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Abstract. We show that the following two problems are NP-complete. 1) Given a maximal planar graph, is
it Hamiltonian 7 2) Given a planar graph, does it have a Hamiltonian planar spanning supergraph ?
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Preliminaries
- All the graphs discussed in this paper are simple.
. The graph theoretic notation we use is from {4].

- For a detailed exposition of computational complexity and NP-completeness, the
reader is referred to [1] and [6].

- There is an extensive literature on the Hamiltonian Circuit problem, including many
survey articles, e.g. [3,5,10}.

Background

The Hamiltonian Circuit (HC) problem is that of deciding whether a given graph con-
tains a Hamiltonian Circuit. For more than a century graph theorists tried to find a "nice”
characterization of Hamiltonian graphs and failed. From the computational complexity point
of view, this failure was explained when Karp [9] showed that HC belongs to the notorious
class of NP-complete problems. The problems in this class are generally believed to be com-
putationally intractable.

Due to its strange connection to the Four Color Conjecture (4CC), a special interest
was given to the restriction of the HC problem to the class of planar graphs, and in particu-
lar to two subclasses of it: the class of cubic, 3-connected planar graphs, which we denote by
3P, and the class of maximal planar graphs, denoted by MP.

In 1880, Tait [13] conjectured that every graph in 3P is Hamiltonian, and showed that
if true, this conjecture implies that the 4CC is true. Tutte {14] proved him wrong in 1946,
constructing the first non-Hamiltonian graph in 3P. Later, a simple method for generating
many such graphs was discovered by Kozyrev and Grinberg (reported in [12]). In 1975,
Garey et al [7] proved that distinguishing the Hamiltonian from the non-Hamiltonian graphs
in 3P is also NP-complete, i.e. this restriction of HP is as hard as the general problem.

Hamiltonian circuits in maximal planar graphs became an important objective after
Whitney [15] showed in 1931 that the 4CC is true iff it is true for Hamiltonian graphs in
MP. For that purpose he proved that every 4-connected graph in MP is Hamiltonian. Since
every maximal planar graph is 3-connected, it was left to characterize Hamiltonian graphs in
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MP 1hat have separating triangles. This problem and related ones are still (50 years later 1)
being attacked by rescarchers (e.g. [2,8]). The complexity of this problem was open for a
long time. We prove it is also NP-complete.

In the foliowing section we study the structure and propemes of a special planar graph.
Then we use this graph in proving our main theorem and deduce from it some interesting
corollaries. We conclude with a few related open problems.

A planar graph

~ The basic building block of the construction in the next section is a 55-node graph N,
whose structure and special properties we turn now to describe.

Consider the maximal planar graph K, which is shown in figure 1.

Figure 1
Graph K and abbreviation

-

Lemms 1: Let H be a graph which contains K as a vertex induced subgraph such that only
the vertices x, y, 2 are incident on edges not in XK. Then in any Hamiltenian circuit of H,
the vertices of K appear consecutively.

Proof: A simple case analysis yields that any Hamiltonian curcm! in H must appear locally in
one of the six states given in Figure 2. O

Now take two copies of X and identify their 2 vertex. Complete the resulting graph to
the maximal planar graph A given in Figure 3.

Lemma 2: Let H be a graph which contains M as a vertex induced subgraph, so that only
vertices labeled x or z are incident on edges not in M. Then in any Hamiltonian circuit of
H the vertices of M appear consecutively between the two vertices labeled x.

Proof: Let C be any Hamiltonian circuit in H. Note that H satisfies the conditions of
jemma ! w.r.t. each copy of K, so the vertices in each of the two copies appear consecu-
tively in C. Since the veriex z is common to the two copies, and the vertices labeied y are
not incident on any edge not in M, C must appear locally in M in the siate given in Fig 4.
O

"Esgsential 10 the construction is the following observation which is a direct consequence
of lemma 2.
Coroliary 1: Let M satisfy the conditions in lemma 2, and let ¢ be an edge touching a 2-
vertex of an M-subgraph of H. If e is not in this M -subgraph, then it cannot participate in
any Hamiltonian circuit of H.

Finally, use three copies of M 1o construct the graph N, which is given in Fig 5. Note
that except for the outer face of N, all faces are triangles.
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Possible local states and their abbreviation

Figure 3
Graph M and abbreviation

Lemma 3: Let H be a graph contsining N as a vertex induced subgraph s.t. only verlices
{abeled 2z or w lic on edges not in N. Then in any Hamilionien circuit of A the vertices of
N appeatr consecutively between two verlices labeled w,

Proof: Let C be any Hamiltonian circuit in H. Note that #H satisfies the conditions of
lemma 2 w.r.t. each copy of M. Therefore C appears locally in each copy of M as described
in Figure 4. Since each x-veriex is adjacent only to v and exactly onc w-veriex, it is easy to
see that the only local state (up 1o sotation) in which C can appear in N is the one given in



Figure 4

Figure 5
Graph N and abbreviation

Figure 6. D

Figure 6
Local state and abbreviation

In a similar way to corollary 1 we may conclude:

Corollary 2: Let A satisfy the conditions of lemma 3, and le1 e be an edge touching 8 =-
vertex of an N-subgraph of H. If e is not in this subgraph, then it cannol participate in any
Hamiltonian circuit of H.

Lemma 4: There are exactly 2664 Hamiltonian paths in N between any two w-vertices.

Proof: This is immediate from the fact that there are six copies of K in N, each admits two
Hamiltonian paths between its x and z vertices (Figure 2). D



Main resuolts
Theorem: The Hamiltonian circuit problem for maximal planar graphs is NP-complete.

Proof: Garey, Johnson and Tarjan [7] proved, using a beautiful construction, that the Ham-
ittonian circuit problem for 3-connected cubic planar graphs (3PHC) is NP-compiele. We
give a polynomial time transformation from 3PHC toc MPHC. Given a graph G in 3P, an
instance of 3PHC, we show how (o consiruct a maximal planar graph G', such that G' has a
Hamiltonian circuit if and only if G has one.

Let G(V,E) be a graph in 3P, an instance of 3PHC. Replace each vertex veV by a

copy of N, N, letting each of the three edges incident on v 1ouch a different w-vertex in
N,. {Figure 7).

Figure 7

Let the resulting graph be G, (¥ ,E,). G, is planar, and for each face of size k in G
we have a face of size 3k in G, (Figure 8a).

Connect the z-vertices inside each face of G, so that a k-cycle, "paraliel” 1o the origi-
na! one is created (Fig. 8b).

Now triangulate each face (in any way) 1o obtain the maximal planar graph G'(V,E')
(Figure 8¢). Since every copy of N has 55 vertices.|V,| = 55V and since G’ is maximal
planar, [E1 = 3¥")L6 = 165)°}6. Therefore, the transformation can be done in linear time in
the size of G. To show that G is Hamilionian if and only if G’ is, we prove that each of
~ them is Hamiltonian iff G, is.

Figure 9 explains how to construct a Hamiltonian circuit in G, from a given one in G
and vice versa. Given a2 Hamiltonian circuit in G, we expend each veriex v to a Hamiltorian
path in N, between the two appropriate w-vertices. Conversely, since G, satisfies the con-
ditions of lemma 3 w.r.t. each copy of N, every Hamilionian circuit in G, appears locally in
each N, as in Figure 6. Therefore it enters and leaves sach N, exactly once via two of the
three edges touching w-vertices of N,. To obtain a Hamiltonian circuit in G, we simply
shrink each N, into one vertex, v.

To see that G, is Hamilionian if and only if G'is, note that G, is & spanning subgraph
of G’ (the veriex set of both is ¥,). This immediately shows that every Hamiltonian circuit
in G, is a8 Hamiltonian circuit in G'. We construcied G’ from G so that every edge in £-£,
touches a z-vertex of some N,. By corollary 2, none of these edges may participate in any
Hamiltonian circuit in G’, and therefore every such circuit in G’ is s Hamilionian circuit in
¢, D
Corcllary 3: Suppose we add the following restriction 10 the MPHC problem: every instance
which /s Hamiltonian must have an exponential {in the number of vertices) number of
Hamiltonian circuits. Even then the problem remains NP-compiete.

Proof: Using the notation of the last proof, every Hamiltonian circuit in G (V E) deter-
mines a Hamiltonian circuit in G'(V|.E’) up 10 the Hamiltonian path beiween lwo w-



Figure 8

Figure 9

vertices in each copy of N, N,, as shown in Figure 9. By Lemma 4, for each copy we have
64 choices for this Hamiltonian path. Therefore, every Hamiltonian circuit in G determines
64'! Hamiltonian circuits in G'. Since |V)l=55|V], this number is exponential in IVl O

Corollary 4: The Planar Hamiltonian Completion probiem is defined as foliows: Given a
planar graph, does it have 2 spanning supergraph which is both planar and Hamilionian. This
problem is NP-complete.

Proof: It is sufficient to show that a subproblem is NP-complete. Suppose that all instances
arc maximal planar graphs. If G is such a graph, then the only planar spanning subgraph of
G is G itself. Therefore the problem reduces to deciding whether G is Hamiltonian. But
this is the MPHC problem. D



Open problems.

13
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The Hamiltonian circuit problem restricied 1o maximal planar graphs was shown 1o be
NP-complete. On the other hand, it is easy to see that the 3-cojorability problem (NP-
complete for arbitrary planar graphs) is solvable in linear time for maximal planar
graphs. In general, it may be interesting to consider this restriction on any problem
which is NP-complete for planar graphs, ¢.g. Vertex Cover and Maximum Siable Sct.
Which of these problems are made easier (computationally) by the special structure of
maximal planar graphs ?

Note that every graph in MP (except the triangle) has 8 dual in 3P and vice versa.
The Hamiltonian circuit problem restricied to either of these classes is NP-complete.
Given & maximal planar graph, what is the complexuy of deciding whether it or i1s
dua! is Hamiltonian ?
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