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by Agrawal and Vinay,1 which they 
called a “chasm at depth 4” appeared 
in 2008. Its clear message: proving 
lower bounds for (even homoge-
neous) depth-4 circuits is as hard (or, 
for optimists, as useful) as proving 
lower bounds on general circuits. Ex-
tending the celebrated depth reduc-
tion technique of Valiant, Skyum, 
Berkowitz and Rackoff,9 this paper 
(with subsequent improvements of 
Tavenas and Koiran) shows that any 
arithmetic circuit of size s computing 
a degree d polynomial can also be 
computed by a homogeneous 
depth-4 circuit of size sΟ(√d ). For exam-
ple, proving a subexponential nω(√ n ) 
lower bound for computing the per-
manent on n × n matrices, on such a 
weak constant-depth circuit would 
separate VP from VNP! But recall, 
even for depth-3 we were stuck. 

Next, a series of papers, mainly by 
subsets of the present authors and a 
few others got us extremely close to 
this goal! Using deep ideas and results 
from algebraic geometry originating 
from the work of Hilbert in commuta-
tive algebra, they have extended the 
method of partial derivatives to the 
much stronger “shifted partial deriva-
tives” and combined with other ideas 
including very fine combinatorial 
analysis were able to reach the chasm, 
but not cross it. More precisely they 
proved lower bounds of nΩ(√ n  ) or both 
determinant and permanent. Note 
that for the determinant this lower 
bound is tight, and changing the Ω to 
ω in this expression for the permanent 
would thus separate the two and 
hence separate VP from VNP. 

So far for depth 4. The following 
paper proves that the very same 
chasm actually exists in depth 3, at 
least over fields of characteristic 0 
like the rational numbers. More pre-
cisely, as above, every size s arithme-
tic circuit computing a polynomial of 
degree d can be computed by a 
depth-3 circuit of size sΟ(√d ) (which un-

A series of important works in the 
1980s on constant-depth Boolean cir-
cuits gives a very good picture of their 
limitations, including tight exponen-
tial lower bounds on extremely simple 
functions like the symmetric func-
tions. The basic message is that con-
stant-depth (and polynomial size) is 
an extremely weak class of algorithms. 
Strangely (and specifically over large 
enough fields) this intuition fails com-
pletely for arithmetic circuits. In 1980, 
Ben-Or already made the important 
simple observation that the symmet-
ric polynomials can be computed in 
depth-3 by a quadratic size formula! 
So, the challenge to prove exponential 
lower bounds for this simple model 
was on. Such bounds were proved un-
der further restrictions (like homo-
geneity) by Nisan-Wigderson,6 who 
introduced important techniques of 
partial derivatives and random restric-
tions to the study arithmetic circuits. 
While the best general lower bound is 
quadratic (matching Ben-Or’s result 
for symmetric polynomials), there 
was still a belief that constant depth 
is a weak model and we should easily 
prove much better bounds, for harder 
functions like permanent and even 
determinant. Still, no such progress 
followed for over a decade. 

A surprising and influential paper 

While we generally 
know more about 
arithmetic circuits, 
their power is  
far from understood.

THE COMPUTATIONS OF polynomials (over 
a field, which we shall throughout as-
sume is of zero or large enough char-
acteristic) using arithmetic opera-
tions of addition and multiplication 
(and possibly division) are of course 
as natural as the computation of 
Boolean functions via logical gates, 
and capture many natural important 
tasks including Fourier transforms, 
linear algebra, matrix computations 
and more generally symbolic alge-
braic computations arising in many 
settings. Arithmetic circuits are the 
natural computational model for un-
derstanding the computational com-
plexity of such tasks just like Boolean 
circuits are for Boolean functions. The 
presence of algebraic structure and 
mathematical tools supplied by centu-
ries of work in algebra were a source of 
hope that understanding arithmetic 
circuits will be much faster and easier 
than their Boolean siblings. And while 
we generally know more about arith-
metic circuits, their power is far from 
understood, and in particular, the 
arithmetic analog VP vs. VNP of the 
Boolean P vs. NP problem as formu-
lated by Valiant8 is wide open. 

The past few years have seen a revolu-
tion in our understanding of arithmetic 
circuits. Surprising new upper bounds, 
combined with new powerful tech-
niques of proving lower bounds, have 
brought us to recognize the mysterious 
importance of very shallow circuits to 
capture the long-term goals of the field, 
and to pinpointing with uncommon 
precision the complexity of natural 
problems in this model. These develop-
ments have rejuvenated the hope, and 
give a concrete program, to the pos-
sible separation of Valiant’s classes VP 
and VNP. The following paper of Gupta 
et. al. on the “chasm at depth 3” is one 
of the culminations of this new under-
standing. I will now briefly explain the 
“chasm” phenomenon, and some of 
these developments, on which the au-
thors of the paper elaborate. 
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fortunately are not homogeneous 
anymore and actually have very large 
degrees). It is difficult to explain to 
non-experts why this is so unexpect-
ed, but as before it carries the same 
message: proving nω(√ n ) lower bound 
for computing the permanent even 
on depth-3 arithmetic circuits would 
separate VP from VNP. 

Again, for optimists, this means 
that we are extremely close to resolv-
ing a major goal of the field. For pes-
simists, this may be simply an in-
dication of how strong are depth-3 
circuits and how hopeless proving 
lower bounds is even for them. I am 
on the optimists’ side. As far as we 
know, in the arithmetic setting we 
have no barriers (aka excuses) of the 
“natural proofs” or “relativization” 
varieties, which seem to explain our 
failure so far to prove lower bounds 
in the Boolean setting. Moreover, the 
arithmetic setting is making good 
on the promise of providing math-
ematical techniques, which may help 
resolve its major problems, as the 
line of work here indicates. Another 
indication, of course, the Geometric 
Complexity Theory (GCT) approach 
of Mulmuley and Sohoni,5 which ap-
proaches the VP vs. VNP question 
from a different direction, based on in-
variant theory and representation the-
ory. Indeed, some relations and con-
nections between the two approaches 
were discovered, and the growing 
interests of pure mathematicians 
in these computational complexity 
questions is encouraging. 

As we have grown to expect of 
computational complexity, there are 
myriad connections of this research 
in arithmetic complexity to other 
seemingly distinct subareas of the 
field. One important connection to 
pseudorandomness, in particular 
the intimate relationship between 
derandomizing the probabilistic 
algorithm for Polynomial Identity 
Testing (PIT) and arithmetic lower 
bounds discovered by Kabanets and 
Impagliazzo.4 Subsequently, Dvir 
and Shpilka2 initiated a program to 
understand this question for very 
shallow circuits, making connec-
tions to locally decodable and cor-
rectable codes on the one hand and 
to combinatorial geometry (mainly 
incidence theory) on the other. This 

has lead to a long sequence of papers 
obtaining both new lower bounds 
and new identity testing algorithms 
for larger and larger classes of low-
depth and other circuit models. Yet 
another exciting connection was re-
cently made by Grochow and Pitassi3 
between arithmetic complexity, PIT 
and proof complexity, in what will 
surely develop and possibly lead to 
lower bounds in that field. 

Let me conclude with a riddle: Can 
depth-3 lower bounds on Boolean 
circuits lead to “real” lower bounds, 
as they do in the arithmetic setting? 
Yes! The positive answer in Valiant’s7 
predates all of these developments. 
In this paper Valiant shows that any 
function requiring exp(n) size depth-3 
Boolean circuits cannot be computed 
by a linear-size, logarithmic depth cir-
cuit. The state-of-art in Boolean cir-
cuit lower bounds is so pathetic that 
the latter remained one of its major 
goals since Valiant’s paper, and can 
be achieved via strong enough depth-3 
lower bounds. 

On to proving real lower bounds!  
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