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Abstract

A decision tree for a Boolean function f is an algorithm that has to determine
the value of f on an unknown input setting. It probes input variables in an adaptive
manner until it has sufficient information to determine f’s value. The randomized
decision tree complexity of f, denoted RC(f), is the expected number of probes
performed for the worst case input by the best randomized algorithm. In 1986 Saks
and Wigderson proved a lower bound on RC(f) for every read-once function f. A
function is called read-once if it is definable by a formula in which each variable
appears exactly once. This lower bound is implicit in that it depends on the structure
of the formula, and can be computed only in very special cases.

Our main results are three new lower bounds on RC(f) for read-once functions f.
First, we generalize the Saks-Wigderson lower bound to functions whose read-once
formulae contain arbitrary fan-in AND/OR gates. Second, we prove a (non-recursive)
n%51 lower bound where n is the number of input variables the function depends on.
This proves that randomness helps less than nondeterminism as it is known that for
the latter n5 can be achieved. The third lower bound may be considered as a step
towards the circuit complexity problem of separating 7C° and NC'. It is an J; lower
bound for functions definable by read once formulae with threshold gates, where d
is the formula’s depth. The first two results appear in [HW91] and the third result
appears in [HNW90).
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Evaluating Games

Consider a program that plays some two-person zero-sum game, such as chess. In
each step it faces some current position of the game and has to decide how to move
next. It has in its ‘mind’ a tree representing some of the possible future scenarios
of the game. Each future scenario may or may not end in a final position of the
game. The root of the tree corresponds to the current position. The children of some
node correspond to the game positions which are the results of the possible moves of
the next player. Thus, a path in the tree describes a possible scenario of the game’s
development ended in some ‘future’ position that need not be a final position of the
game, but is represented in the path’s leaf. The tree can be quite general: some nodes
may have more sons than others and some paths may be longer than others.

The program has to know its winning chances in the game positions represented
by the leaves of the tree. Once it knows these values it can easily compute its winning
chances in the current position - the root, and its best next move - the root’s son
with the highest winning chances. For each node that corresponds to the program’s
turn to move the winning chance is computed by taking the maximal winning chance
among the node’s sons, and for the opponent’s nodes the minimum is computed.

We assume that the structure of the tree is known to the program or is easily
computed. The min-max calculations are also very easy and are ignored. Only the
values of the leaves, the winning chances, are difficult to compute. So the program’s
task is to compute, or to probe, as few leaves values as possible, provided that the
leaves probed determine the result, the root’s value, no matter what the values of the
unprobed leaves are. To do so, the program is allowed to choose the order of leaves
it probes adaptively: The choice of the ‘next’ leaf to probe may depend on the values
revealed so far (as well as on the specific structure of the tree).

Is this possible? Can the program terminate before probing ALL leaves? It can
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be easily shown that for any such tree and any algorithm, there exists an ‘input’, a
list of leaves values, in which the ‘output’, the root value, is not determined before
all leaves are probed. This is true even if we assume that the tree is Boolean, that is,
winning chances are estimated by just ‘1’ or ’0” values (‘win’ or ‘loose’), and hence the
MAX/MIN operations are replaced by the Boolean AND/OR ones, and the algorithm
has only to decide whether the output is ‘0’ or ‘1’.

On the other hand, if the algorithm can make RANDOM choices, it can sometimes
save a lot. There are several known examples for which randomization enables probing
in average only a negligible fraction of the leaves, while the output is guaranteed to
be correctly computed. The best known example for this is quoted below.

The outline of this thesis is the study of the power of such randomized algorithms,
following Pearl [Pea82], Tarsi [Tar83] and Saks and Wigderson [SW86]. Namely, we
prove lower bounds on the number of leaves that are probed by any such randomized
algorithm.

1.1.2 Simple Computational Model

Being interested in lower bounds and following Yao [Yao77]| and Saks and Wigderson
[SW86], we assume Boolean values. This makes the bounds obtained valid both for
arbitrary real valued games and for Boolean valued functions. In other words, the
model we study is that of (randomized) Boolean decision trees.

The model of Boolean decision trees is of theoretical interest in its own right. It
is perhaps the simplest model of computation and is information theoretic in flavor:
The algorithm is assumed to have perfect knowledge on the Boolean function that
is computed and infinite power of computation. Only the input is not known and
probing its bits values is charged.

The randomized complexity was studied by Yao [YaoT77] in general, and by Yao
[Yao87], King [Kin88] and Hajnal [Haj90] in the context of graph properties.

1.1.3 Read Once Functions

The set of functions we are interested in is that of read once Boolean functions,
functions definable by formulae in which each input variable appears exactly once. !

Some combinatorial properties of this class were studied by Gurevich [Gur77],
[Gur82]. As mentioned, this class was also studied in the context of evaluating games.
Broder et. al. [BKRU91] studied parallel algorithms for evaluating games. Valiant
[Val84] and Boppana [Bop89] studied this class in the context of amplifying approxi-
mating circuits. Finally, this class was studied by Angluin et. al. [AHK89)] as subject
to learning algorithms.

'We use the term ‘read once functions’ rather than ‘game trees’ or ‘tree functions’ in order to
distinguish between this notion and the ‘tree’ in the notion of ‘decision trees’.




1.1.4 Relations to Other Computational Models

The model of decision trees is central in the field of ‘concrete complexity’. It simplifies
the model of branching programs and captures their depth. Therefore, lower bounds
in this model also bound the length of branching programs.

Decision trees were shown by Nisan [Nis89] to be fundamental for studying the
complexity of Boolean functions in the CREW PRAM model as well. They were also
used in characterizing and learning constant-depth polynomial-size circuits (AC”) by
Linial, Mansour and Nisan [LMN89].

Finally, our original motivation in studying randomized decision trees was a circuit
complexity problem. As observed by Saks [Sak86] and explained below in detail, a
lower bound in the randomized decision tree model implies a lower bound in circuit
complexity. Namely, a lower bound on the randomized decision tree complexity of
T'C° functions, functions computable by constant depth polynomial size circuits with
threshold gates, implies the separation of TC® from NC", the class of functions
computable by polynomial size logarithmic depth circuits.

1.2 Definitions and Preliminaries

1.2.1 Boolean Decision Trees

A deterministic decision tree T is a binary tree labeled as follows. Each non-leaf
node is labeled by some input-variable z;. The two outgoing edges of such nodes are
labeled, one by ‘1’ and the other by ‘0’. Each leaf is labeled by an output value which
is either ‘1’ or ‘0’,

The path of T on the input-setting & = &y,...,, € {0,1}", termed Pathr(¢), is
that (unique) path in the tree which starts at the root, and at each node, labeled z;,
follows the edge labeled &;. Varr(e) denotes the set of variables labeling the nodes of
Pathr(e). The output of T given ¢, termed Outputyp(e), is the bit labeling the leaf of
Pathr(g). T computes the Boolean function f if Outputy(e) = f(¢) for every .

The time consumed by T on input &, termed Timer(), is simply |Varr(e)|. (Every
variable is probed at most once in a path.) The complezity of T is the time consumed
for a worst case input. The deterministic decision tree complezity of f, termed DC(f),
is the complexity of the best deterministic decision tree that computes f,

DC(f) = mjjnm‘axTimeT(e). (1.1)

Clearly, DC(f) < n. f is called evasive if DC(f) = n, the maximum possible.

A random decision tree for f, RT, is a distribution over the deterministic decision
trees for f. Given &, a deterministic decision tree is chosen according to this distribu-
tion and is ‘executed’. This makes the path and the time consumed random variables.
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(Note that the output is always correct, though). The complexity of RT is the ex-
pected time (i.e., the expected number of variables it probes in order to determine
the output) for a worst case input. The randomized decision tree complexity of [,
termed RC(f), is the complexity of the best randomized decision tree that computes
fs

RC(f) = rg‘irn max Ererr[Timer(e)]. (1.2)

Here E stands for expectation and T' € RT stands for a random T' chosen according
to the distribution RT'.

We can view a random decision tree also as a single decision tree that is allowed to
choose the variables it probes at random, and is required to compute f with no error.
Such a decision tree with random choices defines a distribution on the deterministic
decision trees in the obvious way, and vice versa.

The following lemma of Yao [Yao77], which is based on the minimax theorem,
expresses RC'(f) in terms of what he calls the distributional complexity of f.

Lemma 1.2.1 (Yao)

RC(f) = maxmin E.ep|Timer(g)).

Here D ranges over all distributions on input settings of f, T ranges over all deter-
ministic decision trees for f, and ¢ € D stands for a random input-setting £ chosen
according to the distribution D.

The distributional complexity is a useful tool for proving lower bounds. One can
guess some D and then prove a lower bound on ming E.ep[Timer(¢)], which involves
deterministic decision trees only.

The third notion we define is the nondeterministic complezity of f, NC(f). For
every input setting, ¢, there is a minimal proof a minimal subset of input variables
whose values determine f(£), no matter what the values of the rest of the variables are.
The size of such a subset is denoted m(&). The subset is called a minterm or mazterm,
depending on whether it forces a l-value of f or a 0-value. The nondeterministic
complezity of f is defined as

NC(f) = maxm(e) (1.3)

We also distinguish between 1-proofs and 0-proofs, and define the nondeterministic
complexity for proving 1's of f, denoted N,(f), and the analogue for the 0's of f,
denoted Ny(f). Formally,

N.(f) = {E:?-{;S}__:_U} m(e), forv=0,1.

The following lemma states that the gap between any two of those complexity
measures (deterministic, randomized or nondeterministic) is at most quadratic.
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Lemma 1.2.2 (Folklore) Every function f depending on n variables satisfies
n > DC(f) 2 RC(f) = NC(f) = max{N:(f), No(f)} = /DC(J)

Proof: The first inequality is clear since a decision tree may never probe an input
variable more than once. The second is clear because a deterministic decision tree is
a special case of a randomized decision tree in which the distribution is concentrated
on one decision tree . The third follows from the fact that randomized decision trees
never err: Consider an input whose minimal proof contains NC(f) input variables.
The path of any deterministic decision tree for this input contains some proof for that
input and so its length is at least NC'(f). The average path length for any distribution
over deterministic trees is therefore also at least NC(f). The equality is clear by
definition. For the last inequality it is sufficient to show DC(f) < Ni(f) - No(f).
This is done by constructing a deterministic decision tree for f. The tree starts by
probing the variables of a minimal minterm of f, hence at most < N(f) variables. If
all of them are consistent with the variables’ values of the minterm f is determined,
so this branch of the decision tree is short. Otherwise, in the restricted function Ny
decreases by at least 1 (since every minterm intersects all maxterms) and the proof
follows by induction. 1

The class of monotone graph properties has been extensively studied with respect
to decision tree complexity. Rivest and Viullemin [RV78] proved a linear lower bound
on the deterministic complexity for this class. The Aanderaa-Karp-Rosenberg con-
jecture is that all monotone graph properties are evasive. This was proven for graphs
of prime power order (number of nodes) by Kahn, Saks and Sturtevant [KSS84].
On the other hand, there are several monotone graph properties with square-root
nondeterministic complexity.

As for the randomized complexity, a conjecture that a linear lower bound applies
to this class even if we allow randomization, is attributed to Karp. This has been

proven for a few special monotone graph properties, but the best general lower bound
is Q(n*?) of Hajnal [Haj90] (improving on Yao [Yao87] and King [Kin88]).

1.2.2 Read-Once Functions

Example 1.2.3 An ezample of a read-once function is the alternating AND/OR
function, g. g = g\ is defined for every depth d = 1,2,... as the function computed
by the full binary balanced formula (tree) on n = 2 input-variables with alternating
levels of AND and OR gates. Formally,

90(@1) = z1; and
g[d+n{mh reey ‘5‘2““) o g(d}(xli tany mﬁd)og(d}(x2‘+lu ey Tt

where { is AND for even d and is OR for odd d.
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A read once formulais a formula in which each input variable appears exactly once.
A Boolean function is called read once if it can be represented by a read once formula.
The class of read once functions depends on the type of gates (the basis) we allow in
the formula’s nodes. We will be considering two bases. The first is the AND,OR,NOT
basis (called the standard basis), and the second is the THRESHOLD,NOT basis
(called the threshold basis). Here a threshold gate is denoted T} for some k > 1,
| <1 <k, and is the Boolean gate with k inputs which outputs ‘1’ iff at least [ of
its inputs are ‘1’. These two bases determine the two families of read once Boolean
functions which are called read once AND/OR functions and read once threshold
functions. Every read-once AND/OR function is a read once threshold function since
the threshold gates T and T are, respectively, the OR and AND gates of fan-in k.

The following lemma allows ignoring the presence of negation gates in all the
contexts we are interested in here.

Lemma 1.2.4 (Ignoring Negations) Let F' be a read once formula over the standard
or the threshold bases computing some Boolean function f. Then there exists another
read once formula GG over the same basis, computing a monotone Boolean function g,
such that (1) G contains no negations, (2) The size (respectively, height) of G is at
most the size (respectively, height) of F', and (3) DC(g) = DC(f), RC(g) = RC(f).

Proof: First, the negation gates can be ‘pushed’ to be applied directly only to
the variables. This doesn’t change the function being computed, can only decrease
the formula’s depth and doesn’t change the number of gates that are not negations.
Next, every negated variable and the NOT gate applied to it can be replaced by a new
input variable. This renaming introduces a new function, but it allows back and forth
simulations of deterministic decision trees computing these functions in the obvious
way. As a result, the deterministic and the randomized complexities do not change.

L

Another property of a read once function is that there exists a unique read-once
formula representing the function in some sense. Precise definition and statement
follow. This was proven for AND/OR functions by Gurevich [Gur77], [Gur82] (see
also [KLN*] and [Mun89]), and for threshold functions by Newman (see [HNW90],
Theorem 2).

Definition 1.2.5 A read-once threshold formula is non-degenerate if no input of
some TF-gate (OR) is the outpul of some other T} -gate, and similarly, no input
of a TF-gate (AND) is the output of a T} -gate.

Theorem 1.2.6 (uniqueness) Two non-degenerate read-once threshold formulae that
compute the same Boolean function are identical.

Consequently, we sometimes do not distinguish between a read once function and
the formula that computes it.

Finally, it is easy to see that every read once threshold function is evasive.
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be evaluated. This corresponds to uo(f) = uo(g)+uo(h). To find a 1 of f, a directional
randomized decision tree would start by evaluating g with some probability p, or start
by evaluating A with probability 1 —p. If g =1 and h = 0 the time consumed would
be pui(g) + (1 = p)(uo(h) +ui(g)) = wi(g) + (1 = p)uo(h). Similarly,if g =0and h =1
the time consumed would be p(uo(g) + u1(h)) + (1 — p)ui(h) = puo(g) + ui(h). The
term for ¢ = h = 1, puy(g) + (1 = p)ua(h) is smaller. Therefore the time consumed
for the worst case input is

max{u(g) 4 (1 = p)uo(h), puo(g) + wi(h)}.

Minimizing this maximum subject to the constraint 0 < p < 1 yields the term
/\(U](H),UQ(!}),Ul(h}‘uo(h))-

The deterministic decision tree complexity of the alternating AND/OR function
is maximal, DC(¢¥) = n, by the evasiveness lemma (Lemma 1.2.7). However the
randomized decision tree complexity of this function is low, RC(g @) = O(n*) for

a= lugz(l—'tf‘@) = 0.753..., as was calculated using this upper bound.
The Saks-Wigderson lower bound is the following. Naturally, the terms Ro(f)

and R,(f) are lower bounds for the randomized decision tree complexity of finding,
respectively 0’s and 1’s of f.

Theorem 1.2.9 [SW86] Let [ be a read-once Boolean formuiu with A-V gates of
fan-in 2. Then RC(f) = R.(f) where Ru(f) = max{Ro(f), Bi(f)}, and Ro(f) and
Ri(f) are given by the following recursion.

Ro(f) = Ra(f) =1 if f is a single variable;
Ro(f) = Ro(g) + Ro(h), and
Ri(f) = X(Rl( ), Ro(g), Ry (h), Ro(h)) if f=gVh;
Ri(f) = Ri(g) + Ri(h), and
Ro(f) = X(Ro(g)| Ri(g), Ro(h), Ri(h)) iff=gAh.
Here x(a,b,c,d) = min{a + d,b + ¢, abtcd+bd b*fd bd}_

Using this lower-bound, it was shown in [SW86] that the alternating AND/OR
function ¢ satisfies also RC(g) = Q(n®7). This improves the results of Snir [Sni85]
and meets the upper bound mentioned above. Actually, the Saks-Wigderson bounds
meet also for many other functions (see [SW86] ).

1.3 Main Results

Our first result is the generalization of the Saks-Wigderson lower bound (Theorem
1.2.9) for read once AND/OR formulae with arbitrary fan-in gates (‘wide’ gates). One
way to do this is by replacing each wide gate, e.g., A(z,y, z) by an equivalent binary
formula, ((z A y) A z) and applying Theorem 1.2.9 to the resulting binary formula.
The following theorem, to which Chapter 2 is devoted, gives a better lower bound.
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Theorem 1.3.1 (wide gates) Let f be a read-once Boolean formula with A-V gates
of arbitrary fan-in. Then RC(f) > R.(f) where R.(f) = max{Ro(f), Ri(f)}, and
Ro(f) and Ry(f) are given by the following recursion.

Ro(f) = Rl(f) =1 if f is a single variable;
Ro(f) = Tizy Rolgi), and
Ri(f) = .’((Rifgt) Ro(gn), R](gz)gRu(g-),),--.,Rl(gk)qRﬂ({}k]) if [ = Vf=1§'if
Ri(f) = £y Ra(gi), and
Ro(f) = x(Ro(g1), B1(91), Rolgz2), Br(92), .-, Rolgx), B1(gk)) if f=Ngi-

Here x(ay, by, ay, by, ..., ax, by) =

1 ] t1s iy Gigy Digy eeny l's!bi:
waer={ih..‘.r.}f}l§{1.-z.---.k}[%b' B by @iy iy s iy Bi)]

and ¢(ay, by, az, by, ... a4, b)) = (Z;=1 ﬂjbj + Elgj-chgr bjbh)/ ):;=1 b;

This bound is given in a recursive form that depends on the structure of the
formula. We would like to have a non-recursive lower bound — a lower bound in
terms of the number of variables the function depends on, n (which is the deterministic
decision tree complexity of the function, recalling Lemma 1.2.7). By Lemma 1.2.2,
RC(f) = [DC(f)]*® for every Boolean function f (called an 0.5-exponent). On the
other hand, the AND/OR function f is known to have RC(f) = ©(DC(f)*™*) (or
an 0.753...-exponent). No better bounds on the exponents are known for arbitrary
Boolean functions.

Dealing with the special class of Graph properties, the sequence of results by Yao,
King and Hajnal led to RC(f) = DC(f)*? (for every non-trivial monotone graph
property, f). In Chapter 3 we prove the following ‘super square-root’ lower bound
for the class of read once AND/OR functions.

Theorem 1.3.2 (non-recursive l.b.) There exzists a real number 8 > 0.5 s.t. for
every read-once AND/OR function f, RC(f) = n?, where n is the number of input
variables f depends on. In particular, @ = 0.51 satisfies this inequality.

Interestingly, Broder and Upfal [BU91] proved an Q(n%%-) lower bound for a
certain subclass of read-once fan-in two functions. This subclass contains exactly
those functions for which the Saks-Wigderson upper and lower bounds match.

The result proved in Chapter 4 was motivated by a circuit complexity problem.
It is whether TC®, the class of Boolean functions computable by polynomial-size
constant-depth circuits with threshold gates, is strictly contained in NC, the class of
functions having polynomial-size logarithmic-depth circuits with fan-in 2 gates. This
question naturally surfaced after AC® # TC” was resolved ([FSS84], [Ajt83] and their
improvements [Yao85] [Has88]), and after the results about constant depth circuits
with prime modulo gates were proved ([Raz87], [Smo87]). It has been under attack
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in the last few years. Two important steps were made in the direction of separating
these classes. The first, by Hajnal et al. [HMP*87|, separated depth-2 from depth-
3 polynomial-size threshold circuits. The second, by Yao [Yao89], separated the
monotone analogues of the classes TC® and NC'.

In 1986 Saks suggested a bold approach for separating TC® from NC': Show
that every function in TC” has high (say linear) randomized decision tree complexity
(in terms of its deterministic complexity). This would suffice, as there are several
examples of evasive functions in NC' with randomized complexity n® for & < 1. One
of them is the AND/OR function, which has the largest known exponent . The
intuition behind this approach is that all these examples have large (logarithmic)
depth. There is no function in TC” which is even believed to have o(n) randomized
decision tree complexity. And so the only known reason for having a large gap between
the deterministic and the randomized decision tree complexities is due to large depth,
which allows iterated savings when using randomization. In fact it is sufficient to show
that every evasive T'C° function has randomized decision tree complexity higher than
that of the alternating AND/OR function. This approach reduces a lower bound in
the circuit model to a lower bound in the information theoretical model of randomized
decision trees. It is particularly original and intriguing, since the separation will be
proved by showing that functions in the smaller class are harder (in the second model).

The following lower bound, to which Chapter 4 is devoted, can be considered as a
first step towards implementing Saks’ approach. It proves the desired lower bound for
read-once TC® functions. It is naive to be optimistic just because every TC® function
is a simple projection of a read-once TC® function; it is not clear what happens to
decision tree complexity under projections. However, the proof of the lower bound
reveals that, from the point of view of randomized decision trees, threshold gates
are no more powerful than ANDs and ORs, which hints that this may be the right
direction to pursue. It perhaps hints also that a proof for AC® (if found) might
generalize to a proof for T'C by similar techniques.

Theorem 1.3.3 (threshold gates) Let f be a Boolean function computed by a read-
once threshold formula of depth d over n input-variables. Then RC(f) = Ju

In Chapter 5 the notion of minterms oriented decision tree is defined. It is proved
that DC(f) can be achieved by a minterms oriented decision tree for every function
f whose minterms are of size at most 2. For the proof we show some generalizations
of Lemma 1.2.7 stating that the deterministic decision tree complexity measure is
additive under “read-once compositions”. An example of a non monotone function
given by Fich [Fic91] shows that this property is not true for all Boolean functions.
Whether this strong and surprising property is true for all monotone functions remains
open. However, an example is given to show that the attempt of a straightforward
inductive proof for this property must fail.

Another example given in Chapter 5 shows that the Saks-Wigderson bounds are
not tight: A a simple read once function simultaneously shows the following.
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(i) No directional randomized algorithm (in the sense defined above) is optimal for
this function, and hence the Saks-Wigderson upper bound is higher than the actual
randomized decision tree complexity of the function.

(ii) The Saks-Wigderson lower bound is lower than the actual randomized decision
tree complexity of the function. In fact, it shows the non optimality of the Shrinking
lemma, which is the basic lemma in the Saks-Wigderson lower-bound, and whose
generalizations are the basic steps in our Theorems 1.3.1 and 1.3.3 and in the new
lower bound of Santha [San91] for Monte Carlo decision trees.

Chapter 6 discusses some open problems and concludes this thesis.

11




Chapter 2

Lower Bound for Wide Gates

In this chapter we prove Theorem 1.3.1,
Theorem (wide gates) Let f be a read-once Boolean formula with A-V gates of ar-

bitrary fan-in. Then RC(f) = R.(f) where R.(f) = max{Ro(f), B1(f)} and Ro(f),

Ry(f) are given by the following recursion.

Ro(f) = lef) =1 if f is a single variable;
Ro{f) 1 Ro(gi), and
Ri(f)= Y(ﬁ’1(91) Ro(g1), Ri(g2), Ro(g2), s Ba(gn), Ro(gx)) if f = Vi,
(f) el 131( g:), and
Ro(f) = x(Ro(1), B1(91), Ro(g2), R1(g2), -, Rol(gx), Ra(gx)) if [ = A9

Here X(al! bl y A2, b?a veny Uy bk) =

[Z bi + (i, biy, @iy, bi, ...y @iy, bi, )]

min
@¥T={i1,...,i:}g{l.?.....k} igT

and é(als bl! az, b'ﬂ! oy iy ) (Zt-l a‘}b e Zl(;(h(t b; bh}/ ZJ l

2.1 Reducing the Theorem to the Shrinking Lemma

The proof mimics the proof of Theorem 1.2.9 [SW86] , and consists of a bottom-up
induction, whose single step is called the shrinking lemma. The calculations in the
proof of the shrinking lemma are done slightly differently, and this is what enables
the generalization to wide gates. A top down induction for a similar problem, which
generalizes Theorem 1.2.9 to Monte Carlo algorithms, was given by Santha [San91].

In the definitions of the time consumed by a randomized decision tree and the
randomized decision tree complexity we assumed a unit cost for probing a variable.
In order to carry out an induction argument, these notions have to be generalized,
and defined relative to a variables cost function, ¢ = (cg,¢1). The function ¢, :
{1,...,2,} — IR assigns to each input variable z; the cost (or the time consumed)
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for probing this variable in case its value is v, v € {0,1}. Given such ¢ the time
consumed by a deterministic decision tree T on a given input setting € is

Time, r(e) = 3 co(zi) + Y, cr(xi).

r€ Pat.ll-_.-(z], e(zi)=0 z,€ Pa.t.h-r(e}, g(r;)=1

DC(f,c) and RC(f,c) denote the complexities relative to ¢ and are defined similarly
to the definitions of DC(f) and RC(f). Yao'’s lemma (Lemma 1.2.1) then becomes

RC(f.c) = max m%n E.ep| Time, (). (2.1)

The wide gates theorem follows by applying the following (‘shrinking’) lemma
inductively. We begin with the non degenerate formula for the read once function f
given in the theorem and with unit variables cost, ¢,(z;) = 1 for every variable z; and
v € {0,1}. The last application of the lemma yields the trivial formula consisting of
a single variable, v, whose costs are exactly co(v) = Ro(f) and ¢ (v) = Ry(f), and
therefore the greater of them bounds RC(f) from below. -

2.2 The Shrinking Lemma

The shrinking lemma bounds the randomized decision tree complexity of a read-once
formula by that of a smaller (shrunk) formula. The smaller formula is obtained by
shrinking one gate of the original formula, say it is an OR gate, whose inputs are all
input-variables, into a single variable denoted v. The cost of v depends on the costs
of the variables entering the gate in the original formula. Roughly, the cost to probe
v when its value is 0 is the sum of the costs to probe those variables since they all
must be probed in order to find that v = 0. Similarly, the cost to probe v when its
value is 1, is about half of this sum. The reason for this is that the worst case which
causes v to be 1 is when all the variables are 0 except for a single variable which is
I, thus in average about half of the variables are probed before this single 1 is found,
at which point the value of v is found.

Lemma 2.2.1 (shrinking) Let F be a read-once threshold formula of depth d > 0
that computes a Boolean function f. Consider a gate {, ¢ € {A,V} whose children
are all input variables. Denote these variables by Y = {y1,...,yx}. Denote the rest of
the variables by X = {z1,...,2m}. (See Figure 2.1.) Let F' be the formula obtained
from F by replacing the sub-formula {(ya,...,yx) by a single variable v (see Figure
2.2), and let f' be the function computed by F'. Let ¢ = (co,c;) be a cost function for
the m + k variables of f, that is, ¢, : XUY — IR for v = 0,1. Define a new pair of
cost functions ¢’ = (cg,¢y) for the m + 1 variables of ' by

c,(z:) = eu(xi) Vicism, v=0,1
co(v) = Tiy co(yi), and
¢i(v) = x(e1(y1), co(y1), e1(y2), coy2), -y c1(yk), coy)) if O =V;
C’l(v) = 2?:] c1(y.-), and
co(v) = x(co(1), er (1), co(ya)s €1 (y2), --- co(yk), €1 (k) if O =A.

13




where x is defined in Theorem 1.5.1.
Then RC(f',¢) £ RC(f,c).

Ty Ty e+ Im
Vi Y2+ Yk

Figure 2.1: The given F Figure 2.2: The shrunk F’

Proof: We prove the shrinking lemma for the case ¢ = A. The V-case is dual. First,
we introduce some necessary notations.

Notations:

(k] denotes the set {1,...,k}.

{#} denotes the set of all subsets of a set A which have cardinality a.

For a (partial) setting 6 : X — {0,1},

0! denotes the setting on {v} U X which extends @ by assigning 1 to v, 8'(v) = I;

0° denotes the setting on {v} U X which extends 0 by assigning 0 to v, 6°(v) = 0;

07 denotes the setting on Y U X which extends @ by assigning 1 to y;, Vj € [k]; and
fg, for some ¢ € [k] denotes the setting on Y U X which extends # by assigning 0 to
yi and 1 to y;, Vj € [k], j # 1.

Prp(E) denotes the probability of E, given a distribution D.

¢,(U) denotes the total v-cost of a subset U of input variables, ¢, (U) = ¥ ev cu(u).

¢(U,e) denotes the total cost of U given input-setting €, c¢(U,€) = Luer Ce(u)(1)-

UT denotes those variables in some subset {/ of input variables that are probed by T'
given (complete) input-setting £, UT = U N Vary(e).

¢(UT) denotes the probing cost of these variables, ¢(UT) = ¢(UT, ¢).

To show the lemma’s conclusion, RC(f',¢') < RC(f,c), we use (2.1) and show
that

(VD) (3D) (VT) (3T") Ewep| Timew 1i(e")] € Eeep[ Time,r(e)], (2.2)

where D (respectively D') is a distribution on the input-settings to f (respectively
f"), and T (respectively T') is a deterministic decision tree for f (respectively f’).

Let D’ be given. Define a distribution D by assigning non-zero probability only
to those inputs in which all the Y-variables are 1, except perhaps one of them as
follows. For every X-setting 6 : X — {0,1} define

Prp(0;) = Prp/(0') and
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Prp(ﬂm) =p;- Pl‘p:(ﬂu)

where p; = e(yi)/ Zjepg c1(y;). Note that all other extensions of f to ¥ U X have
probability 0 under D.

Now, let a decision tree T' for f be given. We do not define 7" explicitly. Rather,
we define a set of candidate deterministic decision trees and prove that the inequality
in (2.2) holds for at least one of them. The candidates are the k decision trees,
T;, i € [k], where T; is defined as the ‘projection’ of T' under the following actions:

1. Each question ‘y;?’ (in T') is replaced by the question ‘v?’ (in T}).

2. For each j # 1, T; assumes that y; = 1. Namely, for each node of T' containing
the question ‘y;?’, T passes down this question to the 1 direction while deleting
that node and the entire sub-tree under the 0 direction. (See Figure 2.3.)

W T

- —————————=q

Figure 2.3: Assuming y; = 1

We now show that the inequality in (2.2) holds for some candidate T;. It suffices
to show that a convex combination of the left hand sides of this inequality with the
T;’s replacing T" is bounded by (the fixed) right hand side of the inequality. Namely,
it suffices to show that

Z pi Evep[ Timey 7,(e")] < Ecep[ Time,,r(e)]. (2.3)
i€[k]

First, we write the explicit terms for the two expectations above:

Evep| Timesr, (€)% Y [Prp(8') - Timesq,(8') + Prpi(6°) - Timey 1,(6%)]
#:X—={0,1}

Ecep Time.r(e)] € Y. [Prpi(0"): Timeer(61)+Prp(0°)- 3" pi- Time.r(0s,)]
9:X ={0,1} 1€[k]
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[nserting these terms to (2.3), we note that it is sufficient to show for each 6 : X' —
{0,1} that the following inequalities hold:

3" pi Times 7,(0') < Time,7(6y) (2.4)
1€[k]
S~ pi Timey 7,(6°) < 5~ Timecr(05,) (2.5)
i€(k] i€(k]

Next, we divide ‘Time’ to the costs of X, Y and v, and use the notation above.
Inequalities (2.4) and (2.5) become (2.6) and (2.7), respectively.

5 B + eh(0)  Lug Varg o)) S €(XE) + (%) (26)
e[k
Z pl- + CU[U) 1.,5 Varg, L(6°) ] =2 Z pl[c(xﬂg + C(YBU )] (2'7)
iek] i€(k]

By the definition of 7;, Pathg,(0") is the ‘projection’ of Pathr(f;). In particular,
X% = Xj, and v € Vary,(0') iff y; € Y. Denote YQT by Z = {z,22,...,2,} and
assume that the order these variables are probecl by T' given 05 is (21, 22, ..., 2,). Since
¢ and ¢ are identical on X, and 0 fixes the X-values, the X-costs cancel out and (2.6)
becomes

> [pici(v) - 1ye2] £ (Z,67) = aa(2).

1€[k]
This is true by the definitions of ¢|(v) and the p;-s.

Similarly, the X-costs in (2.7) also cancel out and that inequality reduces to

] -1

S pico(v) < 3 pic(Yah ch(z‘ Zm zj) +colz)] + D cl(y) ei1(2)

t=1 i€(k] t=1 Cl =1 nheY\Z

where i(¢) denotes that index i for which y; = z;. The equality is due to the facts

that for y; = z € Z we have Yl = {z,2,,...,2} and o(Ye) = Tz alz;) + colz),

and for y; € Y\ Z we have Y| = {z1,2,...,z,} and (Y ) = T ei(zj) = ai(2).

Finally, the last inequality vanishes if s = 0, that is, Z is empty. Otherwise, by
Yt Pi(t) = ;{%% the requirement reduces to

a(v) £ 7 Sicc alz)alz) + Tigs er(z)eo(20)] + Lyerrz e1(vi)
= ¢(co(z1), c1(z1), co(z2), €1(22)-.-c0(2s), €1(25)) + Lyievrz (%)

where ¢ refers to Theorem 1.3.1. The definition of ¢j(v) makes sure that this holds
for every nonempty Z. (.
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Chapter 3

Non-recursive Lower Bound

3.1 Introduction

In this chapter we prove the n®*! lower bound on the randomized decision tree com-
plexity for read once AND/OR. functions (Theorem 1.3.2). We call it non-recursive
since this bound is not given in terms of the structure of a formula representing the
function, rather it is given in terms of the number of input variables the function
depends on. The proof combines the generalized recursive lower bound (Theorem
1.3.1) with restrictions arguments.

In Section 3.2 we point out that the Saks-Wigderson lower bound (Theorem 1.2.9)
cannot by itself imply the non-recursive theorem. We give there an example of an
infinite family {F,} of read once Boolean functions, where [, depends on n vari-
ables. Theorem 3.2.4 shows that this family satisfies R.(F,) = o(n’) for every 0 > }.
However, a simple restriction consideration shows that F,, has high randomized deci-
sion tree complexity (Theorem 3.2.5). This suggests that the proof of Theorem 1.3.2
should involve something else in addition to the Saks-Wigderson recursive argument,
perhaps restrictions.

[t appears also that formulae with gates of fan-in greater than two should be
considered in a more delicate way than simply replacing them by binary trees and then
applying the Saks-Wigderson lower bound. In Section 3.3 we prove a more “friendly’
version of the generalized recursive lower bound, Theorem 3.3.1. This version is used
in the proof of the non-recursive theorem.

Section 3.5 contains that part of the proof that involves restrictions and Section
3.6 contains the rest of the proof — some inequalities on real valued functions.

While it is clear that the proof can be pushed to give a lower bound better than
0.51, we remark in Section 3.7, that 0.58 is the best exponent one can hope for when
using Theorem 3.3.1. The AND/OR tree function shows this. In fact, Broder and
Upfal [BU91] have proved very recently that the randomized decision tree complexity
of every well balanced read once AND/OR function is at least that of the AND/OR
tree function, 1.5°8" = n%%8: ‘Well balanced’ means that the Saks-Wigderson upper
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and lower bounds match for the function. The example in Section 3.2 and the cases
where we need to use restrictions in Section 3.5 involve functions which are not well
balanced in this sense.

Returning to one of the motivations mentioned in the introduction, we would like
to state here an immediate corollary of the non-recursive theorem. It corresponds to
the problem of evaluating two-person zero-sum game trees using a-3 pruning [Pea82].

Imagine a chess program making a decision about the next move in a given board
position. It develops a partial tree of possible moves alternating between it and its
opponent. This results in new game positions at the leaves. Each such position is
assigned a real value from which the value of the root can be computed (hence also
the best move under this information). This is a generalization of read once function
to real valued inputs and MIN/MAX gates.

The standard a-A pruning algorithm evaluates this tree by evaluating some of
the leaf positions, and is charged according to the number of leaves evaluated. So its
deterministic and randomized versions are analogous to deterministic and randomized
decision tree. Theorem 1.3.2 has as immediate consequence the following lower bound
on the number of positions that have to be evaluated in any two-person game tree.
Non trivial lower bounds for this problem were previously known only for very special
game trees [Tar83], [SW86].

Corollary 3.1.1 Any randomized a-f pruning algorithm computing the value of any
two-person game tree with n final positions evaluates at least n®®' positions for the
worst case values of leaves.

3.2 Why Restrictions?

We define a family { F,, } of read once AND/OR formulae for which the Saks-Wigderson
lower bound gives ‘only’ n®5+°(1), The idea is that the formulae are very imbalanced:
Each of their OR gates has only a single variable as a child while a ‘heavy’ formula
as the other child. The definition is recursive. Given F,, we AND it with another
copy of F,, and OR the result with a single new variable. Then we again AND the
result with another copy of F,, and OR with another new variable. We repeat these
‘ANDing’ and ‘ORing’ m times, so as to have m + 1 copies of Fj, in the resulting
formula, denoted F, 4, (See Figure 3.1).

The analysis deals with the terms Ry and R; which are defined in the Saks-
Wigderson lower bound, Theorem 1.2.9. Intuitively, the non-balancing of any AND
gate causes its Ro to be relatively small. Then ‘ORing’ this with a single variable
causes the new Ry and R, to be equal, and only slightly higher than the value of Ro
at the AND gate, no matter how high R, at that AND was.
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Figure 3.1: The formula Fy, 4,

Following is a formal definition of these formulae. First we define Fy,; the prefix
of ‘length’ ¢ of Fy41, which is used in the analysis.

Definition 3.2.1 Form = 1,2,... and 1 < i < m+ 1 define a number ny,; and a
Boolean formula Fy (€1, ....; Tny,) depending on ny i input variables as follows.

Form=1=1 let
na = 1, Fia(zy) = 21
Form =2 andi=1 let
Nt = MNn—=1,m, Fm.l(ir‘.l---xnm‘;) = En—l.m(‘fl‘"x“m-l.m)‘!
Form=>1and2<i1<m+1 let
N = N yi=-1 + N, + 11 Fm.i(xl-"xnm_.') =
(Fm|i-1(m] "'wﬂm,tul) A Fmrl (m“m.i—l+1"'xﬂm‘|—l+ﬂm,l )) \ :‘t“m.i 5

The next definition which is just renaming of the full length prefix Fy, ;41 as Frnga
concentrates on the formulae described above.

Definition 3.2.2 Form = 1,2,... define a subsequence Fy, (21, ...., Tny) bY M = Nmp
and F, = Fp,. 4.

For example, Fy = z;, F; = 21 Az, V z3 and
Fa= [(.'31 AxqV .'1:3) A (:1'.'4 ANxgV Is) Vv :E';r] A (;Bg ANzxgV .‘Ifm) V.

We first calculate n,,, the number of input variables in Fy,,. n, is the sum of the
number of inputs which are children of AND gates, denoted A,,, and the number of
inputs which are children of OR gates, denoted O,,. For the trivial formula Fy which
consists of n; = 1 input variable, we make the convention A; = 1 and O, = 0. We
then have:

Proposition 3.2.3 A,, = m!, O,, = m! — 1 and hence nn, = 2m! - 1.
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Proof: A,, satisfies the recursion A, = (m + 1)A,,, hence A, =m!. Ay -0, =1
and by induction, A, 41 = Opmsr = (m + 1)(Ap — O) — m = 1. The proposition
follows. ]

The following theorem states that for the functions {F(z1...zn,,)}m=12,.. the
Saks-Wigderson lower bound gives ‘only’ (n,)°*+t°(). R, refers to that of Theorem
1.2.9. We use the ‘big-oh’ and the ‘small-oh’ notations. In contrast, Theorem 3.2.5
states that the ‘real’ randomized decision tree complexity of F, is ‘high’ — linear in
the number of input variables.

Theorem 3.2.4 R.(F,) = O(4™(m!)%%) = (m!)?5+°(1) = (n,,)08+e(1),
Theorem 3.2.5 For every m, RC(F,) > *»

Proof of Theorem 3.2.5: By Lemma 1.2.2, we show that the nondeterministic
complexity is at least 2. Restrict to 0 all the input variables that enter OR-gates.
The restricted requltmg function is a simple AND. By Proposition 3.2.3 this AND
depends on A,, = Eﬂg-t'— inputs. Hence F), has a single maxterm of size greater than

nm c

2

Proof of Theorem 3.2.4: The second and last equalities are clear by definition and
by Proposition 3.2.3. To show the first equality we show that R—éL?}lﬂl < 4vm+1
for m > 3. The following sequences help bounding this ratio.

For each m define a sequence of natural numbers {b,, ; "+ inductively: b,y = 1

1 1
«':'I.Ild b?‘!l.,t""] == bm“ + 1+bm,i + R‘[Fm)‘

The following proposition asserts that b,, m+1 is exactly the ratio we are interested

in, Bﬁi—{-}‘i{) Part (i) is just to help carry the induction.

Proposition 3.2.6 For m > 3 and every 1,
(i) R1i(Fni) = Ro(Fm,), hence Ru(Fy i) equals this value.

oy RalFoni
(ﬂ) _ﬁ.if?':-jl = bm’,'.

Proof: The proof is by induction on m and i (lexicographically ordered). For all m
and ¢ = 1 part (s1) is trivially true; its both sides are 1. To see that part () is true
for m = 3, i = 1 we compute R.(F3), using the definitions of Ry and Ry as given in
Theorem 1.2.9. Hereafter G, ; denotes F,, ; A I,.

RU(FI) = 1, R](Fl) = ],

Ri(Ghy) = 141=2, Ro(Gyy) = min{l +1, ..‘t..:h.} = 1.5,

Ro(F,) = 1+15=25 R(F) = min{3,2.5, _+._+_} ~22,

Rl(Gz,l) = 22422=44, Ry(Gy1) = mu]{‘z 54 2.2, _slj%iﬁ.z_’} = 3.6,

Ro(Fp3) = 3.6+1=46, Ri(F2) = min{3.6+1,4.4+1,284843841} = 4.443...,
Ri(Ga2) = 6.643..., Ro(Ga2) = 5.376...,




and finally,
Ro(Fs) = Ry(F3) = 5.376... + 1 = 6.376... (= R.(F3)).
For i = 1 and m > 3 part (z) is valid by induction since Fy,; = Fpn_1m. This
concludes the base cases.
For m > 3 and any 1 we have by Theorem 1.2.9 and by induction, part (z) that

Rl(Gm.i) R-(Fm.i) + R.(Fm) and

R(}(Gm,i) 2 min{R,(Fm',‘] 4 R;{Fm), R-(Fm,u)2+R01Frn}2+R¢(FmJi)Ro[Fm)}

Ra(Fn i) +Re(Fim)
Ra(Fm,i)* +Re(Fm)* 4+ Re(Fm i) Re(Fim)
Ru(Fn )4 Re(Fm) '

Also, Ro(Fin,i41) = Ro(Gm,i) + 1 and

1l

(Gm,i)Rl(Gm.i) + RU(GTHJ) +1
RO(Gm,i) -+ 1

The first term is smallest if Ro(Gr;i) +1 < Ry(Gni). This is indeed the case since

Ry(Gimi) = Ro(Ginyi) = orrmslielfe) and Ru(Fing) 2 Ru(Fm) 2 Ru(F3) > 2. There-

Ry(Friv1) = min{ Ro(Gmi) + 1, Bi(Gmy) + 1, L

}

fore,

R‘(Fm"‘+1) = RU(Gm.i) + li= RD(Fm.i-}-l)-

Ra(Frn i 24+R. sz Re(Fini)Re(Fm
R-(Fm,i-i-l) - ;a{Fm.l +-;-°(F"" 83 -
Ru(Fm
= R.(Fm,i) + Re(Fn,i)+Re(Fm = 1

This value 1s

and so
Ru(Fmj+1) _ Ru(Fins) 1 L 1 1 _
RilFm) ~ RelP) T Bl 1 VRR) - T T R(E
e
Corollary 3.2.7 by, mi1 = R—é&%?:jl. =

The next proposition estimates this ratio. For this we use another sequence {a; },
defined by ay = 1 and a4y = a; + —

THa;
Proposition 3.2.8
(¢)  bmi = ai
(ii) bm.s S ai + Re 'le
(i) @ <2
(i4ii)  a; >V

S}
—




Proof: The proof is by induction on 2. For 2 = 1, b,,; = a; = 1 and the four parts
follow.

Assume it is true for 2. Consider the following three functions defined on the

positive reals, f(z) = z + 1=, g(« ) = Vz? +4 and h(z) = Vo2 + 1. It is easy to
see that for z > 0, h(z) < f{ ) and that f(z) is monotone increasing. Using
these properties and the mductmn hypothesw (i.h.) we have

V:—

(1) byt =bmi+ 1+; R g_(;:‘m] = f(bm) + 7y > S m.a) 2 f(ai) = aip,
(22) b it = bim,i + 1+b.... + x5 (F 1 Sa+ gyt t R.(Fm]
{20,+1+n +R—:?'?1—5_a.+l+ﬁ};7
(1)  aipr = f(a;) _< F(2VE) € g(2V) =2V F 1L
(0id)  aiyr = f(ai) é f(WVi) < (Vi) = i+ T -

From this proposition we get for m > 3 the (weak) lower bound,

i ‘ 3.2.8(1)  3.2.8(ddii) 7 I
R.(F,) > Bu(Fm) R bhcim 2 On 23"“ vm > m =
Rt(Fm-l) 2
and then the upper bound which completes the proof,
Rg(‘F‘;n.p[) 3.2.7 3'2'8{“) m + 1 2(m + 1) 3.2, B{I:t)
—_— = 'y < m - 7S S m Y e < 4
R.(F») m+1 S a +1+R.(Fm) Am41 + e | vm+1

=

3.3 Simple Non-recursive Lower Bound

The following theorem is a simplified version of the generalized non-recursive lower
bound, Theorem 1.3.1. The recursion it involves is quite simple. It has only a single
R (replacing the two Ry and R; of Theorems 1.2.9 and 1.3.1) and it contains no min
operator. The function 1 it involves also has the nice properties stated thereafter.
These are the reasons for using this version in the proof that appears in the next
section. Luckily enough, this version, when used together with restrictions, suffices

2
for the recursive theorem. We remark that ¥(ay,...,ax) = (T a;i + E—Z:), and that

replacing it by 3 ¥ a; would simplify the following theorem but this simplified version
would not suffice for the non-recursive bound.

Theorem 3.3.1 Let f be a read-once Boolean formula with A-V gates (of unbounded
fan-in). Then RC(f) = R(f) where R(f) is given by the following recursion.

R(f) =1 if f is a single variable;
R(f) = ¥(R(q1), s R(g)) i f = V(g1.--9k) or f = A(g1.--gx)-

Here y(ay, ..., ax) = (215;95& aaa;-)/(Ef-‘:l a;)
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Proof: We show by induction on the structure of f that Ro(f) = R(f) and R,(f) =
R(f). Ro and R, are the recursive terms given in the generalized non-recursive lower
bound, Theorem 1.3.1. The base case is trivial. By duality we prove it only for
f =V (g:). In this case we have

Ro(f) = £izy Ro(gi), and
R {f) (Rl(J1)1 Rﬂ(gl)| Rl(.‘h)v Rﬂ(gz), s R|(gk)‘ RD(!}A))

where x(ay, by, ay, by, ..., 4k, bi) =

i bi !'!bi! isbt')-"s i:bit
w¢T={i1..H}f}ng{1.-z.....k}‘-% + Hais by iy by s iy i)

and ¢(ay, by, az, by, ..., ar, be) = (Tj2y 0505 + Ticjcnge bi0n)/ Tizy b
Bounding R, is easy,

= Rolg:) 2 ) R(gi) 2 ¥(R(g1), -, R(gx)) = R(f).
To bound R, we use the following properties of ¢ and y.

Proposition 3.3.2

(i)  For non negative a-s and b-s, x is monotone non decreasing in each a;.
(i1) Forb; > a; >0, i =1,..,k, x is monotone non decreasing in each b;.
(iid) Fora;=b;>0, i =1,...,k, ¢(ay,ay,as,a,...,a ar) = P(ar,as, ..., ax).

Proof: (i) It is enough to prove that ¢ is such, since each of the 2* terms under the
min operator of y is then non decreasing and so is x itself. By symmetry we show
monotonicity in a;. Indeed,

dc;b 99 by

a’l!bl! ﬂg,bg) =
1 tml Yi

> 0 for positive b-s.

(1) As in part (4) it is enough to prove monotonicity of ¢ in b;. For this we calculate
the numerator of %’-:—(al,bl, .oy @y, by) and verify it to be non negative. Indeed,

(@ + Thea ba) - (Z‘-l ) 1“J = Ligjchgt bibn 2
(ZL:: bh) (2_1..1 b, ) ;_2 ; 21<3<h<: b by = Zzghqgt b:'bh 2 0.

(ii1) By the definitions of y and v, we have to show that the minimal term in x is when
T = {1,...,k}. By symmetry, it is enough to show that the term for 7' = {1,2, ..., ¢}
where 0 < t < k is bounded from below by that for {1,...,k}. Indeed,

TigT Gi + ¢(ﬂu ay, Gy, @y, ..., 4y, at)]
Zf=t+l a; (21<;<h<e “J“h)/ Z -—1 a; =
Z....t+1 a; + Tiz @i 3 Tt @} 2
Zt—l ai — l : ZL: a}

(Zl<3<h<k ﬂ:“h)/ 23—1 a; =
d(ar, ar, az, ay, ..., am, ai).
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We can now bound R, and complete the proof of Theorem 3.3.1.

Ri(f) 3.;“] X(Ri(¢), Ro(g1), Ba(g2), Ro(g2), -, Ra(gk), Ro(gx))
3“5(“] X(R(g1), Ro(¢), R(92), Ro(92), .-, R(gk), Ro(gk))
2 x(B(a1), R(9), R(g2), Rlga), .., Blgi), Rlgk))
S'Si'."} $(R(91), R(g1), R(g2), R(g2); -, R(gk), R(g))

= Y(R(n), R(g2), ..., B(ge)) = R(f).
[

The following properties of 1, the function used in the simple lower bound, The-
orem 3.3.1 are used below.

Proposition 3.3.3
(i) 1 is homogeneous of order 1, P(aay, ..., xar) = a(ay, ..., ax).
(ii) 1 is monotone non-decreasing in IR} in each of its variables.

Proof:
() Follows directly from the definition of .
(11) By symmetry we show monotonicity in the first argument of 1.

; oy (o
N N o] = (2a1 + i, ai) (Ek--l @) = Lrgigick 44 > 0 for positive a;’s
da ay (Zi=l al)2

(-

3.4 Proving The Recursive Bound: Intuition

We want to prove Theorem 1.3.2,

Theorem (recursive lower bound) There exists a real number 0 > 0.5 s.t. for every
read-once AND/OR function f, RC(f) = n’, where n is the number of input variables
f depends on. In particular, 6 = 0.51 satisfies this inequality.

As hinted above, we will actually prove that R(f) = n’, where R(f) is the lower
bound for RC(f) given in Theorem 3.3.1. A natural way to prove this is by induction
on the structure of f. (Note we do not distinguish between the function and its read-
once formula.) Let f = gOQh, where ¢ € {A,V}. Say h is of size an, and g is of size
(1 = a)n, where by size of a function we mean its number of input variables. We want
to show that

R(f) z n’.

By definition,
R(f) = ¥(R(g), R(h)).
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By induction, we may assume that R(h) > (an)’ and R(g) = ((1 — a)n)’. Using the
monotonicity of 1, Proposition 3.3.3, we have

Y(R(g), R(h)) = ((an)’, (1 — a)n)’).

Therefore we are done IF
7
P((an)?, (1 = a)n)?) > n’,

or, equivalently, by the fact that 1) is homogeneous (Proposition 3.3.3) IF
v, (1-a)) > 1.

‘Unfortunately’, this is not true. For every § > 1, if f is very unbalanced, that
is, if o is very close to 0 or 1, ¥(a’, (1 — a)?) < 1. Well, this is not a big surprise, as
we know by the example given in Section 3.2 — we have not used restrictions so far.
Yet, we cannot simply restrict f so to eliminate the smaller subfunction. This way
we might eliminate eventually almost everything. So what we do in the proof is look
deeper in the structure of f, analyze this structure, and carefully restrict small parts
of it.

Let us describe this in slightly more detail. We look at the larger sub-function
of f. Say it is ¢, that is, say « is small. If g is also very unbalanced we look at its
larger sub-function too, and so on. We stop when the small sub-functions we have
seen in this process have together ‘sufficiently large’ total size. Now, each such small
sub-function is a child of some gate, either AND or OR. We count the total size of
sub-functions under AND gates and compare it to the total size of those under OR
gates. Say the latter is greater. In this case we restrict f so as to eliminate exactly
those small sub-functions under OR gates, leaving all other parts of f as is. We view
the restricted function as a single AND, possibly of large fan-in, whose children are all
the sub-functions that remain alive. On this restricted function we want to evaluate
. However, this is still not enough. 1) may still be smaller than 1 when evaluated
at the @-powers of the remaining sub-functions’ sizes. This happens if the two total
sizes were approximately the same.

In order to have a valid argument we distinguish between three cases of how the
total size of the small sub-functions is distributed among them. These are the three
cases mentioned in the next section. We then restrict f in a specific way for each case,
and use a corresponding and specific inequality involving 1. These three inequalities
are stated as Lemma 3.5.1 below, and are brutally proved in Section 3.6.

A formal proof follows next.

3.5 Proving The Recursive Bound: Restrictions

We show that # = 0.51 satisfies the requirement of Theorem 1.3.2. We use also the
parameters b = 0.001, ¢ = 0.025 and § = 0.4. The following technical lemma, proved
in the next section, is used in the proof.

25




Lemma 3.5.1 (technical lemma)

(i) $((1—e)f (e—€))=21, for c<e<Hland 0<e <D
(1) ((1-¢)%e®) > 1, for 186b<e<c and e <e <e.

(4i1) ¥((1 —¢),e”,e"?) > 1, for b<e<cg, ,_,‘Tag <e <Le"and ¢/ +6" < §.

We prove by induction on n, the number of f’s input variables, that R(f) = n’.
Note that R, which is defined in Theorem 3.3.1, is by that theorem a lower bound for
RC. The case n = 1 is trivial. Assume n > 1. By Lemma 1.2.4, we assume that the
formula contains no negation gates. Assume also that all gates of f have fan-in two
to begin with. Otherwise simply replace ‘wide’ gates by binary trees.

Furthermore, consider the formula as a binary tree in which the left subtree of
each node is at least as large as its right subtree (with respect to their numbers of
leaves). Denote this tree by T'. Now focus at the ‘leftmost’ path of T' which starts at
the root and ends in a certain gate, specified in (2) below. This path is of the form of

T = (o (oo (TuOeT3) o OT3). 03T} Ty

where each ¢; is either AND or OR, and the T}-s and T. are subtrees of T'. Let n;
(respectively n.) be the number of leaves in the subtree T; (respectively T.). Define
g =" and e. =2 (=1—Te¢). The following two conditions precisely define the
path.

(1) For each i, Y!oiyy €5 + €« = €i. This is the above mentioned requirement on the
number of leaves in left- and right-subtrees.

(2) t is minimal with $°¢_, &; = b. This specifies the last gate in the leftmost path we

focus on.

For each i let S; = ¥j_ &5, let I = {j: 1<j <4 &= A} and let S} =
Ljern €. Similarly, define IY={j: 1<j <14, ¢j=V}and SY = Tjeve;. Note
that S; = S:\ + S:" and Sz = b.

We distinguish between the following three possible cases:
Case 1: S, > c. (T} is ‘very’ large with respect to the other T;’s.)
Case 2: b< S, < cand g, > 65, for some u, 1 u <t. (NoTiis ‘very’ large but
one of them is ‘quite’ large.)
Case 3: b< S, < cand g, <65, for all u, 1 <u <t. (Al T’s are ‘small’.)

In case 1 we argue that all Ti-s with ¢ < ¢ can be ignored: Restrict T to T.O.T;
having R(T) = R(T.¢.T}). By the induction hypothesis

R(T.O.Ty) 2 $(R(T.), R(TY)) 2 (n2,ne).

To show (n?,nf) > n’, we use the homogeneity of ¢ (Proposition 3.3.3), and show
that ¥ (ef,€!) > 1, i.e,,
P((1 = 8% (St = Se-1)”) 2 1.
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(l_gg 1)0!‘C<S¢<S‘1+1 5"1=]+Sl—1<

Recall that S;_; < b and that &, < 3 =%

1 Case 1 follows by Lemma 3.5.1, part (i) with ¢ = 5, and e S'g 1.

Consider now case 2. The following claim states that for some prefix of the
leftmost path of non negligible size, the total size of subtrees entering its AND gates
significantly differs from that of those entering its OR gates. In this case we argue
that the subtrees of smaller total size can be ignored.

Claim 3.5.2 3r € {u— 1,u} s.t. S% > 7155, and S, > 1=36b.

Proof: Assume without loss of generality that ¢, = A. If S > J‘E.S'u then r = u
fulfills the claim, since S, > &, = 65, = 8b. Otherwise, SY(= S)_,) = ::gSu. In this

u=1
case,

§. sy sy

v
— u—1 u—1 hsﬂ - 1
. BBy Sy =08 T 8, —85, 2~-0
Accordingly, we choose ¢ =V, r =u — 1, and we are done, since
1-§ 1 - 6 146 1—-46

e w2 G > ——6b.
Su-1 2 S0 2 555 2 gyee 2 05 2 5 0

£l

Suppose, for the purpose of simplifying notation, that ¢, = A. Restrict the given
formula so that each T; with i < u and ¢; = V becomes ‘0’. Represent the remaining
tree in the form

TaATa

where To = (..(T*0:T))...0r1Tr41) and Ta = AieraTi. As in case 1, using the

induction hypothesis and the homogeneity of 1, it is sufficient to show

Y((1=5),(57)°) 2 1
This follows by Lemma 3.5.1, part (iz), using € = S, and &' = S},

Fina.lly, consider case 3. Assume without loss of generality that S = SY, i.e.,
Vi —‘- We argue that also in this case one can ignore the subtrees entermg OR
gates. However, this time we have to be more careful and use the fact that the subtrees
entering AND gates are small and hence can be partitioned into two sets of similar
total sizes. For a subset I C {l,...,t}, denote Sy = ¥.e;éi. The following claim
states that there exists a partltton of I} into two subsets that are ‘fairly’ balanced
with respect to the total number of inputs in the subformulae each represents.

Claim 3.5.3 There ezists a subset I C I} s.t. S]’:\\f > S5r=2(1-29)- -5;

Proof: Use the following fact with # = 26 = 0.8 and scaling. .
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Fact 3.5.4 Let 0 < B < 1 and ay,...,a; s.t. 0 < a; < B and ‘Z:-;l a; > 1. Then
A1 € {1,...,k} s.t. min{Ties aiy Tigrai} = v(8) where

2 i<
7(ﬁ}={§ if3 <
1-8 B2

s

e Tl
[=]15]

Proof: If g < ! 3 then any partition with sums that differ by more than 4 can be
improved by moving some a; from the larger part to the other. If there is some part
larger than 3 put that part in one subset and all the others in the other subset. This

covers the two last cases. (.

Now, consider the subset I given by Claim 3.5.3 and restrict 7" to
T.ANTa ANTa

where Tg = AtE;T and Tp = A,E;a\,«T Part (i1¢) of Lemma 3.5.1 with ¢ = 5,
= Sy and &” = Sjr\; shows that 1,[)(6,,5,,5;.«\,) > 1. This completes case 3 and
therefore completes the proof of the theorem, once the technical lemma is proved. []

3.6 Proving The Technical Lemma

We now prove the technical lemma, Lemma 3.5.1. Using the monotonicity of # in
each of its arguments (Proposition 3.3.3), and using § = 0.4, we replace the three
inequalities of the lemma by the following.

() p((1-e),(e=b)") =1 for c<e <
(')  ((1 =¢)?, (5 ))31 for 0.150 < ¢ < c.
(331" wp((l—s)ﬁ' ") >1 for b<e<e 0le<e <e"and € +6" =4,

As mentioned, we prove the inequalities for § = 0.51, b = 0.001 and ¢ = 0.025.
We start with (i44'). Denote &’ = pe. Then 0.1 < p < 0.3, " = (3 — p)e and

& 20 L (el ] & 0
WL =), e™) = (1-e)f + SEH
(1-¢)+

(0% +0° (3 =) +(§ =0)*)e**
(1=)?+[p?+(5-r)"]e"

Hence, we have to show that

[p”+p’(; p)’ + (5 = p)]e”
(T=er +10" + (3 = oV

(1-¢)’+ >1 for 0.1 <p<0.3.

By Lemma 3.6.1 below, p? +p?(3 —p)? + (3 = p)* = 0.1'2+0.04°5" +0.4"** > 0.68,
and p’ + (3 — p)? <2-0.25%%" < 1. It is thus enough to show that

0.68¢% > [1 - (1 =¢)!]-[(1 =€)’ +£°%.
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Again, by Lemma 3.6.1 (1 —¢£)? +¢&° < 0.975%51 4-0.025%%! < 1.14, since € < ¢ = 0.025.
Also, 1 — (1 —¢)? < ef(1 —e)?"' <e6-0.9757°4 < 0 - 1.013. Hence, it is enough to

show that
£20-1 5, 0.51-1.013-1.14
T 0.68
Indeed, 0.51 - 1.013 - 1.14 < 0.59, 20 — 1 = % and £ > b= 0.001 > (“'59)50.

68

=

We now prove (2i') which states

E_2\28
(0.625 - €) 51

(1=e) + (1 =) + (0.625 - )? =

We use Lemma 3.6.1 again, 1 — (1 —¢)? < e0(1 — £)?~', and show that

‘ 6(1 — )1
20~1 0 v
€ EW'[(].—-E) +(0625E) ]
The left hand side is monotone increasing in . By Lemma 3.6.1, the right hand side is
also monotone increasing in ¢. Hence, to prove this last inequality for 0.150 < ¢ < ¢,
we exhibit a sequence 0.156 = gy < &1 < ... < &, = ¢ for which for each 7, 1 < i <k,

e 0(1 — ¢;)8?
*‘-'ff112(0T2539—'[(1

Indeed, the sequence 0.00015, 0.0006, 0.0034, 0.012, 0.021, 0.025 satisfies this re-
quirement,

—&)" +(0.625 - €;)°).

Finally, we prove (i), that is,
(1-¢)*+ (1 =¢)’(e=0.001)% + (¢ = 0.001)* > (1 —)® + (¢ — 0.001)°,

forc<e < l%’l By Lemma 3.6.1, both sides of the inequality are monotone, and
so, as before, we exhibit a sequence ¢ = ¢y < &y < ... < g = -‘{—" for which for each
i, 1 <2 <k, the left hand side with ¢ = ¢;_; is greater than the right hand side with
€ = €;. A sequence satisfying this is 0.025, 0.026, 0.027, ..., 0.068, 0.069, 0.07, 0.08,
0.09, ..., 0.18, 0.19, 0.2, 0.3, 0.5005, where the first ellipsis corresponds to 0.001-jumps
and the second corresponds to 0.01-jumps. ]

To complete the proof of the technical lemma we need the following.

Lemma 3.6.1

(i) Let 0 < 0 <1 and a > 0. Then (1—¢)° + (ag)? is convez in the segment 0 < & < 1
1

and mazimal in -
ki l14ab=
(i)) Let 0 <@ <1 and 0 < b < 1. Then (1 —¢)? + (e = b)? is conver in the segment

b<e <1 and mazimal in e = 'Jzi
(i1i) Let 0 < 0 < 0.6 and 0 < b < 1. Then (1 —&)* 4+ (1 —¢&)?(e = b)° + (e = b)* is

convex in the segment b < & < 1 and mazimal in ¢ = 142,

2
(iii) Let 0 <0 <1 and0 <e <1. Then 1 — (1 —¢)® < b(1 —¢)°-1.

—
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Proof: We prove (i) and (i1) together: Consider f(¢) = (1 —¢)? + [a(z — b)]’. Then
& = -gg(_l — &) 4 a%(c — b)*'. This equals 0 iff 1 — & = a7 (e — b), ie.,
6 = LBl Also, &f = 0(0 — 1)(1 —)°~* + a’0(e — b)"~2 < 0.

i!—‘g so, 4 = 0( )1 —e)?=2+a%(e - b)"*<0

(#41): Consider g(¢) = (1 —£)** + (¢ — b)* + (1 — £)?(e — b)’. Then

g% = —20(1 — &)¥" 4+ 20(c — b)?"' —0(1 —&)* ' (e = b)? +6(1 —¢)’(e — b)*".
First, 32 = 0 iff | — & = & — b, that is, ¢ = 2. Second,
1.2 = 2020 = 1)(1 = )2 +2(20 — 1)(e — b)*?
+(0 —1)(1 —€)?2(e — b)? —20(1 —&)*~ (e = b)?"' + (0 = 1)(1 — €)°(e = b)°~?
< 220 = 1)[(1 —€)*-2 4 (e = b)*-2 + (0 = 1)[(1 — €)*~%(e - b)’
+(1 —¢&)’(e = b)"2).

Now, 2(20 = 1) < —(0 — 1) for § < 0.6, and so to show g—:? < 0 we show
(1= 24 (=02 <(1—e) (e —b)°+ (1 —e)’(e =) ie,

0<([(e=8)""~(1-€)*?-[(1-¢)’ - (e = b))

Indeed, if 1 —& > £ — b the two multiplied terms are non negative, and if 1 =& <& —b
they are both non positive.

(i7i1): Consider h(g) = —(1 —¢)?. Then 1 = (1 —¢)? = h(e) — h(0) = £3%(¢’) for some
0 < ¢’ <e¢,and we have $4(e') = 0(1 — ')~ < 0(1 — )’ c

3.7 On Improving the Recursive Bound

When focusing on the lower bound R of Theorem 3.3.1, one gains, indeed, the sim-
plicity which helps proving Theorem 1.3.2. However, Theorem 3.3.1 cannof imply an
optimal lower bound. For g, the complete AND/OR-tree function defined in Example

1.2.3, R(g) = %h’s" = n%%- and restrictions cannot help here. While it is clear from
our proof that # = 0.51 is not the highest exponent this proof technique can provide,
this example shows that 0.58... is an upper bound for any proof based on Theorem

3.3.1.
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Chapter 4

Lower Bound for Threshold Gates

4.1 Introduction

This chapter is devoted to the proof of Theorem 1.3.3,
Theorem (threshold gates) Let f be a Boolean function computed by a read-once
threshold formula of depth d over n input-variables. Then RC(f) 2 3a.

In the next section we give a simple proof for a weaker lower bound of 7. The
proof is simple as it reduces this weaker result to a theorem we have already proved,
Theorem 1.3.1.

Sections 4.3 to 4.5 contain the proof of Theorem 1.3.3. The proof is based on
directly using the proof technique of the generalized non-recursive lower bound, The-
orem 1.3.1, as well as on a claim involving the new concept of partial decision trees.
The direct proof given here is perhaps better for the study of the randomized decision
tree complexity in general, and of threshold circuits in particular. Comparing Theo-
rem 1.3.3 with Observation 4.2.2 below suggests that threshold gates do not increase
the gap between the randomized decision tree complexity and the deterministic deci-
sion tree complexity relative to AND/OR gates. Hence it might be that a lower bound
for the randomized decision tree complexity of AC?, if established, would generalize
to a TC° lower bound, solving, perhaps, the TC? versus NC" problem.

The direct proof also has the advantage of remaining valid in a more powerful
model. This model enables, in particular, gates that compute arbitrary symmetric
functions:

Definition 4.1.1 A Boolean function g, defined on k input-variables, is said to con-
tain a flip if there exists some |, 1 < 1 < k, such that g outpuls the same value
whenever ezactly | of its inputs are valued 1, and it outputs the opposite value when-
ever exactly | — 1 of its inputs are valued 1.

Corollary 4.1.2 Let f be a Boolean function computed by a read-once formula of

depth d over n input-variables whose gates are functions that each contains a flip.
Then RC(f) = 32
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Proof: The proof of Theorem 1.3.3 given below works for gates containing flips as

well. C

Section 4.6 concludes this chapter. It contains a claim which is similar to that
of 4.5, under a more general assumptions — it deals with partial decision tree that
computes any function. It is one of the referees of this thesis who suggested this
general result, a result which might be interesting in its own right.

4.2 Simple Proof for Weaker Lower Bound
In this section we give a simple proof for a weaker lower bound, RC(f) = 1.

Theorem 4.2.1 (weaker bound) Let f be a Boolean function computed by a read-once
threshold formula of depth d over n input-variables. Then RC(f) =

The proof uses the following two observations.

Observation 4.2.2 (% for AND/OR formulae) Let f be a Boolean function com-
puted by a read-once AND/OR formula of depth d over n input-variables. Then
RO(f) z 74

Proof: It is implied by the lower bound of Theorem 3.3.1. That lower bound, R(f)
is given by the recursion

R(f) =1 if f is a single variable;
R(f) = Y(R(g1), -, B(gw)) if [ = V(gr...qx) or [ = A(g1.--9k),

where ¥(ay, ..., ax) = (leigj-gk ai“;‘)/(ELt a;).
To deduce the ﬁ lower bound it suffices to show that

k

R(f) 2 —-'il—jm if f=V(g1...9x) or [ = A(g1.--k)-

Indeed,
k

lay, emar) =( Y Giaf)/(zae)?«'%';ﬂi

1<i<j<k i=1

(-

Observation 4.2.3 Let F' be a read-once threshold formula of depth d over n input-
variables. Then F' can be restricted into a read-once AND/OR formula of depth d

over 3 input-variables.
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Proof: We prove it by induction on d. This is clear if d = 0, that is, F' is just a
single variable. Now let F' = TF(Fy, Fy, ..., Fi), where F; depends on n; inputs for
i =1,2,...,k and where "%, n; = n. We also know that each F; is of depth at most
d — 1. To simplify notation assume that n; > ny > ... > n4. By duality assume
that [ > &. Restrict Fiyy, ..., Fi to 1. This restricts F' to A(Fy, ..., F}). By induction,
restrict each F; for i = 1,...,/ to an AND/OR formula F} of depth d — 1 which
depends on at least 37y inputs. The effect is what we want, a depth-d AND/OR
formula depending on at least

b 177 oy " nf2 n
22;!—1 - gd—1 = 9d-1 Qd

i=1
input variables. ]

Proof of Theorem 4.2.1 Let F be a depth-d n-inputs formula for f. By Ob-
servation 4.2.3 restrict it to a depth-d read-once formula, F' depending on 3 input
variables. Clearly the randomized decision tree complexity of f is at least that of the

function computed by F”, which in turn is by Proposition 4.2.2 at least %/2“ = .

4.3 Proving the Threshold Gates Lower Bound

We now prove Theorem 1.3.3. As in Chapter 2, we use a variable cost function. Here
a single cost function ¢ : {zj,...,z,} — IR suffices. The time relative to such ¢ is
defined in the natural way,

Time,r(e) = Y.  e(z).

z‘gEPathT[S]

DC(f,c) and RC(f,¢) denote the complexities relative to ¢ and are defined similarly
to (1.1) and (1.2). Yao's lemma (Lemma 1.2.1) then becomes

RC(f,¢c) = max 11;Ii_n E.ep[Time. r(¢)]. (4.1)

As in Chapter 2, we use a bottom-up induction, the threshold shrinking lemma,
and remark that a top-down induction may possibly work as well, as suggested by
the proof technique of Santha [San91]. In the lemma’s proof, Section 4.4, we carefully
define a distribution on inputs and a set of decision trees. These definitions generalize
the analogous ones given in Chapter 2. They enable reducing the lemma’s statement
to a statement involving a simple threshold formula only, i.e., a single gate. The
reduced statement is a claim on partial decision trees that compute a simple threshold
function. Section 4.5 is devoted to this claim.

The threshold gates lower bound, Theorem 1.3.3 follows by applying the threshold
shrinking lemma given below inductively. We begin with unit variables cost. The last
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shrinking yields the simple formula consisting of a single variable, v’, whose cost
bounds RC(f) from below. As in Observation 4.2.2, this cost is easily computed:

C(U;) Z 2—Df‘pth(z. _;_1_
i=1

:L

Here Depth(z;) is the depth of a variable z; in the read-once formula given in the
theorem -

4.4 The Threshold Shrinking Lemma

Lemma 4.4.1 (threshold shrinking) Let F' be a read-once threshold formula of depth
d > 0 that computes a Boolean function f. Consider an internal gate T} whose
children are all variables. Denote these variables by Y = {y1,...,yx}. Denote the
rest of the variables by X = {z1,...,2m} (see Figure {.1). Letc: X UY — IR be a
cost function for the m + k variables of f. Let F' be the formula obtained from F by
replacing the sub-formula T(yy, ..., yk) by a single variable v (see Figure 4.2), and let
f" be the function computed by F'. Define a new cost function ¢’ by ¢(xz;) = (i) for
| <i<m,and (v) = ﬂ;l, where e(Y) = L5, e(y:).

Then RC(f',¢) < RC(f,c).

Il xz ... .‘I,'m
Vi Y2 ==Yk

Figure 4.1: The given F Figure 4.2: The shrunk F

Proof:

We use the same notations as in Chapter 2,
Notations:
(k] denotes the set {1,...,k}.
{4} denotes the set of all subsets of a set A which have cardinality a.

9! (respectively, 0°) denotes the extension of a (partial) setting 6 : X — {0,1}, on
X U {v} by 8'(v) = 1 (respectively, 8°(v) = 0).

Oy where M C (k] denotes the extension of 8 : X — {0, 1} to XUY by Om(yi) = liem
(i.e., 1 if i € M and 0 otherwise).
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Prp(E) denotes the probability of E, given a distribution D.
¢(U) denotes the total cost of a subset U of input variables, ¢(U) = T ,eu ¢(u).
Iy denotes the input setting that gives 1 exactly to those variables in U.

UT denotes the variables in some subset U that are probed by T' given an input-setting
¢ (to all variables), UT = U N Varr(¢).

We have to show that RC(f',¢') < RC(f,c). Using (4.1) we show that
(VD') (3D) (VT) (3T") Ewep[Timey,r:(e')] £ Ecep[Timecr(e)], (4.2)

where D (respectively, D') is a distribution on the input-settings to f (respectively,
f"), and T (respectively, T") is a deterministic decision tree for f (respectively, f').

Let D' be given. Define a distribution D as follows. For every X-setting 6 : X' —
{0,1} and subset M C [k], define

Prg:(ﬂl)-w(M] if lMl =]
Prp(0ym) = { Prp:(6°) - w([k]\ M) if [M|=1-1 (4.3)
0 otherwise
where
w(§) = —ies i) (4.4)

(&) oY)

for a non-empty set S C [k]. (The point here is to split Prp/(0"') and Prp:(6°) among
the extensions of @ that are difficult to separate. These are the extensions 0y for
which |[M| = l or |[M| = | = 1. The portion of probability that such an extension
gets is proportional to its weight, that is, to the cost of the ‘meaningful’ Y-variables
in it.) Note that ¥\u—w(M) = Tjsj=i—1 w(M) = 1 and therefore (4.3) defines a
probability distribution,

S Prp(Om) =3 Propi(0') + 3 Prpi(6°) = 1.
[ )

o.M

Now, let T be given. We do not define 7" explicitly. Rather, we define a set of
candidate deterministic decision trees and prove that the inequality in (4.2) holds for

at least one of them. The candidates are the following k - (*-!) decision trees, T(; w),
indexed by pairs (¢, W), where ¢ € [k] and W € {]\ (1},

Ti,w) is defined as the ‘projection’ of T' under the following actions:

1. Each question ‘y;?’ (in T') is replaced by the question ‘v?’ (in T(; w)).

2. For each j € W, T(; w) assumes that y; = 1. Namely, for each node of 7' contain-
ing the question ‘y;7’, T(; w) passes down this question to the 1 direction while
deleting that node and the whole sub-tree under the 0 direction (see Figure 4.3).




3. For all other j (i.e., j € [k]\ W, j # 1), T(;,w) assumes that y; = 0: For each
node of T' containing ‘y;?’, T(i,w) similarly passes down the question, this case
to the 0 direction (see Figure 4.4).

we T

e = e o ol

sub-free
Assuming y; =1 (7 € W) Assuming y; =0 (j € W\ Y, j #1)
Figure 4.3 Figure 4.4

It remains to show that the inequality of (4.2) holds for some T{; w). We do this
by proving that the following convex combination of these k- (} =) inequalities holds.

> piw)Beep(Times 7, v, (€")] € Ecep[Time,r(e)], (4.5)
ie(k),we{}\ {1y

where the appropriate coefficients {p(; w)} will be defined when used.

First, we write the explicit terms for the two expectations above:

Evep(Times g, ()] € 3 [Prp:(6") - Timew 7, 4, (6")
8:X—{0,1}

+PI‘D:(60) 5 Timecr_qv('lw](ﬁo)]
and .3)
E.ep[Time.r(e)] ¥ 3. S Prp(Om) - Timeer(0n)] =
0:X—{0,1} MC[K]
S [Prp(0") > w(M)-Timesr(0m)+Prp(0°): > w([k]\M)-Timecr(0m)].
0: X ={0,1} ME{'-:"} ME{,[:il }

Inserting these terms into (4.5), and using the definition of D, we note that it is
sufficient to show for each @ : X — {0,1} that the following inequalities hold:

z p(,v.w)Timecf‘T“m(B‘) < Z w(M) - TimeC_T(BM) (4.6)
ie[k],we(M\ {11y Me{1¥}
and
) paw) Timeo 1, ,,(0°) < > w((k]\ M) - Time,r(0n)  (4.7)
iE[k]wa\{[kllltli} } Me{t[fll }
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We prove (4.6), and (4.7) follows by duality: Change the roles of 1-s and 0-s in the
Y variables and consider the threshold gate T P
Next, we divide ‘“Time’ to the costs of X, Y and v, and use the notation above.

Inequality (4.6) becomes

Y paw) [ (X ")+ () LeVary , @y S 2 w(M)[e(Xq,)+e(Ye,)). (4.8)
(i,W) s Me{H)

The key observation here is that Path'p{ W)(S'l) is the ‘projection’ of Pathz(fiyuw)

under actions 1-3 above. In particular, X, Sy = Xj,uw and v € Varg, , (0") iff
yi € }’;“ - Using these and (4.4), and enumerating the pairs (i, W) as {(M,1)
M € {#}, + € M}, we find that (4.8) is equivalent to

(X o oee W) (ox YT )).
S X pawy (XD, +< (v): Lyerg 1 < =) 2, 24 2V le(X7,,) +e(Yar,)

Me.{[':‘I}IEM -1 MG{[:‘]}IEM

By definition, ¢/(Xj ) = c(Xg' ). To cancel these terms out we now define p; = 5%”}7}
and piw) = -;E',— for i € [k] and W € {M\{7}. (Note that these coefficients are

=1

non-negative and their sum is 1.) Hence, canceling out and multiplying both sides by
k=1

k-1) - ¢(Y) reduces the last inequality to

C X D) ey S X Y em) elYa,),

Me{["] }IEM Me{“:l )} 1EM
which is equivalent to

dv) X dMnYI)< T (M) «(YT). (4.9)

Me(Y) Me(])

Note that we are now left with a problem involving the simple threshold sub-
formula Fy,, = T¥(yr,...,yx). The only role @ plays in (4.9) is to determine some
projection of 7'. This projection is derived from T' by passing down each z;7-question
to the direction #(z;). Note that 7' may compute F' without computing Fg,},. This
means that the projection is not a deterministic decision tree for Fg; . Rather, it
may contain some leaves in which the value of the function being computed is not
determined. We call such decision tree partial. The claim on partial decision trees
given in the next section implies (4.9) and completes this proof. (-

4.5 The Partial Decision Tree Claim

Definition 4.5.1 A partial decision tree T for f is a generalization of a deterministic
decision tree for [ in that its leaves may contain ‘?’-s, not only 0-s and [-s, but still,
T is required to satisfy Outputr(e) = f(g) for every € with Outputp(e) # ‘9.
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For example, the trivial decision tree, which contains a single node, a leaf, labeled
by a ‘7", is a partial decision tree for every Boolean function. Figure 4.5 contains
an example of partial decision tree computing the OR function of any variables set
containing {21, ..., 2}

In the following claim 7§ denotes the constant 1 function and Tk, denotes the
constant 0 function. Note that for the purpose of Lemma 4.4.1 and Theorem 1.3.3 we
could state the following claim for 1 <1 < k only, eliminating the somewhat artificial

notations T and Tf,,. We do state it for 0 S 1 < k+1 though, in order to simplify
the proof.

Claim 4.5.2 Let0 < | < k+1, let T be a partial decision tree for Tf(y1, ..., yx) which
does not probe a single variable more than once nor probes a variable that the function
does not depend on, and let ¢ be a leaf cost function on'Y = {y1,...,yk}. Then

DS abnVar() € T ell)- el Varr(1s))

Le{}} Le{}}

Before proving this claim we demonstrate its validity for the two intersting cases
| = k (AND gate) and [ = 1 (OR gate). Note that these two cases could be the basis
for an inductive proof of the weaker (but perhaps more intuitive) version of the claim
in which 1 <1< k.

Case 1: [ = k (AND gate).

The only L € {¥} is L =Y and the inequality

(¥Y)
2

(Y N Varr(ly)) € e(Y) - e(Varr(ly))

obviously holds.

Case 2: [ =1 (OR gate).
T does not probe a variable more than once. Hence, it is of the form of Figure 4.5,
where 0 < s < k and Z = {z1,...,2,} C Y.

Figure 4.5: A partial decision-tree for OR
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Denote Y \ Z by W = {wy,...,wy-,}. L € {¥} consists of an element y € Y. If y
is some z then Varp(1p) = {z1,...,2i}, and if y is some w; then Varr(l,) = Z. We
thus have to show:

L3 ) < et o) + [ el 3 ez

This indeed holds, since the quantity 1[50, o(z:)]® + [Ti=) e(wi)] - [Ziay (i) is be-

i1

tween the two values on both sides of the inequality, due to 3[S0, ai]* < ¥i_;[ai -
E}:l (I'j]'
Proof (of Claim 4.5.2): The proof is by induction on the structure of 7. IfT is

trivial, i.e., it does not probe any variable, then for every L, Vary(1z) is empty, and
the claim trivially holds.

Assume now that 7' is not trivial. In particular, by the assumption that T probes
only variables that the function depends on, this means that the function is not a
constant. Let ‘y;?’ be the first probe in 7', and let Ty and T be the subtrees under
the directions y; = 1 and y; = 0, respectively (see Figure 4.6).

Figure 4.6: a non-trivial tree, T'

For L containing yy, say L = {y:} U L', we have Varp(15) = {y.} U Varg,(1./). For
L not containing y, we have Varp(1.) = {y:} U Varg,(11). In these terms the claim
states that

D Y e+l nVam(p)l+ ¥ L Var (1)} <

L'e{ Yt\_!l;:}} LE{Y\,{“} }

S lely) +e(D)) le(w) +e(Varn, 1))+ 20 e(L)-[e(ye) +e(Varz, (1))

Lre{\"\_(l;l}} Le{"‘,““‘}

T, and T, are partial decision-trees for 753 (Y \ {y:}) and T/~ (Y'\ {y.}), respec-
tively. Hence, by induction,

e(Y \ {ye}) S (LN Varg (1)) € Y. e(L')-e(Vary (1u)),

2 Le{ Y‘\_(a;d } L'eq Y‘\-{l;t} }
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and

M}—) . Z (L N Varr, (1)) < Z e(L) - e(Varr,(11)).

2 LE{V\‘{UI}} Le{y\f“}}

Using these, and dividing by ¢(y:), the claim reduces to

c_(_;Q -+ :12- zc(L’ N Vary, (12/)) + %ZC(L N Varg, (1))
L' L

< ¢z elye) + 2e(L) + };C(Varrl(lu)) + XL:C(L),
L' r

and this holds due to

Llgy = 3 L oaL) =
E v
Loe{¥}
1 1 .
5 '.':.')‘C(ye)+§' D CUJ)"'E' Y. L)
L’E{Yi\_{'{'}} Le{Y\‘{b‘l}}
This completes the proofs of Claim 4.5, Lemma 4.4.1 and Theorem 1.3.3. c

4.6 Generalized Partial Decision Tree Claim

As pointed out by one of the referees of this thesis, the hypothesis of Claim 4.5.2 that
the partial decision tree computes a threshold function is unnecessary, provided that
in the conclusion the set L ranges over ALL subsets of the variable-set Y. This yields
the following claim which might be interesting in its own right.

Claim 4.6.1 Let T' be a partial decision tree for any Boolean function depending on
the variable-set Y which does not probe a single variable more than once, and let c be
a leaf cost function on Y. Then

C(;’) -3 (LN Varp(1)) € 3 (L) - o Varr(1L)).
= LSy

Proof: The proof follows the same lines of the proof of Claim 4.5.2. Formally, the
proof for this claim is obtained from the previous one by

1. replacing L' € {*) )} by L' C Y \ {w:},

2. replacing L € {*\(»)} by L C Y\ {m},

3. replacing L* € {Y} by L* C Y, and

4. replacing (+-1) by 2IVI-1. -
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Chapter 5

Trials and Counter Examples

5.1 Deterministic Complexity for Read-Once Com-
positions

The following proposition and corollaries generalize the fact that read-once functions
are evasive (Lemma 1.2.7). They state that the measure of deterministic decision
tree complexity is additive if Boolean functions are composed in a read-once manner.
Proposition 5.1.1 and Corollary 5.1.2 are used in Section 5.2. Analogue to Corollary
5.1.3 in the communication complexity model is a conjecture due to Karchmer et. al.
[KRW91] whose affirmative answer would separate NC' from P.

Proposition 5.1.1 Let f and g be two functions that depend on disjoint sets of input
variables, Then DC(fVg) = DC(f)+DC(g). In particular, an optimal deterministic
decision tree for fV g is obtained from an optimal tree for [ by replacing each leaf
that outputs 0 by an optimal tree for g.

Proof: The construction described in the proposition’s statement shows the < di-
rection. To show it is optimal interpret DC(f) (or DC(g)) as a strategy against
any algorithm. The strategy tells an answer for each probe in a way that only after
DC(f) probes the value of f is determined. The final answer can be either 0 or 1
leading to f = 0 or f = 1. Given such strategies for f and for g we construct that for
fV g. Every sequence of probes is split into two sequences, one contains the variables
of f and the other contains those of g. When a new variable z is probed, say it is a
variable of f, we answer exactly like the f strategy would answer for this probe. If
it determines f we answer in the way that causes f = 0. This new strategy forces
DC(f) probes of f-variables and DC/(g) probes of g-variables in order to determine
the value of fV g. Ll

The same proof idea yields Corollaries 5.1.2 and 5.1.3. It should be also clear how
to construct optimal decision trees for the compound functions given those for their
building blocks.
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Corollary 5.1.2 Let f1, fa, ..., fx be defined on disjoint sets of input variables.
Then DC(V(fi, f2y -y f&)) = DC(A(f1, f2y e i) = Ticy DC(Si).

Corollary 5.1.3 Consider g : {0,1}¥ — {0,1} and f : {0,1}} — {0,1}. Define
go f : {0, 1}“d — {U, 1} on the variable set {Ii,j}lgigk.lsjg! by

g0 f(.ezijerr) = 9(f (210, s 210)s F(Z2,05 01 Z20)5 00y [(Zh1, g BHL))s
Then DC(go f) = DC(g) - DC(f).

5.2 Minterms Oriented Decision Trees

Being interested in lower bounds in the decision tree model, we wish to know of
properties that optimal decision trees satisfy. A candidate property is the following.
We phrase it in terms of minterms of the function, but one may consider the dual —
maxterms — as well.

Definition 5.2.1 (minterms oriented decision tree) A deterministic decision tree T
for a monotone function f is called minterms oriented if either

(i) f is a constant v € {0,1} and T' consists of a single leaf labeled v, or

(i1) there is some minterm {xy,Z2,...,xx} of f with the following property. T probes
first zy, then, if zy = 1 is found, T probes z,, then, if zo =1 is found, T' probes 3
and so on. If xy is eventually probed and found to be I too, T' outputs 1. If 0 is found
in some probe then the subtree under this branch is a minterms oriented decision tree
for the corresponding restricted function.

For example, the decision tree constructed when proving that the nondetermin-
istic decision tree complexity is at most quadratic in the deterministic decision tree
complexity (Theorem 1.2.2) is minterms oriented. Following is another example.

Example 5.2.2 (chain functions) Consider the function f, = V{_,z:Tit1 which de-
pends on the t + 1 variables z1,23...zi41. Then fi is evasive if t # 0 (mod 3), but
ift =0 (mod 3), DC(f) =t and this is achieved by a minterms oriented decision
tree.

Proof: The proof is by induction on t. f; and f; are clearly evasive. To see that
DC(f3) < 3 probe z3 first. If 23 = 0 the restricted function is zy A z5. If 23 = 1 the
restricted function is z, V z4. In any case only two additional probes are required.

That DC(fi41) = DC(f:) follows from the fact that f; is the restriction of fiyq
under z44q = 0.

Now let ¢ = 3k where k > 1. Probe z, first. If z; = 0 the restricted function
is fak—o. If z, = 1 probe -y, completing a minterm, and then probe z:4;. The
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restricted function, if not a constant, is fs,_3 whose deterministic complexity is by
induction 3k — 4. Hence, DC( fax = max{l +3k — 2, 3+ 3k —4} =3k - L.

I[ft =1 (mod3) and z; is probed first, answer 0 iff : = 0 (mod 3) and use
induction and Proposition 5.1.1. If ¢ =2 (mod 3) and z; is probed first, answering

1iff t=2 (mod 3) will do. -

The notion of minterms oriented decision tree extends to non-monotone func-
tions in the natural way. Fich [Fic91] gave the following example of a non-monotone
Boolean function for which no minterms oriented decision tree is optimal. A v-
tournament is a directed graph on v vertices in which for every pair of vertices there
is exactly one directed edge connecting them. An input setting on (;) variables can
be viewed as a v-tournament; each variable value determines an edge direction.

Example 5.2.3 (Fich) The function f of whether a v-tournament contains a sink
or a source satisfies CD(f) = Tv + O(1) whereas every minterms oriented decision
tree for this function has complezity 4v + Q(1).

A natural question to ask here is whether every monotone function has an optimal
decision tree which is minterms oriented:

Question 5.2.4 Can the deterministic decision tree complezity be achieved by some
minterms oriented decision tree for every monotone Boolean function?

This, if correct, would be quite surprising and might help to design optimal deci-
sion trees. We can prove it for the special case of minterms size at most two, but do
not know the answer in general.

Claim 5.2.5 Suppose every minterm of f is of size at most two. Then there is a
minterms oriented decision tree for f which achieves DC(f).

Proof: We prove it by induction on DC(f). Let = be the first variable probed by
some optimal decision tree for f. If {z} is a minterm of f we are done by induction on
f|z=0, the restricted function of f under z = 0. Otherwise, let {z,y} be a minterm of
f. This means that f|.=1 is y Vg where g depends on other variables. By Proposition
5.1.1, we can assume that the (optimal) subtree under z = 1 probes y first. By
induction, we have optimal minterms oriented decision trees under the answers z = 0
and y = 0, hence the whole tree is minterms oriented and optimal. o

As mentioned, we do not know of any monotone function for which no minterms
oriented decision tree is optimal. There are many examples for which for every
minterm there exists an optimal minterms oriented decision tree which starts by
probing the variables of that minterm. However the following example shows that
this stronger property is not true in general.
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Example 5.2.6 Let [ = z122 + 2323+ Tazq + T4Z5 + TsT1 + L1273, Then DC(f) =4
whereas neither of the two variables in the minterm {z4,zs} is the first probe in any
optimal decision tree for f.

Proof: Probe z first (z3 will also do). If it is 1 the restricted function is V(x2, z3, T5)
whose complexity is 3. If it is 0 the restricted function is a chain of the type of
Example 5.2.2 with ¢ = 3 and its complexity is also 3. On the other hand, if z;, z4
or x5 is probed first, say it is x5, and its value is 1, then the restricted function is
V(21,23 A 23, 24) whose complexity is by Proposition 5.1.2 14+2+1=4. |

A natural attempt for trying to answer Question 5.2.4 affirmatively is to use
induction on the structure of an optimal decision tree for the function. Let 7' be
an optimal decision tree for f and let = be the first variable it probes. Assume
(by induction) that the subtree under = 1 is minterms oriented with the minterm
m = {1, z3,...,z4} probed first, and that the subtree under z = 0 is also minterms
oriented. If m U {z} happens to be a minterm of f we are done since T' is already
minterms oriented. Otherwise, we would like to slightly change T' so that it becomes
minterms oriented. We would like to delay the z-probe and claim that m might be
the first minterm probed in another optimal decision tree for f. So we want to switch
between z and the first variable in m probed by 7'. But we have to take care of the
subtree of T' under the z = 0 answer and make sure that its depth does not increase
as a result of the switch. This raises the following question.

Question 5.2.7 Let T be an optimal decision tree for f and let x be the first variable
it probes. Let Ty and Ty be the subtrees of T under the answers ¢ = 1 and ¢ = 0
respectively. Suppose the first variable Ty probes is y. Can Ty be replaced by another
decision tree for F|,—o whose first probed variable is also y and whose depth is at most
the largest of that of Ty and Ty ?

An affirmative answer would be sufficient for switching between z and y which is
the first variable in m. But the answer is not true in general:

Example 5.2.8 Consider the chain with t = 6 minterms, fo = T12,+ Ta23 + Talq +
TaZs + Tsze + xex7. There ezists an oplimal decision tree for fe whose first probe is
zs and whose following probe under x5 = 1 is xq, but for every such decision tree the
probe following x5 = 0 is not 4.

Proof: The existence part follows from Example 5.2.2. If 25 = 0 and 2, = 1 the
restricted function is V(23,23 A Z4, 26 A 27), whose complexity is by Proposition 5.1.2,
1424-2=5. -
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5.3 The Non Optimality of The Saks-Wigderson
Bounds

The example below shows that the Saks-Wigderson bounds are not tight: A simple
read-once function f shows the following two gaps simultaneously.

(i) No directional randomized algorithm is optimal for this function, hence the Saks-
Wigderson upper bound is higher than the randomized decision tree complexity of f.
(i1) The Saks-Wigderson lower bound is lower than the actual randomized decision
tree complexity of f.

Actually, this example shows the non optimality of the Shirking lemma, which is
the basic lemma in the Saks-Wigderson lower-bound, and whose generalizations are
the basic steps in our Theorems 1.3.1 and 1.3.3 and in the new lower bound of Santha
[San91] for Monte Carlo decision trees.

Example 5.3.1 Consider the function f = (z Ay) A z, and assume the following
costs ¢, for probing each of its variables in case its value is v € {0,1},

|.'L' vy z
co|7 1 3
1 4{ 1%

Then f satisfies (1) and (i1) above.

Remark: One may claim that f is an artificial example in that it has non unit
variable costs, and has AND gate as a child of other AND gate. However, this
example is easily modified to a one without these ‘weaknesses’.

To eliminate the non-unit costs, replace & by (z; V22 V...Vz7) and 2 by (21 V23 V z3)
and argue about

fr=((‘ElV:B'JV'--V-TT]Ay)A(ZIVZZVZ;;)

in which all variables costs are 1.
To have alternating gates consider

J"=(g1VgaV..Vgr)Ags) Vw)A(gaV g0V g11)

where each g; is an AND/OR-tree function with, say, 1000 input variables and where
w is a single variable.

Proof of Example 5.3.1: We first show that DC(f) = RC(f) = NC(f) = T. As
for the nondeterministic decision tree complexity of f, the minterm {z,y, 2} and the
maxterm {z} show that NC(f), No(f), Ni(f) = 7. This value matches the deter-
ministic decision tree complexity of f, DC(f). Indeed, the non-directional algorithm
which starts by probing z; then (if z = 1) probes z and then (if z = 1 too) probes y
has cost 7 for every input setting. By Theorem 1.2.2, DC(f) = RC(f) = NC(f) =T.

On the other hand the Saks-Wigderson upper and lower bounds for the randomized
decision tree complexity of f differ from this value. To see this recall the recursive
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terms in these bounds (Theorems 1.2.8 and 1.2.9). In case of an AND-gate, f = gAh
the upper bound for the 0-term is

(g)ui(g) + uo(h)ui(h) + ul(ﬂ)“l(h)}

uo(f) = max{uo(g), uo(h), 2 ur(9) + w(B)

and the lower bound for the 0-term is

Ro(g)Ri(g) + Ro(h)Ba(h) + Rl(g)Rl(h)}
Ry(g) + Ri(h) .

Ro(f) = min{Ro(g)+Ri(h), B1(9)+ Ro(h),

The 1-term for [ is the same in both bounds. It is simply the sum of the 1-terms of
g and of h. Note that in the two 0-terms there is also something in common. It is
the third part subject to the maximization or minimization. Evaluating these on f
yields

z Yy z2 TAY f
u |7 1 3 1 %:)7
uy |4 1 2 5 7
Ro|7 1 3 5 %<7
Ri|4 1 2 5 7

Al

Finally, we would like to remark that if we ignore the maximization and the
minimization in the Saks-Wigderson recurrent terms, and compute, instead, the third
term only, then this simpler recursion gives exactly 7. Indeed, the following simpler

recursion Ru(g)Rl(g) 4 Ro(h)ﬁl(h) KR Rl(g)Ri(h)
Rl (g) + Rl(h)

(which simply ignores the first two terms in the minimization) evaluates on f exactly
to 7.

Ro(f) =

We don’t know of any example of read-once function for which this simpler re-
cursion is not a lower bound for its randomized decision tree. In fact, we conjecture
it is a lower bound. This better lower bound is worth knowing since it implies a
non-recursive lower bound of n®8% for read-once functions depending on n variables,

as observed by Broder and Upfal [BU91].

The upper bound does not remain valid if its recursion is similarly simplified. This
is clear by the example (2, Va3V z3VraVzs)Ay. Evaluating the simplified recursion
gives 231131 = 4,75 for 0-inputs and 3+1=4 for 1-inputs while there is a maxterm
of size 5.
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Chapter 6

Open Problems

We conclude by mentioning some open problems related to the topics of this thesis.
Many of them were suggested by others or mentioned above.

e Lower bounds for arbitrary functions.

The most basic problem is perhaps to develop a lower bound technique for
the randomized decision tree complexity of arbitrary Boolean functions. Is
it true that the AND-OR tree function has the lowest randomized decision
tree complexity in terms of its deterministic decision tree complexity among all
Boolean functions? Can the lower bound of RC > /DC, which is known only
through the nondeterministic argument (Theorem 1.2.2), be improved? Can
the generalized claim on partial decision trees (Claim 4.6.1) be used for a lower
bound involving arbitrary Boolean functions?

e Lower bounds in terms of circuit depth.

Is it true that large gap between RC and DC cannot be achieved for 7'C°
functions (and hence NC' # TC®)? Is it true for AC” functions (which yields

a new proof for NC' # TC?)? What about the special case of depth two AC®
functions?

e Improving the Read-once results.

Can the Saks-Wigderson lower bound for read-once functions be improved?
In particular, is it true that the simpler recursion mentioned in the end of
Chapter 5 is a lower bound for the randomized decision tree complexity of
read-once functions? Is it true that the AND-OR tree function has the lowest
randomized decision tree complexity among all read-once Boolean functions?
Can the RC > n°® lower-bound for n-variable read once functions given in
Chapter 3 be improved? Finally, concerning read-once threshold functions,
is it true that the recursion given in Theorem 3.3.1 is a lower bound for the
randomized decision tree complexity of this larger family?
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e RC, versus (.

The randomized complexity for evaluating 1-s of the OR function and that for
evaluating 0-s of the function differ by at most a factor of two. Is it true for
every function? Is it true for every read-once function?

e Minterms oriented decision trees.

[s the deterministic decision tree complexity achievable by a minterms oriented
decision tree for every monotone function? What about the randomized deci-
sion tree complexity? Is it achievable by a distribution over minterms oriented
decision trees only?

We have faced all these questions at some stage or another, found them interesting
and attractive, and would be happy to hear about solutions of any of them.
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