Direct Sum Fails for Zero Error Average Communication

Shay Moran (Technion)

Based on joint work with Gillat Kol (IAS), Amir Shpilka and Amir Yehudayoff (Technion)
Information & Communication Complexities

\[f : \mathcal{X} \times \mathcal{Y} \rightarrow \mathcal{Z} \]

Alice has \(x \in \mathcal{X} \)
Bob has \(y \in \mathcal{Y} \)

Want to compute \(f(x, y) \)

[Shannon, Yao]
A classic: The Transmission Problem
A classic: The Transmission Problem

- Alice receives $x \sim \mu$
- She wants to transmit x to Bob
- Objective: minimize the expected number of bits sent
A classic: The Transmission Problem

- Alice receives $x \sim \mu$
- She wants to transmit x to Bob
- Objective: minimize the expected number of bits sent

[Shannon]: $H(\mu) =$ “Amortized complexity of the above problem”
A classic: The Transmission Problem

- Alice receives $x \sim \mu$
- She wants to transmit x to Bob
- Objective: minimize the expected number of bits sent

[Shannon]: $H(\mu) =$ “Amortized complexity of the above problem”

[...] Braverman-Rao] generalized this result for the interactive case when some error is allowed
A classic:
The Transmission Problem

- Alice receives $x \sim \mu$
- She wants to transmit x to Bob
- Objective: minimize the expected number of bits sent

[Shannon]: $H(\mu) =$ “Amortized complexity of the above problem”

[...Braverman-Rao] generalized this result for the interactive case when some error is allowed

[This paper] studies the question when no error is allowed
OUTLINE

• Communication and Information Complexity measures

• Information versus Amortized Communication

• Our Results
Communication Model

\[\Pi = \Pi(x, y) \text{ is the transcript of the protocol} \]

\[\Pi = \pi_1 \pi_2 \ldots \pi_m \]

\[\pi_1(x) \]

\[\pi_2(\pi_1, y) \]

\[\pi_3(\pi_1 \pi_2, x) \]

\[\vdots \]
Communication Model

\[\Pi = \Pi(x, y) \text{ is the transcript of the protocol} \]

\[\Pi = \pi_1 \pi_2 \ldots \pi_m \]

\[\begin{align*}
\pi_1(x) \\
\pi_2(\pi_1, y) \\
\pi_3(\pi_1 \pi_2, x) \\
\vdots
\end{align*} \]

We also allow randomness...
Distributional Communication Model
Distributional Communication Model

• Let μ be a distribution on $\mathcal{X} \times \mathcal{Y}$
Distributional Communication Model

- Let μ be a distribution on $\mathcal{X} \times \mathcal{Y}$
- Let Π be a protocol
Distributational Communication Model

- Let μ be a distribution on $\mathcal{X} \times \mathcal{Y}$
- Let Π be a protocol
- $\text{CC}_{\mu}^\text{avg}(\Pi)$: The expected number of bits exchanged by Alice and Bob (w.r.t μ)
Distributional Communication Model

- Let μ be a distribution on $\mathcal{X} \times \mathcal{Y}$
- Let Π be a protocol
- $\mathbb{C}C_{\mu}^{\text{avg}}(\Pi)$: The expected number of bits exchanged by Alice and Bob (w.r.t μ)
- Let $f : \mathcal{X} \times \mathcal{Y} \rightarrow \mathcal{Z}$ be a function
Distributional Communication Model

- Let μ be a distribution on $\mathcal{X} \times \mathcal{Y}$
- Let Π be a protocol
- $\text{CC}^\text{avg}_\mu(\Pi)$: The expected number of bits exchanged by Alice and Bob (w.r.t μ)
- Let $f : \mathcal{X} \times \mathcal{Y} \rightarrow \mathcal{Z}$ be a function
- Π computes f with ε-error means:
 \[\Pr (\Pi(x, y) = f(x, y)) \geq 1 - \varepsilon \]
Distributional Communication vs Randomized Communication
Distributional Communication vs Randomized Communication

Distributional Communication Complexity:

$D_\mu(f, \epsilon)$ is the complexity of the best protocol w.r.t. μ
Distributional Communication vs Randomized Communication

Distributional Communication Complexity:
\[D_\mu(f, \epsilon) \text{ is the complexity of the best protocol w.r.t. } \mu \]

Randomized Communication Complexity:
\[R(f, \epsilon) \text{ is } D_\mu(f, \epsilon) \text{ in the worst-case distribution } \mu \]
Information Complexity
Information Complexity

Let Π be a protocol
Information Complexity

Let Π be a protocol

External Information:
Information Complexity

Let Π be a protocol

External Information:

$\text{IC}^\text{ext}_\mu(\Pi) = \text{I}(\Pi; XY)$
Information Complexity

Let Π be a protocol

External Information:

$$IC^\text{ext}_\mu(\Pi) = I(\Pi; XY)$$

The number of bits an external observer "learns" on the input from the transcript
Information Complexity

Let Π be a protocol

External Information: $\text{IC}_{\mu}^{\text{ext}}(\Pi) = I(\Pi; XY)$

Internal Information:

The number of bits an external observer "learns" on the input from the transcript
Information Complexity

Let Π be a protocol

External Information:

$$IC^\text{ext}_\mu(\Pi) = I(\Pi; XY)$$

The number of bits
an external observer “learns”
on the input from the transcript

Internal Information:

$$IC^\text{int}_\mu(\Pi) = I(\Pi; X|Y) + I(\Pi; Y|X)$$
Information Complexity

Let Π be a protocol

External Information:

$IC^\text{ext}_\mu(\Pi) = I(\Pi; XY)$

The number of bits an external observer "learns" on the input from the transcript

Internal Information:

$IC^\text{int}_\mu(\Pi) = I(\Pi; X|Y) + I(\Pi; Y|X)$

The number of bits the parties "learn" on each other's input from the transcript
Information vs Communication

\[\text{CC}_{\mu}^{\text{avg}}(\Pi) \geq \text{IC}_{\mu}^{\text{ext}}(\Pi) \geq \text{IC}_{\mu}^{\text{int}}(\Pi). \]

- # of bits communicated
- # of bits learnt by an external observer
- # of bits learnt by Alice & Bob
Distributional Information vs Randomized Information
Distributional Information vs Randomized Information

Let $IC \in \{IC^{\text{ext}}, IC^{\text{int}}\}$
Distributional Information vs Randomized Information

Let $IC \in \{IC^{\text{ext}}, IC^{\text{int}}\}$

Distributional Information Complexity:

$IC_{\mu}(f, \epsilon)$ is the information complexity of the best protocol w.r.t μ
Distributional Information vs Randomized Information

Let $\text{IC} \in \{\text{IC}^{\text{ext}}, \text{IC}^{\text{int}}\}$

Distributional Information Complexity:
$\text{IC}_\mu(f, \epsilon)$ is the information complexity of the best protocol w.r.t μ

reveals minimum information
Distributional Information vs Randomized Information

Let $IC \in \{IC^{\text{ext}}, IC^{\text{int}}\}$

Distributional Information Complexity:
$IC_\mu(f, \epsilon)$ is the information complexity of the best protocol w.r.t μ

Randomized Information Complexity
$IC(f, \epsilon)$ is $IC_\mu(f, \epsilon)$ in the worst case distribution μ
• We defined the Communication Model and the Communication and Information Complexities

• Next: We will discuss the relations between Amortized Communication and Information Complexity
Information vs Amortized Communication
Amortized Communication
Amortized Communication

Want to understand the Communication Complexity of solving n independent inputs of a function f
Amortized Communication

Want to understand the Communication Complexity of solving \(n \) independent inputs of a function \(f \)

Let \(D^n_{\mu}(f, \epsilon) \) be the complexity of computing \(n \) independent inputs of \(f \)
(Distributional: w.r.t \(\mu \))
Amortized Communication

Want to understand the Communication Complexity of solving n independent inputs of a function f

Let $D^n_\mu(f, \epsilon)$ be the complexity of computing n independent inputs of f (Distibutional: w.r.t μ)

Let $R^n(f, \epsilon)$ be the complexity of computing n independent inputs of f (Randomized: worst case μ)
Amortized Communication

Want to understand the Communication Complexity of solving n independent inputs of a function f

Let $D^n_\mu(f, \varepsilon)$ be the complexity of computing n independent inputs of f
(Distributinal: w.r.t μ)

$$\lim_{n \to \infty} \frac{D^n_\mu(f, \varepsilon)}{n} = \text{Amortized Distributional Complexity}$$

Let $R^n(f, \varepsilon)$ be the complexity of computing n independent inputs of f
(Randomized: worst case μ)
Amortized Communication

Want to understand the Communication Complexity of solving \(n \) independent inputs of a function \(f \)

Let \(D^n_\mu(f, \epsilon) \) be the complexity of computing \(n \) independent inputs of \(f \)
(Distibutional: w.r.t \(\mu \))

\[
\lim_{n \to \infty} \frac{D^n_\mu(f, \epsilon)}{n} = \text{Amortized Distributional Complexity}
\]

Let \(R^n(f, \epsilon) \) be the complexity of computing \(n \) independent inputs of \(f \)
(Randomized: worst case \(\mu \))

\[
\lim_{n \to \infty} \frac{R^n(f, \epsilon)}{n} = \text{Amortized Randomized Complexity}
\]
Information vs Amortized Communication
Information vs Amortized Communication

$\epsilon > 0$
Information vs Amortized Communication

\[\epsilon > 0 \]

[Braverman-Rao 2011]:
Information vs Amortized Communication

\[\epsilon > 0 \]

[Braverman-Rao 2011]:

\[\text{IC}_{\mu}^{\text{int}}(f, \epsilon) = \lim_{n \to \infty} \frac{D_{\mu}^{n}(f, \epsilon)}{n} \]
Information vs Amortized Communication

\[\epsilon > 0 \]

[Braverman-Rao 2011]:

Distributional

\[
IC^\text{int}_\mu(f, \epsilon) = \lim_{n \to \infty} \frac{D_n^\mu(f, \epsilon)}{n}
\]

Non-Distributional

\[
IC^\text{int}(f, \epsilon) = \lim_{n \to \infty} \frac{R_n^\epsilon(f, \epsilon)}{n}
\]
Information vs Amortized Communication

\[\epsilon > 0 \quad \text{Distributional} \]

\[\text{IC}_\mu^{\text{int}}(f, \epsilon) = \lim_{n \to \infty} \frac{D_n^\mu(f, \epsilon)}{n} \]

\[\epsilon = 0 \quad \text{Non-Distributional} \]

\[\text{IC}^{\text{int}}(f, \epsilon) = \lim_{n \to \infty} \frac{R_n(f, \epsilon)}{n} \]

[Braverman-Rao 2011]:
Information vs Amortized Communication

\[\epsilon > 0 \]

[Braverman-Rao 2011]:

\[IC_{\mu}^{\text{int}}(f, \epsilon) = \lim_{n \to \infty} \frac{D_{\mu}^{n}(f, \epsilon)}{n} \]

\[IC^{\text{int}}(f, \epsilon) = \lim_{n \to \infty} \frac{R^{n}(f, \epsilon)}{n} \]

\[\epsilon = 0 \]

[Braverman et al]:

Distributional

Non-Distributional
Information vs Amortized Communication

\[\epsilon > 0 \]

[Braverman-Rao 2011]:

\[
\text{IC}_{\mu}^{\text{int}}(f, \epsilon) = \lim_{n \to \infty} \frac{D_{\mu}^n(f, \epsilon)}{n}
\]

\[\epsilon = 0 \]

[Braverman et al]:

\[
\text{IC}_{\mu}^{\text{ext}}(f, 0) = \lim_{n \to \infty} \frac{D_{\mu}^n(f, 0)}{n}
\]
Information vs Amortized Communication

$\epsilon > 0$

[Braverman-Rao 2011]:

\[
\text{IC}^\text{int}_\mu (f, \epsilon) = \lim_{n \to \infty} \frac{D^n(f, \epsilon)}{n}
\]

$\epsilon = 0$

[Braverman et al]:

\[
\text{IC}^\text{ext}_\mu (f, 0) = \lim_{n \to \infty} \frac{D^n(f, 0)}{n}
\]

Distributional

Non-Distributional

\[
\text{IC}^\text{int}(f, \epsilon) = \lim_{n \to \infty} \frac{R^n(f, \epsilon)}{n}
\]

\[
\text{IC}^\text{ext}(f, 0) = \lim_{n \to \infty} \frac{R^n(f, 0)}{n}
\]
Information vs Amortized Communication

\[\epsilon > 0 \]

[Braverman-Rao 2011]:

\[IC_{\mu}^{\text{int}}(f, \epsilon) = \lim_{n \to \infty} \frac{D_{\mu}(f, \epsilon)}{n} \]

[Braverman et al]:

\[IC_{\mu}^{\text{ext}}(f, \epsilon) = \lim_{n \to \infty} \frac{D_{\mu}(f, \epsilon)}{n} \]

\[IC_{\mu}^{\text{ext}}(f, 0) \neq \lim_{n \to \infty} \frac{D_{\mu}(f, 0)}{n} \]

No (this paper)

\[IC_{\mu}^{\text{ext}}(f, 0) = \lim_{n \to \infty} \frac{R_{\mu}(f, 0)}{n} \]

\[IC_{\mu}^{\text{ext}}(f, 0) \neq \lim_{n \to \infty} \frac{R_{\mu}(f, 0)}{n} \]
Information vs Amortized Communication

$\epsilon > 0$

[Braverman-Rao 2011]:

$$IC_{\mu}^{int}(f, \epsilon) = \lim_{n \to \infty} \frac{D_{\mu}(f, \epsilon)}{n}$$

$\epsilon = 0$

[Braverman et al]:

$$IC_{\mu}^{ext}(f, 0) = \lim_{n \to \infty} \frac{D_{\mu}(f, 0)}{n}$$

No (this paper)

$$IC^{ext}(f, 0) = \lim_{n \to \infty} \frac{R_n(f, 0)}{n}$$

Still open…
• We discussed some known connections between Information and Amortized Communication
• We discussed some known connections between Information and Amortized Communication

• Next we prove that
• We discussed some known connections between Information and Amortized Communication

• Next we prove that

\[\text{IC}_{\mu}^{\text{ext}}(f,0) \neq \lim_{n \to \infty} \frac{D_{\mu}^n(f,0)}{n} \]
• We discussed some known connections between Information and Amortized Communication

Next we prove that

$$\text{IC}_{\mu}^\text{ext}(f, 0) \neq \lim_{n \to \infty} \frac{D_{\mu}^n(f, 0)}{n}$$

• Need to construct f, μ for which the two quantities disagree
• We discussed some known connections between Information and Amortized Communication

• Next we prove that
\[\text{IC}^\text{ext}_\mu (f, 0) \neq \lim_{n \to \infty} \frac{D^n_\mu (f, 0)}{n} \]

• Need to construct \((f, \mu)\) for which the two quantities disagree

• We will show something stronger...
Our Results
Theorem:

\exists \text{ a sequence } \{f_k, \mu_k\} \text{ s.t. } \lim_{k \to \infty} \text{IC}^\text{ext}_{\mu_k}(f_k, 0) = \infty \text{ and } \lim_{k \to \infty} \text{Amortized}_{\mu_k}(f_k, 0) = 0.
Theorem:

∃ a sequence \(\{f_k, \mu_k\} \) s.t.

\[
\text{IC}_{\mu_k}^{\text{ext}}(f_k, 0) \xrightarrow{k \to \infty} \infty \quad \text{and} \quad \text{Amortized}_{\mu_k}(f_k, 0) \xrightarrow{k \to \infty} 0.
\]

Specifically, let \(f = f_k, \mu = \mu_k \):
Theorem:

\[\exists \text{ a sequence } \{f_k, \mu_k\} \text{ s.t. } \]

\[\text{IC}_{\mu_k}^{\text{ext}}(f_k, 0) \overset{k \to \infty}{\to} \infty \text{ and Amortized}_{\mu_k}(f_k, 0) \overset{k \to \infty}{\to} 0. \]

Specifically, let \(f = f_k, \mu = \mu_k \):

\[\text{IC}_{\mu}^{\text{ext}}(f, 0) \geq 0.99k, \text{ while } \frac{D^n_{\mu}(f, 0)}{n} \leq 10k2^{-k} + \frac{5k}{n}. \]
Sketch of proof

- Let $f : \{0, 1\}^k \times \{0, 1\}^k \rightarrow \{0, 1\}$ be the equality function
- Interpret x, y as integers in $\{0, \ldots, 2^k - 1\}$
- The distribution μ is supported on $\{(x, y) : x \leq y\}$
- The distribution μ puts $1 - 2^{-k}$ weight on $\{(x, y) : x = y\}$
External Information is almost k
External Information is almost k

- On inputs of the form \((x, x)\), \(x\) can be recovered from the transcript by an external observer (Because there is no error)
External Information is almost \(k \)

- On inputs of the form \((x, x)\), \(x\) can be recovered from the transcript by an external observer (Because there is no error)
External Information is almost k

- On inputs of the form (x, x), x can be recovered from the transcript by an external observer (Because there is no error)
External Information is almost k

- On inputs of the form (x, x), x can be recovered from the transcript by an external observer (Because there is no error)
External Information is almost k

- On inputs of the form (x, x), x can be recovered from the transcript by an external observer (Because there is no error)
- Thus, conditioned on this event she learns k bits
External Information is almost k

- On inputs of the form \((x, x)\), \(x\) can be recovered from the transcript by an external observer (Because there is no error)
- Thus, conditioned on this event she learns \(k\) bits
- \(\mu\) is chosen such that this event happens with high probability
External Information is almost k

- On inputs of the form (x, x), x can be recovered from the transcript by an external observer (Because there is no error)
- Thus, conditioned on this event she learns k bits
- μ is chosen such that this event happens with high probability
External Information is almost k

- On inputs of the form (x, x), x can be recovered from the transcript by an external observer (Because there is no error)
- Thus, conditioned on this event she learns k bits
- μ is chosen such that this event happens with high probability

\[
\text{IC}_{\mu}^{\text{ext}}(EQ) \geq (1 - 2^{-k}) \cdot k
\]
Can “save” a lot in amortized
Can “save” a lot in amortized

- For simplicity, consider two independent inputs \((x_1, y_1), (x_2, y_2) \sim \mu\)
Can “save” a lot in amortized

- For simplicity, consider two independent inputs \((x_1, y_1), (x_2, y_2) \sim \mu\)

- Recall: \(\mu\) is supported on \(\{(x, y) : x \leq y\}\)
Can “save” a lot in amortized

- For simplicity, consider two independent inputs \((x_1, y_1), (x_2, y_2) \sim \mu\)

- Recall: \(\mu\) is supported on \(\{(x, y) : x \leq y\}\)

- Thus, with \(\mu\)-probability 1:
 \[x_1 + x_2 = y_1 + y_2 \iff x_1 = y_1 \land x_2 = y_2\]
Can “save” a lot in amortized!!
Can “save” a lot in amortized!!

The Protocol:
Can “save” a lot in amortized!!

The Protocol:

- Alice computes $x = x_1 + x_2$,
- Bob computes $y = y_1 + y_2$
 (“+” = integer addition)
Can “save” a lot in amortized!!

The Protocol:

- Alice computes $x = x_1 + x_2$,
 Bob computes $y = y_1 + y_2$
 ("+" = integer addition)
- Alice sends x to Bob
Can “save” a lot in amortized!!

The Protocol:

- Alice computes \(x = x_1 + x_2 \),
 Bob computes \(y = y_1 + y_2 \)
 ("+=" = integer addition)
- Alice sends \(x \) to Bob
- Bob Compares \(x \) and \(y \),
 if they are equal then \(x_1 = x_2 \) and \(y_1 = y_2 \)
Can “save” a lot in amortized!!

The Protocol:

- Alice computes \(x = x_1 + x_2 \),
 Bob computes \(y = y_1 + y_2 \)
 ("+" = integer addition)

- Alice sends \(x \) to Bob

- Bob Compares \(x \) and \(y \),
 if they are equal then \(x_1 = x_2 \) and \(y_1 = y_2 \)

- else Alice send all her input
 and Bob answers accordingly
Can “save” a lot in amortized!!

The Protocol:

- Alice computes $x = x_1 + x_2$
- Bob computes $y = y_1 + y_2$ 0 bits
 ("+" = integer addition)
- Alice sends x to Bob
- Bob compares x and y,
 if they are equal then $x_1 = x_2$ and $y_1 = y_2$
- else Alice sends all her input
 and Bob answers accordingly
Can “save” a lot in amortized!!

The Protocol:

- Alice computes $x = x_1 + x_2$,
 Bob computes $y = y_1 + y_2$ \(0 \text{ bits}\)
 \((+ = \text{integer addition})\)

- Alice sends x to Bob \(k+1 \text{ bits}\)

- Bob Compares x and y,
 if they are equal then $x_1 = x_2$ and $y_1 = y_2$

- else Alice send all her input
 and Bob answers accordingly
Can “save” a lot in amortized!!

The Protocol:

- Alice computes $x = x_1 + x_2$,
 Bob computes $y = y_1 + y_2$ \(0\) bits
 (\(+\) = integer addition)

- Alice sends x to Bob \(k+1\) bits

- Bob Compares x and y,
 if they are equal then $x_1 = x_2$ and $y_1 = y_2$ \(1\) bit

- else Alice send all her input
 and Bob answers accordingly
Can “save” a lot in amortized!!

The Protocol:

- Alice computes $x = x_1 + x_2$,
 Bob computes $y = y_1 + y_2$ \(0\) bits
 ("+" = integer addition)
- Alice sends x to Bob \(k+1\) bits
- Bob Compares x and y,
 if they are equal then $x_1 = x_2$ and $y_1 = y_2$ \(1\) bit
- else Alice send all her input
 and Bob answers accordingly \(2k+2\) bit
Can “save” a lot in amortized!!

The Protocol:

- Alice computes \(x = x_1 + x_2 \),
 Bob computes \(y = y_1 + y_2 \) \(0\) bits
 \(("+" = \text{integer addition}) \)

- Alice sends \(x \) to Bob \(k+1\) bits

- Bob Compares \(x \) and \(y \),
 if they are equal then \(x_1 = x_2 \) and \(y_1 = y_2 \) \(1\) bit \(\text{prob} \geq 1 - 2 \cdot 2^{-k} \)

- else Alice send all her input
 and Bob answers accordingly \(2k+2\) bit
Can “save” a lot in amortized!!

The Protocol:

- Alice computes \(x = x_1 + x_2 \)
 Bob computes \(y = y_1 + y_2 \) \(0\) bits
 (“+” = integer addition)

- Alice sends \(x \) to Bob \(k+1\) bits

- Bob compares \(x \) and \(y \),
 if they are equal then \(x_1 = x_2 \) and \(y_1 = y_2 \) \(1\) bit \(\text{prob} \geq 1 - 2 \cdot 2^{-k} \)

- else Alice sends all her input
 and Bob answers accordingly \(2k+2\) bit \(\text{prob} \leq 2 \cdot 2^{-k} \)
Can “save” a lot in amortized!!

The Protocol: \[\text{CC}_{\mu}^{\text{avg}}(\Pi) \leq k + 1 + (2k + 2) \cdot (2 \cdot 2^{-k}) \]

- Alice computes \(x = x_1 + x_2 \), Bob computes \(y = y_1 + y_2 \) \[\leq k + 2 \] \(0 \) bits ("+" = integer addition)

- Alice sends \(x \) to Bob \[k+1 \) bits

- Bob Compares \(x \) and \(y \), if they are equal then \(x_1 = x_2 \) and \(y_1 = y_2 \) \[1 \) bit \(\text{prob} \geq 1 - 2 \cdot 2^{-k} \]

- else Alice send all her input and Bob answers accordingly \[2k+2 \) bit \(\text{prob} \leq 2 \cdot 2^{-k} \]
Can “save” a lot in amortized!!

The Protocol: \[CC_{\mu}^{\text{avg}}(\Pi) \leq k + 1 + (2k + 2) \cdot (2 \cdot 2^{-k}) \leq k + 2 \]

- Alice computes \(x = x_1 + x_2 \), 0 bits
 Bob computes \(y = y_1 + y_2 \) (“+” = integer addition) saved \(\approx k \) bits

- Alice sends \(x \) to Bob \(k+1 \) bits

- Bob Compares \(x \) and \(y \),
 if they are equal then \(x_1 = x_2 \) and \(y_1 = y_2 \) 1 bit \(\text{prob} \geq 1 - 2 \cdot 2^{-k} \)

- else Alice send all her input
 and Bob answers accordingly \(2k+2 \) bit \(\text{prob} \leq 2 \cdot 2^{-k} \)
Open Question
Open Question

\[IC^{\text{ext}}(f,0) \stackrel{?}{=} \lim_{n \to \infty} \frac{R^n(f,0)}{n} \]
Questions? 😊
😊 Thanks! 😊