in the irreducible constituents of (6.3.2) is believed to reflect deep
number-theoretic facts.

6.4. Hecke eigenvalues of an automorphic representation. Throughout this section
let us fix a prime number p <∞ and set Gp = GL(n, Qp) and Kp = GL(n, Zp). The Hecke
algebra Hp is the vector space of all finite formal linear combinations of double cosets

(6.4.1) KpgKp ∈ Kp\Gp/Kp

or equivalently, it is the vector space of smooth (= locally constant) compactly supported
Kp- bi-invariant functions on Gp. It has a basis consisting of characteristic functions of
double cosets (6.4.1). Multiplication in Hp may be expressed as convolution23:

(f ∗ h)(z) =

∫

Gp

f(x)h(x−1z)dx.

The Hecke algebra Hp acts on Kp-finite locally constant functions φ by

(hφ)(z) =

∫

Gp

h(g)φ(zg)dg.

Fix an irreducible (admissible) representation πp : Gp → GL(V ) that occurs as the p-
component of a cuspidal automorphic representation π. We say that πp is unramified or
spherical (or that π is unramified at p) if the subgroup Kp acts on V with a nontrivial fixed
subspace V Kp. In this case the subspace of vectors fixed under Kp is 1-dimensional, which
may be interpreted as an eigenspace for the Hecke operators at p. In fact24 the Hecke algebra
Hp acts on this 1-dimensional space through some λ : Hp → C, which turns out to be a
homomorphism of algebras, and which we refer to as the Hecke eigenvalue corresponding to
the representation πp.

Satake showed25 that the collection of such homomorphisms can be naturally identified
with equivalence classes of diagonal n× n matrices of nonzero complex numbers; two being
considered equivalent if they differ by a permutation of the entries (that is, with T (C) where
T is the torus of diagonal matrices in GL(n)). Moreover this Satake parameter determines
the representation πp. If diag(t1, t2, · · · , tn) is a diagonal matrix of n nonzero complex
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numbers, let µ : T (Qp)→ C× be the homomorphism

µ




x1

x2

· · ·
xn


 =

n∏

i=1

t
val(xi)
i

Then πp = ind
Gp

T (µ) is obtained by inducing this character up to Gp. See the survey article
[K] for details.

The Satake parameter t = diag(t1, t2, · · · , tn) ∈ T (C) may also be identified with a
semisimple conjugacy class in GL(n, C). Any element in this class has the same eigenvalues
t1, t2, · · · , tn, possibly permuted, (with respect to the standard representation of GL(n, C)),
which we consider to be the desired “Hecke eigenvalues” attached26 to πp. We may form a
zeta function in the usual way,

ζp(y) =
1

det(I − yt)
.

If π is an automorphic representation of GL(n, A) then define

L(π, s) =
∏

p

ζp(p
−s)

where the product is taken over all primes p such that πp is unramified27.

6.5. Summary. Finally, Langlands’ conjecture states that there should be a way to asso-
ciate, to any representation ρ of Gal(Q/Q) an automorphic representation π of GL(n, A)
such that (up to constant factors and a shift in s) the resulting L functions coincide:

L(ρ, s) = L(π, s).

In other words, the eigenvalues of Frp on the representation ρ should coincide with the
eigenvalues of the Hecke algebra Hp on the p-component πp of the representation π.

7. Comparing both sides

7.1. The case n = 2. The Eichler-Shimura theorem may be reinterpreted as a proof of
the conjecture for n = 2. There are several ways to associate Galois representations and
modular forms. Shimura’s original description [Sh1] associates to any modular form f a
certain elliptic curve Ef . Then he shows that the Galois group acts on the torsion points of
Ef , giving rise to the desired Galois representation which can be interpereted as the Galois
representation on the étale cohomology H1

ét(Ef , Q`). However the modern approach consists
of identifying this Galois representation in the cohomology H1

ét(X, Q`) of the Shimura variety

X = GL(2, Q)Z(A)\GL(2, A)/O(2)Kf

14



described in (6.1.1). In fact, Eichler and Shimura showed that there is a local coefficient
system Ek on X such that

(7.1.1) H1
P (X, Ek; Q)⊗Q C ∼= Sk ⊕ Sk

where Sk denotes the (finite dimensional) vector space of cusp forms of weight k. Here,
H1

P (X, Ek) denotes the image of the mapping H1
c (X, Ek) → H1(X, Ek), where H1

c denotes
cohomology with compact supports28. Under the isomorphism (7.1.1) the action of Hecke
correspondences on the left side coincides with the action of the Hecke operators on the right
side. If a cusp form f is a Hecke eigenform then its complex conjugate f is also an eigenfunc-
tion of all Hecke operators, and it has the same Hecke eigenvalues. So the action of the Hecke
algebra decomposes the cohomology group on the left side into two dimensional subspaces.
It follows that the étale cohomology H1

ét,P (X, Ek; Q`) is decomposed into two dimensional
subspaces (under the action of the Hecke correspondences), each of which corresponds to a
unique cuspidal Hecke eigenform f, and hence to an automorphic representation. This, fi-
nally, gives a correspondence between (certain) two dimensional representations of Gal(Q/Q)
and (certain) cuspidal automorphic representations of GL(2, A). It turns out (and this is the
difficult part) that under this correspondence, the Galois eigenvalues do indeed correspond
to the Hecke eigenvalues. In order to prove this, one needs some relation between the Galois
action and the Hecke action on the étale cohomology, and this is provided by the Eichler-
Shimura relation which says, approximately, that the correspondence Tp is isomorphic (as a
correspondence) to the sum of σp and its transpose.

7.2. The case n ≥ 3. The above argument is so compelling that one might ask why it
doesn’t just work in general. The problem is that the procedure breaks down entirely for
n ≥ 3 because the required Shimura varieties do not exist. For example, when n = 3 the
analogous object

GL(3, Q)Z(A)\GL(3, A)/O(3)Kf

is not an algebraic variety at all, and in fact it is a manifold of (real) dimension 5. This
issue is one of the great puzzles of the subject.

7.3. What about GL(1)?

8. Other groups and fields

8.1. Roughly speaking, for any algebraic group G defined over Q, Langlands conjectures
that there should exist a correspondence{

nice homomorphism
Gal(Q/Q)→ LG(C)

}
−→

{
nice automorphic representations

of G(AQ)

}
(8.1.1)

such that

{eigenvalues of Frobenius} −→ {eigenvalues of Hecke operators}(8.1.2)
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8.2. The dual group.

8.3. The Hermitian case.

8.4. Local fields.

8.5. Geometric Langlands.

8.6. Langlands’ functoriality conjecture.

8.7. A sampling of major results.

Notes

1In other words, it is the set of equivalence classes of Cauchy sequences; two such sequences {xn}, {yn}
being considered equivalent if |xn − yn|p → 0.

2The norm | |p is defined as follows. Suppose a/b is a fraction in lowest terms. If neither a nor b is
divisible by p then |a/b|p = 1. If a is divisible by p, say a = pma′ then |a/b|p = p−m. If b is divisible by p,
say b = pnb′ then |a/b|p = pn. If c = a/b is expanded as a power series in p, then |a/b|p = p− valc.

3There are many such embeddings, and they are never continuous with respect to the usual topology on
C.

4A Galois representation ρ is always assumed to be continuous with respect to the natural topology on
Gal(Q/Q) that arises from its structure as a pro-finite group; see [T] §1.

5More generally, for any prime p 6= `, let Ip = ker(πp) be the “inertia group” and let HIp be the
subspace of H that is fixed under IP . If H is unramified at p then HIp = H. But in general, the quotient
Gal(Qp/Qp)/Ip ∼= Gal(Fp/F) acts on HIp . So we obtain a “ Frobenius element” Frp ∈ GL(HIp). Then the
zeta function “at p” is defined to be 1

det(I−tFrp) , where I − Frp acts on the subspace HIp . Then equation
(4.4.1) makes sense as a product of local factors over all primes p 6= `. If p = ` then the corresponding local
factor involves more technical considerations.

6In general if G is a Lie group and K is a closed subgroup then any representation ρ : K → GL(V ) of
K (on a complex vector space V ) determines a homogeneous vector bundle E = G ×K V on D = G/K,
consisting of equivalence classes [g, v] where [gk, v] ∼ [g, λ(k)v] for all k ∈ K, which admits an action of
G by g · [h, v] = [gh, v]. Each (smooth) section of E is given by a (smooth) function f̂ : G → C such that
f̂ (gk) = λ(k−1)f̂ (g). A (smooth) automorphy factor for E is a smooth mapping J : G×D → GL(V ) such
that

(1) J(gg′, x) = J(g, g′x)J(g′, x) for all g, g′ ∈ G and all x ∈ D,
(2) J(k, x0) = ρ(k) for all k ∈ K

where x0 ∈ D is the basepoint determined by K. The automorphy factor J is determined by its values
J(g, x0) at the basepoint: any smooth mapping j : G → GL(V ) such that j(gk) = j(g)ρ(k) (for all k ∈ K
and g ∈ G) extends in a unique way to an automorphy factor J by setting J(g, hx0) = j(gh)j(h)−1.

An automorphy factor for E, if one exists, determines a smooth trivialization ΦJ : G ×K V → D × V
of E, by [g, v] 7→ (gK, J(g, x0)v) which is G-equivariant with respect to the J-automorphic action of G on
D × V given by g · (x, v) = (gx, J(g, x)v). (Conversely, any smooth trivialization Ψ : E → D × V of E
determines a unique automorphy factor J such that Ψ = ΦJ .) An automorphy factor allows one to identify
smooth mappings f : D → V with smooth sections f̂ : G → V of E by setting f̂ (g) = J(g, x0)−1f(gK).
Sections f̂ that are invariant under some γ ∈ G (meaning that f̂(γg) = f̂ (g) for all g ∈ G) then correspond to
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mappings f : D → V such that f(γx) = J(γ, x)f(x) for all x ∈ D. In the case of SL(2), the one dimensional
representation of K = SO(2),

ρ
(

a b
−b a

)
= (a + ib)k

admits an automorphy factor J
((

a b
c d

)
, z

)
= (cz + d)k where z ∈ h = G/K. See [GP] for more details.

7The Hecke operator may also be described as the action of the double coset ΓgΓ on f as follows. Choose
coset representatives γ1, · · · , γt for Γ′\Γ so that Γ =

∐t
i=1 Γ′γi. Then

(8.7.1) Tg(f)(Γx) =
t∑

i=1

f(Γg−1γix)

for any x ∈ h.
8The Hecke algebra for SL(n) differs slightly from that of GL(n). Here are a few examples.
Let Mn(Z)+ be the ring of all n×n matrices with integer entries and positive determinant. Then ([Sh1],

Thm. 3.20) the Hecke algebra for SLn(Z)\Mn(Z)+/SLn(Z) is the sum of Hp (for p prime), each of which
is isomorphic to a polynomial algebra on n generators

(8.7.2) diag(1, p, · · · , p), diag(1, 1, p, · · · , p), · · · , diag(p, p, · · · , p).

The Hecke algebra for GL(n,Z)\GL(n,Q)/GL(n,Z) is a sum of Hp, each of which ([A] Thm. 3.2.17)
is isomorphic to a polynomial algebra on n+ 1 generators: those in (8.7.2) and diag(p, p, · · · , p)−1.

9 Other quotients Γ1\h (where Γ1 is an arithmetic subgroup of GL(2,Q)) may similarly be expressed as
quotients GL(2,Q)Z(R)\GL(2,A)/O(2)K1f for appropriate choice of compact open subgroup K1f of the
finite adèlic group GL(2,Af ).

10The function φ should be slowly increasing, or have moderate growth, meaning that for any c > 0 and
any compact subset T ⊂ GL(n,A) there exist constants C,N such that

φ (( 1 0
0 a ) g) ≤ C|a|N

whenever a ∈ A× and |a| > c, cf. note 14.
11The function f̂ , viewed as a function on GL(2,R), turns out to be an eigenfunction of the Laplace

operator, with eigenvalue −k
2

(
k
2 − 1

)
.

12The fact that f̂ is defined on the quotient space (6.2.1) means that f̂ may be considered to be a function
on GL(2,A) such that f(zγg) = f(g) for all z ∈ Z(A) and all γ ∈ GL(2,Q). Equivariance with respect to
K∞ = O(2) is expressed by f̂ (gu) = e−ikθf(g) where u =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
.

13
∫

Q\A f̂ (( 1 x
0 1 ) g) dx = 0 for all g ∈ GL(2,A).

14The function φ should be slowly increasing, meaning that there exist constants C,N such that |φ(g)| ≤
C||g||N where || || is a “height function”, [Bu] p. 300. (It may be taken to be the length of the vector
(g, det(g)−1) ∈ A2n ⊕ A, using the embedding of GL(n,A) in the space Mn(A) of all n × n matrices.) If φ
is slowly increasing then it is square integrable.

15The function φ should be z(g)-finite, meaning that there is an ideal of finite codimension in the center
z of the universal enveloping algebra of g = gl(n,R) that kills the function φ (viewed as a function on
GL(n,R)).

16The function φ should be K-finite, meaning that its translates by K span a finite dimensional vector
space of functions. Here, K = O(n) ×Kf where Kf =

∏
p GL(n,Zp) as above.

17More generally, for any character ψ : A× → C× a cuspidal automorphic form of type ψ is a function

φ : GL(n,Q)\GL(n,A) → C
17



which satisfies φ(zg) = ψ(z)φ(g) for all z ∈ Z(A) ∼= A×, along with the growth, smoothness, equivariance,
and cuspidal conditions.

18A special feature of the group GL(n) is that each irreducible representation occurs at most once in this
decomposition.

19Actually the group GL(n,A) does not act on A0 because the K-finiteness condition is not preserved
under the translation operator Rg. However A0 is both a (g∞,K∞) module (where g∞ = Lie(GL(n,R) and
K∞ = O(n)) and a GL(n,Af ) module. As such, it decomposes into irreducibles and in particular, each
automorphic representation is not really a representation of GL(n,A) but rather it is a

(g∞,K∞) × GL(n,Af )

module.
20It turns out that V (K) consists of eigenvectors (or eigenfunctions) of Z(g∞), relative to some homomor-

phism Z(g∞) → C, and that each such vector also satisfies the “slow growth” hypothesis of note 14; in fact
it is even rapidly decreasing. See [Kn] Thm. 7.3.

21meaning that for p sufficiently large, the component π′
p is the trivial one dimensional representation

22A representation of GL(n,Qp) is admissible if it decomposes under Kp = GL(n,Zp) into a direct sum
of finite dimensional representations, each of which occurs at most finitely many times.

23with respect to a naturally defined Haar measure on Gp
24If h ∈ Hp is a smooth compactly supported complex valued Kp-bi-invariant function, and if v ∈ V Kp

then

πp(h)(v) =
∫

Gp

h(g)πp(g)vdg.

If h is the characteristic function of a single double coset KpaKp then this gives

πp(h)(v) =
∫

Kp

π(k)π(a)vdk

which is easily seen to be fixed under Kp again. Consequently,

πp(h)(v) = λ(h)v

for some number λ(h) ∈ C. It is easily seen that in fact, λ is a homomorphism λ : Hp → C of algebras.
25In general, if G is a reductive linear algebraic group defined over Qp the spherical Hecke algebra HG is

the collection of formal finite linear combinations of double cosets

h ∈ G(Zp)\G(Qp)/G(Zp)

or, equivalently, the collection of all localy constant compactly supported complex valued functions φ :
G(Qp) → C that are G(Zp)-bi-invariant, together with its convolution product. It is commutative. In
the case that G = T is a split torus with cocharacter group X∗(T) = Hom(Gm,T), the homomorphism
val : Qp → Z extends to an isomorphism

T(Qp)/T(Zp) ∼= X∗(T)

which, in turn, induces an isomorphism HT
∼= C[X∗(T)] between the Hecke algebra and the group algebra

of X∗(T). Let T∧ be the dual torus with

X∗(T∧) = X∗(T) = Hom(T,Gm).

In summary there is a natural identification

Homalg(HT,C) ∼= Homalg(C[X∗(T)],C) ∼= X∗(T) ⊗Z C = X∗(T∧) ⊗Z C = T∧(C)
18



between the group of algebra homomorphism C[X∗(T)] → C and the complex points of the dual torus.
Now suppose G as above is split over Qp. If T is a maximal torus in G then the Satake transform (see the
survey article [Gr]) gives an isomorphism HG

∼= HW
T between the Hecke algebra for G and the Weyl group

invariants in HT and hence induces an identification

Homalg(HG,C) ∼= Homalg(HT,C)/W ∼= T∧(C)/W

between the group of algebra homomorphism HG → C and orbits of the Weyl group in the group of complex
points of the dual torus T∧(C). The set T∧(C)/W also parametrizes semisimple conjugacy classes in the
group of complex points G∧(C) of the dual group G∧. In the case G = GL(n) the maximal torus T and
the dual torus T∧ can be identified, as can G and G∧.

26These numbers turn out to be essentially the elementary symmetric functions in the eigenvalues of the
action of T (1, · · · , 1, p, · · · , p) on the corresponding “classical” modular form f ; see [K].

27It is a theorem that πp will be unramified for all but finitely many primes p. However the L function for
π should contain contributions from all primes, and something else must be done for the ramified primes.

28In modern language, this is the intersection cohomology

IH1(X, Ek; Q) ∼= H1
P (X, Ek; Q)

of the Baily-Borel compactification X ofX. The intersection cohomology with coefficients in Ek makes sense,
even though the local system Ek may fail to extend over the Baily-Borel compactification of X. There is also
an étale version of intersection cohomology and a comparison isomorphism

IHi
ét(X, Ek; Q`) ∼= IHi(X, Ek; Q) ⊗Q Q`

between the étale intersection cohomology of X (viewed as an algebraic variety defined over the rational
numbers) and the (topological) intersection cohomology of X. .
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