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Abstract

Ahlswede and Winter [AW02] introduced a Chernoff bound for matrix-valued random
variables, which is a non-trivial generalization of the usual Chernoff bound for real-valued
random variables. We present an efficient derandomization of their bound using the method
of pessimistic estimators (see Raghavan [Rag88]). As a consequence, we derandomize a
construction of Alon and Roichman [AR94] (see also [LR04, LS04]) to efficiently construct an
expanding Cayley graph of logarithmic degree on any (possibly non-abelian) group. This also
gives an optimal solution to the homomorphism testing problem of Shpilka and Wigderson
[SW04]. We also apply these pessimistic estimators to the problem of solving semi-definite
covering problems, thus giving a deterministic algorithm for the quantum hypergraph cover
problem of [AW02].

The results above appear as theorems in the paper [WX05a] (see also [WX05b]), as
consequences to the main theorem of that paper: a randomness efficient sampler for matrix
valued functions via expander walks. However, we discovered an error in the proof of that
main theorem (which we briefly describe in the appendix). That main theorem stating that
the expander walk sampler is good for matrix-valued functions thus remains open. One
purpose of the current paper is to show that the applications in that paper hold true despite
our inability to prove the expander walk sampler theorem for matrix-valued functions.

1 Introduction

Chernoff bounds are extremely useful throughout theoretical computer science. Intuitively,
they say that a random sample approximates the average, with probability of deviation that
goes down exponentially with the number of samples. Typically we are concerned with real-
valued random variables, but recently several applications have called for matrix-valued random
variables. Such a bound was given by Ahlswede and Winter [AW02].

In particular, the matrix-valued bound seems useful in giving new proofs of probabilistic con-
structions of expander graphs [AR94] and also in the randomized rounding of semi-definite
covering problems, with further applications in quantum information theory [AW02].

In this paper we use the method of pessimistic estimators, originally formulated in [Rag88]1, to
derandomize the Chernoff bound of [AW02], and in the process derandomize the Alon-Roichman
theorem and the randomized rounding of covering SDP’s.

The results of this paper prove the claimed applications of our previous paper [WX05a], and
in fact supersede them in simplicity and efficiency. We regret to inform the community that

1The simpler method of conditional probabilities was described earlier in the first edition of [Spe94].
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we discovered a fatal mistake in the analysis of using an expander sampler in [WX05a], and
it remains open whether the expander sampler achieves the deviation bound claimed there (or
something asymptotically equivalent).

For details on the problem with the previous work, see Appendix A.

Kale [Kal] independently reached results similar to the ones presented in this paper that imply
the applications to constructing expanding Cayley graphs and semi-definite covering programs.

2 Matrix-valued random variables and Alhswede-Winter’s Cher-
noff Bound

We will work with real symmetric d× d matrices, which we will denoteMd.
2 We let Id denote

the identity matrix inMd, and will write simply I when the dimension is clear. For any A ∈Md

we let λ1(A) ≥ . . . ≥ λd(A) denote the eigenvalues of A in non-increasing order. Recall that
every matrix A ∈Md is diagonalizable in an orthonormal basis.

We will measure distance between matrices in the operator norm ‖A‖ = maxi |λi(A)|. We will
also frequently use the trace, Tr(A) =

∑d
i=1 λi(A). It is well-known that for any orthonormal

basis v1, . . . , vd ∈ R
d we have that Tr(A) =

∑d
i=1〈vi, Avi〉, where 〈·, ·〉 denotes the usual inner

product over R
d.

We say that a matrix A ∈ Md is positive semi-definite (p.s.d.) if all its eigenvalues are non-
negative. We will use the fact that A is p.s.d. iff for all v ∈ R

d, 〈v,Av〉 ≥ 0. We let A ≥ 0
denote that A is p.s.d. We use the ordering of symmetric matrices given by this definition,
namely A ≤ B iff B − A ≥ 0. For two matrices A ≤ B, we will let [A,B] denote the set of all
matrices C such that A ≤ C and C ≤ B.

We will work with the matrix exponential, which is defined by

exp(A) =
∞
∑

`=0

A`

`!

Recall that the matrix exponential is convergent for all matrices. Furthermore, it is not hard
to see for A ∈Md that exp(A) is diagonalizable in the same basis as A, and that λi(exp(A)) =
eλi(A) for all 1 ≤ i ≤ d. Also, for all A ∈Md, it holds that exp(A) ≥ 0.

We will consider matrix-valued random variables of the following form. We let f : [n] →
[−Id, Id], where [n] = {1, . . . , n}. Let X be a distribution (not necessarily uniform) over [n],
and consider the variable f(X). This is a natural extension of bounded random variables over
the reals, which may be thought of as functions f : [n]→ [−1, 1]. We will let the expectation of
f(X) be the obvious thing: E[f(X)] =

∑n
i=1 Pr[X = i]f(i). Note that because Tr is linear that

E and Tr commute: E[Tr(f(X))] = Tr(E[f(X)]). We let supp(X) denote the set of all values
of X that occur with non-zero probability. When we say that something holds for a random
variable X always, we mean that it holds for every element in supp(X).

We will use the following useful facts several times:

Fact 2.1. If A,B ∈Md and B ≥ 0, then Tr(AB) ≤ ‖A‖Tr(B).

2All our results extend to complex Hermitian matrices, or abstractly to self-adjoint operators over any vector
space where the operations of addition, multiplication, trace, exponential, and norm are efficiently computable.
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Proof. Let v1, . . . , vd be the orthonormal diagonal basis of A, with corresponding eigenvalues
λi = λi(A). Then we may write

Tr(AB) =
d
∑

i=1

〈vi, ABvi〉

=

d
∑

i=1

λi〈vi, Bvi〉

Since B ≥ 0 we know that 〈vi, Bvi〉 ≥ 0, so we get

≤

d
∑

i=1

max
i
λi〈vi, Bvi〉

≤ ‖A‖Tr(B)

Theorem 2.2 (Golden-Thompson inequality, [Gol65, Tho65]). For A,B ∈Md, we have

Tr(exp(A+B)) ≤ Tr(exp(A) exp(B))

The proof of this is outside the scope of this paper.

Ahlswede and Winter introduce a generalization of Markov’s inequality for matrix-valued ran-
dom variables.

Theorem 2.3 (Markov’s inequality [AW02]). For g : [n] →Md, g(x) ≥ 0 for all x ∈ [n], and
for any random variable X over [n], we have

Pr[g(X) 6≤ γI] ≤ 1
γ Tr(E[g(X)])

Proof.

Pr[g(X) 6≤ γI] = Pr[‖g(X)‖ > γ]

≤ 1
γ E[‖g(X)‖]

Since g(X) ≥ 0 always, we have ‖g(X)‖ ≤ Tr(g(X)) always, so we get:

≤ 1
γ E[Tr(g(X))]

= 1
γ Tr(E[g(X)])

The following Theorem 2.4 is the main theorem proving [AW02]’s Chernoff-type bound. We
will use Theorem 2.4, which holds for all distributions, to derive two corollaries (Theorem 2.6
and Theorem 2.8), which hold for more specific kinds of distributions. In addition, the proof of
Theorem 2.4 will give us the pessimistic estimators corresponding to the two corollaries.
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Theorem 2.4 ([AW02]). Suppose f : [n] → [−Id, Id] and let X1, . . . ,Xk be arbitrary indepen-
dent random variables distributed over [n]. Then for all γ ∈ R:

Pr[ 1k

k
∑

j=1

f(Xj) 6≤ γI] ≤ de
−tγk

k
∏

j=1

‖E[exp(tf(Xj))]‖

Proof. The proof begins analogously to the real-valued case, generalizing the classical Bernstein
trick. We first multiply by an optimization constant t > 0 and exponentiate to obtain

Pr[ 1k

k
∑

j=1

f(Xj) 6≤ γI] = Pr[exp(t

k
∑

j=1

f(Xj)) 6≤ e
tγkI]

The equality holds because for A,B ∈Md such that AB = BA, we have that A ≤ B is equiva-
lent to exp(A) ≤ exp(B). Then the following inequality is a direct consequence of Theorem 2.3
since exp(A) ≥ 0 for all A ∈Md.

Pr[ 1k

k
∑

j=1

f(Xj) 6≤ γI] ≤ e
−tγkTr(E[exp(t

k
∑

j=1

f(Xj))]) (2.1)

Then we apply Fact 2.1 and the Golden-Thompson Inequality Theorem 2.2 to bound the ex-
pression in a manageable form. This step will be expressed in the following lemma.

Lemma 2.5. For any matrix A ∈Md, any f : [n]→Md and any random variable X over [n],
we have

Tr(EX [exp(A+ f(X))]) ≤ ‖E[exp(f(X))]‖ · Tr(exp(A))

To obtain Theorem 2.4, we simply apply Lemma 2.5 to Inequality 2.1 repeatedly:

Pr[ 1k

k
∑

j=1

f(Xj) 6≤ γI] ≤ e
−tγkTr(E[exp(t

k
∑

j=1

f(Xj))])

By independence

= e−tγk
EX1,...,Xk−1



Tr(EXk
[exp(t

k−1
∑

j=1

f(Xj) + tf(Xk))])





Apply Lemma 2.5

≤ e−tγk
EX1,...,Xk−1



‖E[exp(tf(Xk))]‖ · Tr(exp(t

k−1
∑

j=1

f(Xj)))





Pulling the expectation back inside

= e−tγk‖E[exp(tf(Xk))]‖ · EX1,...,Xk−1
[Tr(exp(t

k−1
∑

j=1

f(Xj)))]
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Repeating k times . . .

≤ e−tγk
k
∏

j=1

‖E[exp(tf(Xj))]‖Tr(I)

= de−tγk
k
∏

j=1

‖E[exp(tf(Xj))]‖

This completes the proof modulo Lemma 2.5.

Proof of Lemma 2.5.

Since trace and expectation commute:

Tr(E[exp(A+ f(X))]) = E[Tr(exp(A+ f(X)))]

Applying the Golden-Thompson inequality

≤ E[Tr(exp(f(X)) exp(A))]

Commuting trace and expectation again:

≤ Tr(E[exp(f(X))] exp(A))

By Fact 2.1

≤ ‖E[exp(tf(X))]‖ · Tr(exp(A))

Now we will draw two corollaries from this main theorem. These two corollaries are useful in
different settings; the first guarantees that the probability of an additive deviation is small,
while the second a multiplicative deviation.

Theorem 2.6 ([AW02]). Let f : [n]→ [−Id, Id]. Let X be distributed over [n] with EX [f(X)] =
0, and let X1, . . . ,Xk be i.i.d. copies of X. Then for all 1 > γ > 03:

Pr[ 1k

k
∑

i=1

f(Xi) 6≤ γI] ≤ de
−γ2k/4

Note that the other direction 1
k

∑k
i=1 f(Xi) 6≥ −γI holds with the same bound by considering

−f .

Proof. We require only Theorem 2.4 and a simple claim. Because all the Xi are i.i.d. Theo-
rem 2.4 gives us

Pr[ 1k

k
∑

i=1

f(Xi) 6≤ γI] ≤ de
−tγk‖E[exp(tf(X))]‖k

We use the following claim to bound the RHS.

3For the sake of simplicity, no attempt was made to optimize the constant in the exponent of the bound.
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Claim 2.7. ‖E[exp(tf(X))]‖ ≤ 1 + t2 for t ≤ 1/2.

Proof. This follows from the Taylor expansion of exp:

‖E[exp(tf(X))‖ = ‖E[I + tf(X) + (tf(X))2

2 + . . .]‖

= ‖I + tE[f(X)] + E[(tf(X))2/2 + . . .]‖

Since E[f(X)] = 0, applying the triangle inequality, and using ‖f(X)‖ ≤ 1 always, we have

≤ 1 +
∞
∑

`=2

t`/`!

Since t = γ/2 ≤ 1/2 this is bounded by

≤ 1 + t2

We will choose t = γ/2 ≤ 1/2, so we may apply Claim 2.7 to Theorem 2.4 to get

Pr[ 1k

k
∑

i=1

f(Xi) 6≤ γI] ≤ de
−tγk(1 + t2)k

Using 1 + x ≤ ex for all x ∈ R

≤ de−tγk+t2k

Choosing t = γ/2

≤ de−γ2k/4

Theorem 2.8 ([AW02]). Let f : [n] → [0, Id]. Let X be distributed over [n], with M =
EX [f(X)] ≥ µI for some µ ∈ (0, 1). Let X1, . . . ,Xk be i.i.d. copies of X. Then we have, for
all γ ∈ [0, 1/2],

Pr[ 1k

k
∑

i=1

f(Xi) 6≥ (1− γ)µI] ≤ de
−γ2µ

2 k

Proof. We can assume without loss of generality that M = µI.4 Because the direction of this
bound is the opposite of what we proved in Theorem 2.4, we will work with I − f to get:

Pr[ 1k

k
∑

i=1

f(Xi) 6≥ (1− γ)µI] = Pr[ 1k

k
∑

i=1

(I − f(Xi)) 6≤ (1− (1− γ)µ)I] (2.2)

4If not, we could work with g(x) = µM−1/2f(x)M−1/2 instead
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Applying Theorem 2.4

≤ de−t(1−(1−γ)µ)k‖E[exp(t(I − f(X)))]‖k (2.3)

= d‖E[exp(−tf(X))et(1−γ)µ]‖k (2.4)

This last quantity was analyzed in [AW02] using information-theoretic techniques, with the
following conclusion which we state without proof:

Claim 2.9 ([AW02]). For t = log(1−(1−γ)µ
1−µ

1
(1−γ) ), we have

‖E[exp(−tf(X))]et(1−γ)µ‖ ≤ e−γ2µ/2

Applying this claim to Inequality 2.4 gives us the theorem.

3 Method of pessimistic estimators

First we review the method of pessimistic estimators, due to Raghavan [Rag88]. The setting is
the following: we have a random variable X and we know that with some non-zero probability
an event σ(X) occurs, i.e. Pr[σ(X) = 1] > 0, where σ : supp(X) → {0, 1}, σ(x) = 1 iff x is in
the event. We wish to efficiently and deterministically find a particular x ∈ supp(X) such that
σ(x) = 1.

Our application of pessimistic estimators is to derandomizing probabilistic algorithms. In par-
ticular, suppose we have a randomized algorithm that constructs an object, and with some
non-zero probability that object satisfies some property. Thus, our event σ is the event that
the object satisfies the property, and our goal is to deterministically and efficiently find the
object. In this paper our two main applications are to deterministically and efficiently find a
small generating set of a group that satisfies expansion, and to find an integer solution to a SDP
covering problem that satisfies feasibility and some approximation guarantee. Both problems
were previously known to have randomized algorithms, and we use our pessimistic estimators
to derandomize these algorithms.

We will only be concerned with random variables with finite state space with a product structure,
and we will sub-divide the variable into many parts. Thus we use the notation ~X to denote a
random variable where w.l.o.g. supp( ~X) ⊆ [n]k for some k, n ∈ N (these will be chosen according
to the application). Let ~X = (X1, . . . ,Xk), where each Xi ∈ [n]. To find a “good” setting of ~X,
we will iteratively find settings of X1, then X2, and so forth until we have a complete setting
of ~X.

By the definition of expectation

Pr
~X

[σ( ~X) = 0] = EX1[Pr[σ( ~X) = 0 | X1]]

Now by averaging there must exist at least one setting x1 ∈ [n] of X1 such that

Pr[σ( ~X) = 0 | X1 = x1] ≤ EX1 [Pr[σ( ~X) = 0 | X1]]

We set X1 = x1, and then repeat the same reasoning for X2, . . . Xk. Let us denote the resulting
setting of ~X by ~x. Thus at the end we have Pr[σ(~x) = 0] ≤ Pr[σ( ~X) = 0]. But note that we
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supposed that Pr[σ( ~X) = 0] < 1, and since ~x is a fixed vector, it must be that Pr[σ(~x) = 0] = 0
and therefore σ(~x) = 1.

The difficulty with turning this into an algorithm is in calculating the probabilities, for each
1 ≤ i ≤ k and, ∀x1, . . . , xi ∈ [n]

Pr
Xi+1,...,Xk

[σ( ~X) = 0 | X1 = x1, . . . ,Xi = xi]

since they may not be efficiently computable. Fortunately we may relax the requirements
slightly by the following.5

Definition 3.1. Let σ : [n]k → {0, 1} be an event on a random variable ~X distributed over
[n] and suppose Pr[σ( ~X) = 1] > 0. We say that φ0, . . . , φk, φi : [n]i → [0, 1] (here φ0 is just a
number in [0, 1]), are pessimistic estimators for σ if the following hold.

1. For any i and any fixed x1, . . . , xi ∈ [n], we have that

Pr
Xi+1,...,Xk

[σ(x1, . . . , xi,Xi+1, . . . ,Xk) = 0] ≤ φi(x1, . . . , xi)

2. For any i and any fixed x1, . . . , xi ∈ [n]:

EXi+1φi+1(x1, . . . , xi,Xi+1) ≤ φi(x1, . . . , xi)

We will also want the pessimistic estimators to be efficient, namely each φi is efficiently com-
putable, and useful, which means φ0 < 1. This last condition is because φ0 is a bound on the
initial probability of failure, which we need to be strictly less than 1.

Theorem 3.2 ([Rag88]). If there exist efficient and useful pessimistic estimators (φ0, . . . , φk)
for an event σ, then one can efficiently compute a fixed ~x ∈ [n]k such that σ(~x) = 1.

Proof. We pick x1, . . . , xk one by one. At step 0 we have φ0 < 1 since the estimators are useful.

At step i, we have x1, . . . , xi already fixed. Enumerate over xi+1 ∈ [n] and choose the value
such that φi+1(x1, . . . , xi+1) ≤ φi(x1, . . . , xi) < 1. We are guaranteed that

EXi+1[φi+1(x1, . . . xi,Xi+1)] ≤ φi(x1, . . . , xi)

by property 2 of Definition 3.1, and so by averaging there must exist a fixed xi+1 ∈ [n] that is
at most the expectation on the LHS of the above inequality. We can compute the value of the
estimator efficiently by hypothesis.

Finally, we have after k steps that φk(~x) < 1 and by property 1 we have that Pr[σ(~x) = 0] < 1,
and therefore σ(~x) = 1.

The algorithm runs through k steps, and each step is efficient, so the overall algorithm is
efficient.

5Our definition is stronger than the standard definition of pessimistic estimators, in that in the second condition
usually all that is required is for all x1, . . . , xi ∈ [n], there exists xi+1 ∈ [n] such that φi+1(x1, . . . , xi+1) ≤
φi(x1, . . . , xi). But our estimators satisfy the stronger definition and we will find it useful, especially when
composing estimators (see Lemma 3.3).
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We will find it useful to compose estimators, which is possible from the following lemma.

Lemma 3.3. Suppose σ, τ : [n]k → {0, 1} are events on ~X, which is distributed over [n]k.
Suppose that (φ0, . . . , φk), (ψ0, . . . , ψk) are pessimistic estimators for σ, τ respectively. Then
(φ0 + ψ0, . . . , φk + ψk) are pessimistic estimators for the event σ ∩ τ .

Proof. We need to verify the properties of Definition 3.1.

1. This is verified by a union bound:

Pr[(σ ∩ τ)(x1, . . . , xi,Xi+1, . . . ,Xk) = 0]

≤ Pr[σ(x1, . . . , xi,Xi+1, . . . ,Xk) = 0] + Pr[τ(x1, . . . , xi,Xi+1, . . . ,Xk) = 0]

≤ (φi + ψi)(x1, . . . , xi)

2. This is immediate from linearity of expectation.

4 Applying pessimistic estimators to the AW bound

The method of pessimistic estimators extends to the AW Chernoff bound. We will first describe
pessimistic estimators for Theorem 2.6 and then for Theorem 2.8. They are essentially identical
except for the difference in distributions in the two settings, and the proofs that the pessimistic
estimators satisfy Definition 3.1 rely mainly on Lemma 2.5. In both cases, they allow us
to efficiently and deterministically find settings x1, . . . , xk such that bad event bounded by
Theorem 2.6 (resp. Theorem 2.8) does not occur.

Theorem 4.1. Let f : [n] → [−Id, Id]. Let X be distributed over [n] with EX [f(Xi)] = 0, and
let X1, . . . ,Xk be i.i.d. copies of X. Fix 1 > γ > 0. Let t = γ/2. Suppose that E[exp(tf(X))]
is efficiently computable.

Combining the notation of Section 2 and Section 3, we let ~X = (X1, . . . ,Xk) with Xi ∈ [n] and
we let σ : [n]k → {0, 1} be the event σ( ~X) = 1 if 1

k

∑k
i=1 f(Xi) ≤ γI and σ( ~X) = 0 otherwise.

Then the following (φ0, . . . , φk), φi : [n]i → [0, 1] are efficient pessimistic estimators for σ.

φ0 =de−tγk‖E[exp(tf(X))]‖k ( ≤ de−γ2k/4)

φi(x1, . . . , xi) =de−tγkTr(exp(t

i
∑

j=1

f(xj))) · ‖E[exp(tf(X))]‖k−i

Proof. We verify the properties of Definition 3.1.

1. From Inequality 2.1:

Pr[ 1k

k
∑

i=1

f(Xi) 6≤ γI] ≤ de
−tγkTr(E[exp(t

k
∑

j=1

f(Xj))])

≤ de−tγkTr(E[exp(t

i
∑

j=1

f(Xj))])

k
∏

j=i+1

‖E[exp(tf(Xj))]‖
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The last inequality follows from applying Lemma 2.5 k − i times. Notice that the
above is true even if the Xi are not i.i.d. Therefore we can consider the case where
X1 = x1, . . . ,Xi = xi (i.e. they are constant random variables), while the remaining
Xi+1, . . . ,Xk are distributed i.i.d. according to X. This gives

Pr[ 1k

k
∑

i=1

f(Xi) 6≤ γI | X1 = x1, . . . ,Xi = xi] ≤ de
−tγkTr(exp(t

i
∑

j=1

f(xj))]) · ‖E[exp(tf(X))]‖k−i

= φi(x1, . . . , xi)

2. We use the following derivation, where the inequality follows from Lemma 2.5:

EXi+1[φi+1(x1, . . . , xi,Xi+1)]

= de−tγkTr(EXi+1 [exp(t

i
∑

j=1

f(xi) + tf(Xi+1))]) · ‖E(exp(tf(X)))‖k−i−1

≤ de−tγkTr(exp(t

i
∑

j=1

f(xi))) · ‖E(exp(tf(X)))‖k−i

= φi(x1, . . . , xi)

To see that the φi are efficiently computable, we will specify the input to the algorithm as a
function f (which we assume is given as a list of matrices d× d f(1), . . . , f(n) and 1k. Thus we
desire the algorithm be computable in time poly(n, d, k). We require multiplication, addition,
trace, matrix exponential, and norm computations. The first three are obviously efficient; the
last two are efficient because eigenvalues of a d×d matrix can be computed (and hence it can be
diagonalized thus making the exponential and norm computations trivial) in O(d3) numerical
operations [GL89]. On a machine with finite precision, we can truncate the estimators to a
sufficiently fine resolution so that the truncated estimators behave essentially as the real-valued
estimators do.

Theorem 4.1 gives us pessimistic estimators (φ0, . . . , φk) for σ, and the same proof gives efficient
pessimistic estimators (ψ0, . . . , ψk) for the event τ( ~X) = 1 iff 1

k

∑k
i=1 f(Xi) ≥ −γI by applying

Theorem 2.6 to −f . Combining these with the φi gives us the following.

Corollary 4.2. Let f : [n] → [−Id, Id]. Let X be distributed over [n] with EX [f(X)] = 0, and
let X1, . . . ,Xk be i.i.d. copies of X. Fix 1 > γ > 0 and fix t = γ/2. Suppose that E[exp(tf(X))]
and E[exp(−tf(X))] are efficiently computable.

Let η : [n]k → {0, 1} be the event η(X) = 1 if ‖ 1
k

∑k
i=1 f(Xi)‖ ≤ γ and η(X) = 0 otherwise.

Then (φ0 + ψ0, . . . , φk + ψk) are efficient pessimistic estimators for η.

Proof. Note that η = σ ∩ τ . Efficiency is clear. We can apply Lemma 3.3 to get that (φ0 +
ψ0, . . . , φk + ψk) is a pessimistic estimator for the event η = σ ∩ τ .

This allows us to derandomize Theorem 2.6 efficiently. Notice that in general the only property
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of X that we need is to be able to compute E[exp(tf(X))] and E[exp(−tf(X))].6 This is of
course true when X is uniform, or when we know Pr[X = i] for each i ∈ [n]. The actual
distribution is irrelevant, since we exhaustively search through the entire space for the choice
of each Xi.

Theorem 4.3. Let f : [n] → [−Id, Id] be such that there exists a distribution X over [n] such
that E[f(X)] = 0. Then for k = O( 1

γ2 log d), we can efficiently and deterministically find

~x ∈ [n]k such that ‖ 1
k

∑k
i=1 f(xi)‖ ≤ γ.

Proof. Use the efficient and useful pessimistic estimators of Corollary 4.2. Pick k = O( 1
γ2 log d)

such that φ0 +ψ0 < 1 and so the estimators are useful. We may then apply Theorem 3.2 to get
the result.

We can construct pessimistic estimators for Theorem 2.8 in the same way.

Theorem 4.4. Let f : [n] → [0, Id]. Let X be distributed over [n], with M = EX [f(X)] ≥ µI

for some µ ∈ (0, 1). Let X1, . . . ,Xk be i.i.d. copies of X. Fix t = log(1−(1−γ)µ
1−µ

1
(1−γ)).

Let ~X = (X1, . . . ,Xk) with Xi ∈ [n]k and we let σ : [n]k → {0, 1} be the property σ( ~X) = 1 if
1
k

∑k
i=1 f(Xi) ≥ (1− γ)µI and σ( ~X) = 0 otherwise. Then the following (φ0, . . . , φk), φi : [n]i →

[0, 1] are efficient pessimistic estimators for f .

φ0 =detk(1−γ)µ‖E[exp(−tf(X))]‖k ≤ de−γ2µk/2

φi(x1, . . . , xi) =detk(1−γ)µTr(exp(−t

i
∑

j=1

f(xj))) · ‖E[exp(−tf(X))]‖k−i

Proof. The proof follows exactly along the lines of Theorem 4.1.

Theorem 4.5. Let f : [n] → [0, Id] be such that there exists a distribution X over [n] and a
number µ ∈ (0, 1) such that E[f(X)] ≥ µI. Then for k = O( 1

γ2µ
log d), we can efficiently and

deterministically find ~x ∈ [n]k such that 1
k

∑k
i=1 f(xi) ≥ (1− γ)µI.

Proof. Use the efficient pessimistic estimators of Theorem 4.4, and notice for our choice of k
that φ0 < 1 so they are useful. Then apply Theorem 3.2.

5 O(log n) expanding generators for any group

Our main application is a complete derandomization of the Alon-Roichman [AR94] theorem,
which states that a certain kind of expander graph may be constructed by random sampling
(details below). Expander graphs have a central role in theoretical computer science, especially
in but not limited to the study of derandomization. Indeed, it has found a large number of

6In fact this is only necessary because we want a two-sided guarantee, i.e. 1
k

� k
i=1 f(Xi) ≤ γI and

1
k

� k
i=1 f(Xi) ≥ −γI . It is not necessary if we only require a one-sided guarantee, such as in the setting of

Theorem 4.4, where we only want 1
k

� k
i=1 f(Xi) ≥ (1 − γ)µI . In this second setting, when picking Xi to mini-

mize φi, notice that the quantity ‖E[exp(tf(X))]‖ does not change with different choices of Xi, so the only part
we need to compute is the trace part, which does depend on the choice of Xi. Thus it suffices to compute the
choice of Xi that minimizes the trace part of the φi.
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applications in a variety of areas such as deterministic amplification [CW89, IZ89], security am-
plification in cryptography [GIL+90], hardness of approximation [ALM+98, AFWZ95], extractor
construction (e.g. see surveys [NT99, Gol97, Sha02]), construction of efficient error-correcting
codes [Spi95, BH04], construction of ε-biased spaces [NN93] and much more. See [HLW06] for
a comprehensive survey.

We derandomize the proof of the Alon-Roichman theorem given by [LR04] (see also [LS04]) to
give a deterministic and efficient construction of the expanding generating set. We show how it
implies an optimal solution to a problem of Shpilka and Wigderson [SW04] (see also [GS02]),
significantly improving their results.

5.1 Definitions

Given a connected undirected d-regular graph G = (V,E) on n vertices, we define its normalized
adjacency matrix A, Aij = eij/d where eij is the number of edges between vertices i and j (we
allow self-loops and multiple edges). It is easy to see that A is real and symmetric.

It is well-known that the set of eigenvalues of A is of the form 1 = λ1(A) > λ2(A) ≥ . . . ≥ λn(A).
Note the strict separation between λ1(A) and λ2(A), which follows from connectivity. The
eigenvalues of G are the eigenvalues of A. Note that 1 is an eigenvalue of multiplicity 1, and
that it corresponds to the uniform vector. Alternatively, the eigenvalue 1 also corresponds to
the uniform eigenspace, given by the orthogonal projection matrix J/n, where J is the all 1’s
matrix.

The Cayley graph Cay(H;S) on a group H with respect to the generating multi-set S is the
graph whose vertex set is the elements of H, and (h, h′) are connected by an edge if there exists
s ∈ S such that h′ = hs (allowing for multiple edges for multiple elements in S). We require
S to be symmetric, namely for each s ∈ S, we also have s−1 ∈ S (this is to make the graph
undirected). Let λ(Cay(H;S)) denote the second-largest eigenvalue (in absolute value) of the
normalized adjacency matrix of the Cayley graph.

Our goal is to construct an algorithm that, for a fixed γ < 1, takes as input the multiplication
table of a group H of size n and efficiently constructs a small generating set S such that
λ(Cay(H;S)) < γ. This is given by the following theorem.

Theorem 5.1. Fix γ < 1. Then there exists an algorithm running in time poly(n) that, given
H, a group of size n, constructs a symmetric set S ⊆ H of size |S| = O(log n) such that
λ(Cay(H;S)) ≤ γ.

We prove this after proving the randomized algorithm.

5.2 A randomized algorithm

Theorem 5.2 ([AR94, LR04, LS04]). Let H be a group of size n. Identify H with [n].
Let X1, . . . ,Xk be chosen randomly in H, where k = O( log n

γ2 ). We let the multi-set S be

(X1, . . . ,Xk), and we have

Pr
S⊆H

[λ(Cay(H;S t S−1)) > γ] < 1

where S tS−1 denotes the symmetric closure of S, namely each time s appears in S, s and s−1

appear in S t S−1.

12



To identify the notation in the following proof precisely with that used in Section 4, we have
that S corresponds to ~X , |S| = k, and it will become clear that in this setting n = d = |H|.

Proof. Consider the n × n matrices Ph for h ∈ H, where each Ph is the n × n permutation
matrix of the action of h on itself by right multiplication. Consider now 1

2(Ph +Ph−1). It is not
hard to see that the normalized adjacency matrix A of Cay(H;S t S−1) is given by

A = 1
k

k
∑

i=1

1
2(PXi + PX−1

i
)

We wish to bound λ(A). We know that the largest eigenvalue is 1 and corresponds to J/n where
J is the all 1 matrix. To remove this eigenvalue from A, we consider

(I − J/n)A = 1
k

k
∑

i=1

(I − J/n)1
2 (PXi + PX−1

i
)

We let our matrix-valued function be f(h) = (I − J/n)1
2(Ph + Ph−1), so that

λ(A) = ‖(I − J/n)A‖ = ‖ 1
k

k
∑

i=1

f(Xi)‖

It is straight-forward to verify that f(h) ∈Mn, ‖f(h)‖ ≤ 1 and Eh∈H [f(h)] = 0.

Thus we may apply Theorem 2.6 to get that

Pr[λ(A) > γ] = Pr[‖ 1
k

k
∑

i=1

f(Xi)‖ > γ] (5.1)

≤ 2ne−γ2|S|/4 (5.2)

so picking k = O( log n
γ2 ) suffices to make this probability less than 1.

5.3 Derandomizing

Proof of Theorem 5.1. To derandomize and obtain Theorem 5.1, we apply Corollary 4.2 to
obtain efficient pessimistic estimators for the event σ(S) = 1 iff ‖ 1

k

∑k
i=1 f(Xi)‖ ≤ γ. We

fix k = O( 1
γ2 log n) large enough such that the probability of this event is non-zero (i.e. the

estimators we got are useful). We then apply Theorem 3.2 to greedily choose successive elements
of H to be put in S in order to make an expander.

5.4 Derandomized Homomorphism Testing

Theorem 5.1 answers a question about the derandomization of homomorphism testers posed by
Shpilka and Wigderson [SW04]. In this section we will use Theorem 5.1 to prove Corollary 5.4.

An affine homomorphism between two groups H,H ′ is a map f : H → H ′ such that f−1(0)f
is a homomorphism. An (δ, η)-test for affine homomorphisms is a tester that accepts any affine
homomorphism surely and rejects with probability 1 − δ any f : H → H ′ which is η far

13



from being an affine homomorphism. Here distance is measured by the normalized Hamming
distance: d(f, g) = Pr[f(x) 6= g(x)].

[SW04] showed how to efficiently construct a tester TH×S using an expander Cay(H;S) where

λ(Cay(H;S)) < λ: simply pick a random element x
R
← H and a random element of y

R
← S

and check to see that f(0)f(x)−1f(xy) = f(y). It is clear this accepts f surely if f is an affine
homomorphism. [SW04] shows that if 12δ < 1− λ then this rejects with probability 1− δ any
f that is 4δ

1−λ -far from being an affine homomorphism.

Theorem 5.3 ([SW04]). For all groups H,H ′ and S ⊆ H an expanding generating set such that
λ(Cay(H;S)) < λ, we can construct a tester TH×S that surely accepts any affine homomorphism
f : H → H ′ and rejects with probability at least 1− δ any f : H → H ′ which is 4δ/(1 − λ) far
from being an affine homomorphism, given that 12δ

1−λ < 1. That is, TH×S is a (δ, 4δ
1−λ)-test for

affine homomorphisms.

In [SW04] the deterministic construction of S gave a set of size |H|ε for arbitrary ε > 0. The
explicit construction given in [SW04] requires that TH×S use (1 + ε) log |H| random bits and
asks whether it is possible to improve this dependency on randomness. Theorem 5.1 allows us
indeed to improve this dependency to the following.

Corollary 5.4. Given an arbitrary group H, one can construct in time |H|O(1) a homomor-
phism tester for functions on H which uses only log |H|+ log log |H|+O(1) random bits.

Proof of Corollary 5.4. Theorem 5.3 says we can construct a homomorphism tester that only
uses randomness to pick an element of H and an element of an expanding generating set of H.
Theorem 5.1 implies this only requires log |H| + log log |H| + O(1) random bits since we can
deterministically construct an expanding generating set of size log |H| in polynomial time.

6 Covering SDP’s

Linear programming (LP) was one of the first tools computer scientists used to approximate
NP-hard problems. As a natural relaxation of integer programming (IP), linear programs give
fractional solutions to an IP, which may then be rounded to give provably good solutions to the
original IP.

More recently, a more general class of relaxations, semi-definite programs (SDP’s), have been
used by computer scientists (e.g. [GW95, ARV04]) to give better approximation guarantees to
NP-hard problems. SDP’s may be solved in polynomial time (using e.g. the ellipsoid method
or interior-point methods, see [Sho77, Sho87, YN77, VB96]), and again the solution may be
rounded to give a solution to the original IP.

In this section we will define a restricted class of integer SDP’s and show that our pessimistic
estimators will give a good approximation guarantee.

6.1 Definition

We define the notion of integer covering SDP’s, which are generalizations of integer covering
linear programs (see e.g. [KY05]). These programs take the following form: given c ∈ [0, 1]n

14



and f : [n]→ [0, Id],
7 find y ∈ N

n where

minimize cT y

with feasibility constraint y1f(1) + . . . ynf(n) ≥ I
(6.1)

where the feasibility inequality is using the p.s.d. ordering. The vector c may be interpreted
as a cost vector, and we wish to minimize the cost of a solution y ∈ N

n. This is relaxed into
a covering SDP by allowing y ∈ R

n
+ where R+ denotes the non-negative reals, which we would

then like to round y to a solution ŷ ∈ N
n that is not too much more costly. We will let OPT

denote the optimal value of the relaxed covering SDP.

Our main theorem is as follows:

Theorem 6.1. Suppose we have a program as in Equation 6.1 and suppose we have a feasible
relaxed solution vector y ∈ R

n
+. Then we can find in time poly(n, d) a feasible integer solution

ŷ such that
cT ŷ ≤ O(log d) · cT y

Corollary 6.2. Given an integer covering SDP with optimum OPT, we can efficiently find an
integer solution with cost at most O(log d) ·OPT.

This is done by using a randomized rounding algorithm given implicitly in AW, and then
derandomizing using pessimistic estimators.

Also, note that this is a natural generalization of integer covering linear programs of the following
form: for a cost vector c ∈ R

n
+, a matrix A ∈ R

d×n
+

minimize cT y

subject to feasibility constraints that for all i ∈ [d]: (Ay)i ≥ 1

This may be viewed as the special case of integer covering SDP’s where all the matrices are
diagonal; each f(i) is just the diagonal matrix with a column of A along the diagonal. Integer
covering LP’s, in turn, are a generalization of the very familiar set cover problem, which are
exactly the programs where the columns of A are either 0 or 1. In the language of set cover,
the universe is [n] and the columns of A are the indicator vectors for the sets we may use to
cover [n].

Our approximation for integer covering SDP’s will imply a new approximation algorithm for
all these covering problems with a logarithmic approximation guarantee. Thus in a sense our
algorithm gives optimal approximation factors (up to constants), since a logarithmic approxi-
mation factor is optimal (up to constant factors) assuming that P 6= NP, as shown by [Fei98].
This connection is discussed in more detail in Section 6.4.1.

6.2 A randomized rounding algorithm

First suppose we have a solution to the SDP given by a vector y ∈ R
n
+, and let us define

Q =
∑n

j= yj. In the case where Q ≥ n, we can get a trivial deterministic rounding scheme with
approximation factor 2 by always rounding up, since this will increase the value of the program
at most by an additive n. Thus in the following we consider only programs where Q ≤ n.

7We restrict ourself to this scale for simplicity. Our results apply to any bounded function with a constant
loss in efficiency.
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Suppose we have a program as in Equation 6.1 and we have solved it efficiently to obtain a
solution y, where cT y = OPT . Let X be distributed according to the distribution over [n] given
by normalizing y, i.e.

Pr[X = i] = yi/Q

Note that, because y is a feasible solution, we have EX [f(X)] ≥ 1
QI. It was implicitly shown

in [AW] that sampling k = Q ·O(log d) elements from [n] according to the distribution X and
taking f(Xi) (1 ≤ i ≤ k) gives us a feasible solution with approximation factor O(log d). We
state this formally:

Theorem 6.3. Suppose we sample k = Q · 8 ln 2d times from [n] according to X in order to get
X1, . . . ,Xk. Furthermore, for each 1 ≤ j ≤ n, we define the random variables

Ŷj = |{i | Xi = j}|

the number of times that j is sampled, and let Ŷ = (Ŷ1, . . . , Ŷn). Then, with non-zero probability,
we have that

f(X1) + f(X2) + . . . + f(Xk) ≥ I and cT Ŷ ≤ cT y · 16 ln 2d

Proof. We will use a union bound to show that the probability that either
∑

j f(Xj) 6≥ I or

cT Ŷ > cT y · 16 ln 2d occurs is s trictly less than 1.

All expectations below are over the Xi (since the Ŷj are totally determined by the Xi).

Pr[

k
∑

j=1

f(Xj) 6≥ I] = Pr[ 1k

k
∑

j=1

f(Xj) 6≥
1
kI] (6.2)

We know from the fact that y is feasible that E[f(X)] ≥ 1
QI, and so for k > 2Q we get:

Pr[
k
∑

j=1

f(Xj) 6≥ I] ≤ Pr[ 1k

k
∑

j=1

f(Xj) 6≥
1
2

1
QI] (6.3)

Invoking Theorem 2.8

≤ de
−k

(8Q) (6.4)

Therefore if we take k = Q · 8 ln 2d with probability greater than 1
2 we have

∑

j f(Xj) ≥ I.

For the second event it is easy to see that cT Ŷ =
∑k

j=1 cXj . Furthermore, a simple calculation

shows that for each j, E[cXj ] = cT y/Q. Thus, by Markov we have:

Pr[cT Ŷ > cT y · 16 ln 2d] = Pr





k
∑

j=1

cXj > cT y · 16 ln 2d



 (6.5)

<
E

[

∑k
j=1 cXj

]

cT y · 16 ln 2d
(6.6)

=
k · cT y/Q

cT y · 16 ln 2d
(6.7)

Expanding k = Q · 8 ln 2d shows that this last expression is at most 1/2.

Thus each bad event happens with probability less than 1/2, and so the probability that either
bad event happens is strictly less than 1.
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6.3 Derandomizing

Derandomizing is a simple proposition. Given a program, first solve it using a standard efficient
technique ([Sho77, Sho87, YN77], for a survey see [VB96]), with solution y and Q =

∑n
j=1 yj.

Let k = Q · 8 ln 2d. In the proof of Theorem 6.3 at Inequality 6.2, we can apply Theorem 4.4 to
get pessimistic estimators φi for the event

∑k
j=1 f(Xj) ≥ I, which we call σ. We only need now

a pessimistic estimator (ψ0, . . . , ψk) for the event of the solution not being too costly, which we
call τ .

We define ψi : [n]i → [0, 1] as follows:

ψi(x1, . . . , xi) =

∑i
j=1 cxj + (k − i)E[cX ]

cT y · 16 ln 2d

It is clear that the ψi are efficiently computable. They satisfy the properties of Definition 3.1.
This is easy to see, since the ψi are exactly the expressions given by a Markov bound on the
event τ , and such expressions always satisfy Definition 3.1. We write this out explicitly here
fore completeness.

1. Looking at the proof of Theorem 6.3, and substituting into Inequality 6.5 shows that:

Pr





k
∑

j=1

cXj > cT y · 16 ln 2d | X1 = x1, . . . ,Xi = xi



 ≤

∑i
j=1 cxj + (k − i)E[cX ]

cT y · 16 ln 2d

= ψ(x1, . . . , xi)

2. For estimators based on Markov, we actually have equality for this property.

EXi+1[ψi+1(x1, . . . , xi,Xi+1)] = EXi+1

[

∑i
j=1 cxj + cXi+1 + (k − i− 1)E[cX ]

cT y · 16 ln 2d

]

=

∑i
j=1 cxj + (k − i)E[cXj ]

cT y · 16 ln 2d

= ψi(x1, . . . , xi)

Theorem 6.4. Since φ0 + ψ0 < 1 because of the choice of k = Q · 8 ln 2d, we may invoke
Lemma 3.3 to get that (φ0 +ψ0, . . . , φk +ψk) are efficient and useful pessimistic estimators for
the event in Theorem 6.3.

Finally we may prove Theorem 6.1.

Proof of Theorem 6.1. By Theorem 6.4 we have pessimistic estimators for the event in The-
orem 6.3, and so we may apply Theorem 3.2, which says we can efficiently and deterministi-
cally find a suitable integer vector ŷ that satisfies Theorem 6.1. The algorithm runs in time
poly(n, k, d), but since k = Q · 8 ln 2d and we only consider Q ≤ n, this is poly(n, d).
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6.4 Quantum Hypergraph Covers

In this section we define hypergraphs and quantum hypergraphs and discuss the cover problem
for both. The hypergraph cover problem is just the classical set cover problem, and the quantum
hypergraph cover problem is a non-commutative generalization arising in quantum information
theory [AW02]. Our efficient and useful pessimistic estimators for the integer covering SDP
problem immediately give an efficient deterministic algorithm to find a quantum hypergraph
cover that is optimal up to logarithmic factors.

6.4.1 Hypergraphs

Here we will describe the hypergraph cover problem, which is just another name for the classical
set cover. A hypergraph is a pair (V,E) where E ⊆ 2V , i.e. E is a collection of subsets of V .
Say |V | = d. One often views an edge e as a vector in {0, 1}d, where the i’th entry is 1 if vertex
i is in the edge and 0 otherwise.

It will actually be convenient for us to view e ∈ E as d × d diagonal matrix with 1 or 0 at
each diagonal entry to signify whether that vertex is in the edge. In this section we will denote
the matrix associated with e as f(e). This representation will naturally generalize to quantum
hypergraphs.

A cover of a hypergraph Γ = (V,E) is a set of edges C such that
⋃

e∈C e = V , i.e. each vertex
is in at least one edge. Note that this definition of cover coincides exactly with the definition
of set cover. The size of the smallest cover is called the cover number and dentoted c(Γ).

Using the matrix representation of E, one sees that
⋃

e∈C

e = V ⇔
∑

e∈C

f(e) ≥ I

where the second expression uses our usual ordering of matrices.

A fractional cover is a set of non-negative weights w over E such that
∑

e∈E w(e)f(e) ≥ I.
Likewise, we say that the fractional cover number

c̃(Γ) = min
w

{

∑

e∈E

w(e)

∣

∣

∣

∣

∣

∑

e∈E

w(e)f(e) ≥ I

}

We know that the hypergraph cover problem is hard to approximate up to a lnn factor [Fei98].
From the definitions, it is clear that this problem is a special case of our integer covering SDP’s.
In the next section we generalize to the non-commutative case.

6.4.2 Quantum Hypergraphs

[AW02] defines quantum hypergraphs as generalizations of hypergraphs. Recall that we repre-
sented an edge of a hypergraph as a d × d diagonal matrix with 1, 0 along the diagonal. So a
hypergraph is equivalent to (V, E) where V = C

d and each e ∈ E is identified with a diagonal
matrix whose diagonal entries are either 0 or 1, which we will call f(e). We generalize this
to non-commutative “edges” by allowing E to contain other operators, i.e. f(e) can be any
Hermitian operator (i.e. matrix) in [0, I].8

8Here we are using the fact that all our previous results for real symmetric matrices generalize to complex
Hermitian matrices. A complex matrix A is Hermitian if A = A∗ where ∗ denotes the conjugate transpose.
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Definition 6.5. Γ = (V, E) is a quantum hypergraph where V is a d-dimensional Hilbert space
and E is a finite set such that each e ∈ E is identified with a Hermitian operator f(e) ∈ [0, Id].

One can extend the definition of a cover of a quantum hypergraph Γ = (V, E) to be a finite
subset C ⊆ E such that

∑

e∈C f(e) ≥ I. The cover number c(Γ) is the size of the smallest cover
of Γ.

Likewise, we define a fractional cover to be a non-negative combination w of e ∈ E such that
∑

e∈E w(e)f(e) ≥ I, and the fractional cover number as

c̃(Γ) = min
w

{

∑

e∈E

w(e)

∣

∣

∣

∣

∣

∑

e∈E

w(e)f(e) ≥ I

}

Note that this corresponds exactly with our previous definitions for hypergraphs. The problem
of finding the fractional cover has equivalent forms that are natural and interesting, which are
discussed at the end of this section.

It is important to note that the notion of “vertex” is lost because the matrices f(e) ∈ Md are
not necessarily diagonal in a common basis. However, it is again clear from the definitions that
a quantum hypergraph cover problem is just a special case of integer covering SDP’s, so we
may use Theorem 6.1 to give an efficient deterministic approximation. Thus the theorem below
follows.

Theorem 6.6. Suppose we are given Γ = (V, E) a quantum hypergraph with fractional cover
number c̃(Γ), with |V| = d and |E| = n. Then we can find an integer cover of Γ of size
k = c̃(Γ) ·O(log d) in time poly(n, d).

6.5 Other Applications

Our integer covering SDP also encompasses two other natural problems from quantum informa-
tion theory. Given a function f : [n] → [0, Id], one may want to find a probability distribution
X over [n] one may want to solve either of the following

1. minX ‖EX [f(X)]‖

2. maxX λd(EX [f(X)])

The former minimizes the norm of the expected value of the distribution, which is also its largest
eigenvalue, while the latter may be viewed as maximizing the lowest energy state of a quantum
system, which is also its smallest eigenvalue. The second can be formulated as a covering SDP
by using the cost vector c = 1 the all 1’s vector, and then normalizing the solution vector y
to be a probability distribution. The first can be formulated as the second by considering the
function I − f .

In both cases, our pessimistic estimators give an “integral solution” that is worse by at most
O(log d). In this case, an integral solution is actually a distribution with sparse support; we
sample from the solution distribution X to get a distribution X̂ with support of size O( 1

γ2 log d)

such that the corresponding objective is worse by at most a factor of O(log d).
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A Error in [WX05a]

The error in [WX05a] is in the application of the Golden-Thompson inequality (Theorem 2.2).
The following derivation, which appears in the proof of Theorem 3.6 in the second column of
page 401 of [WX05a]9, is incorrect:

E

[

Tr

(

exp

(

t

k
∑

i=1

f(Yi)

))]

≤ E

[

Tr

(

k
∏

i=1

exp(tf(Yi))

)]

where the Yi are the steps in a random expander walk and the expectation is over all walks.
This is incorrect because the Golden-Thompson inequality does not generalize to more than
two terms, i.e. the following does not hold in general for real symmetric matrices A,B,C:

Tr(exp(A+B + C)) ≤ Tr(exp(A) exp(B) exp(C))

and it is not hard to come up with counterexamples.

We have tried various techniques to bypass this problem, but we have not discovered any method
to get parameters that are sufficient for our applications. In the notation of [WX05a], it would
suffice to prove

Tr(E[exp(t

k
∑

i=2

f(Yi)) exp(tf(Y1))]) ≤ ‖ÃD̃t‖ · Tr(E[exp(t

k
∑

i=2

f(Yi))])

or even only

Tr(E[exp(t

k
∑

i=1

f(Yi))]) ≤ d‖ÃD̃t‖
k

We know from the proof of the Theorem 2.4 that both the previous inequalities hold when the
normalized adjacency matrix of the graph A = J/n, i.e. we sample from the complete graph,
which corresponds to independent sampling. We do not know counter-examples for either of
these inequalities for sampling according to an expander walk. Thus, as far as we know, the
Theorem 3.6 of [WX05a] may be true as stated.

9Top of page 12 in the ECCC version [WX05b]
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