
P, NP and Mathematics –

a computational complexity perspective

Avi Wigderson

“P versus NP – a gift to mathematics from Computer Science”
Steve Smale.

Abstract. The P versus NP question distinguished itself as the central question of
Theoretical Computer Science nearly four decades ago. The quest to resolve it, and
more generally, to understand the power and limits of efficient computation, has led to
the development of Computational Complexity Theory. While this mathematical
discipline in general, and the P vs. NP problem in particular, have gained prominence
within the mathematics community in the past decade, it is still largely viewed as a
problem of Computer Science.
In this paper I’ll try to explain why this problem, and others in computational
complexity, are not only mathematical problems but also problems about mathematics,
faced by the working mathematician. I will describe the underlying concepts and
problems, the attempts to understand and solve them, and some of the research
directions this led us to. I will explain some of the important results, as well as the
major goals and conjectures which still elude us. All this will hopefully give a taste of
the motivations, richness and interconnectedness of our field. I will conclude with a few
non computational problems, which capture P vs. NP and related computational
complexity problems, hopefully inviting more mathematicians to attack them as well.
I believe it important to give many examples, and to underlie the intuition (and
sometimes, philosophy) behind definitions and results. This may slow the pace of this
article for some, in the hope to make it clearer to others.

Mathematics Subject Classification (2000). Primary 68Q15; Secondary 68Q17.

Keywords. P, NP, Computational Complexity.

Contents

1 Prelude: computation, undecidability and the limits of mathe-
matical knowledge 3

2 The computational complexity of classification (and other) prob-
lems 4
2.1 A motivating example . 4
2.2 Efficient computation and the class P 6

2 Avi Wigderson

2.3 Efficient verification and the class NP 8
2.4 The P vs. NP question, its meaning and importance 9
2.5 The NP versus coNP question, its meaning and importance . . . 11
2.6 Reductions – a partial order of computational difficulty 12
2.7 Completeness . 13
2.8 NP-completeness . 13
2.9 The nature and impact of NP-completeness 14
2.10 Some NP-complete problems . 15
2.11 Other problems in NP (and outside it) 17

2.11.1 Average-case complexity and one-way functions 17
2.11.2 Other types of computational problems 18

3 Lower bounds, and attacks on P vs. NP 19
3.1 Diagonalization and relativization 19
3.2 Boolean circuits . 20

3.2.1 Basic results and questions 21
3.2.2 Monotone circuits . 22
3.2.3 Why is it hard to prove circuit lower bounds? 23

4 Proof complexity 23
4.1 The pigeonhole principle - a motivating example 25
4.2 Propositional proof systems and NP vs. coNP 26
4.3 Concrete proof systems . 28

4.3.1 Algebraic proof systems . 28
4.3.2 Geometric proof systems . 28
4.3.3 Logical proof systems . 29

4.4 Proof complexity vs. circuit Complexity 30

5 Randomness in computation 32
5.1 The power of randomness in algorithms 32
5.2 The weakness of randomness in algorithms 34

6 Randomness in proofs 36
6.1 Interactive proof systems . 38
6.2 Zero-knowledge proof systems . 39
6.3 Probabilistically checkable proofs 40

7 Some concrete open problems 42
7.1 Gauss elimination . 42
7.2 Matrix rigidity . 42
7.3 Permanent versus Determinant . 42
7.4 Tensor rank (of matrix multiplication) 42
7.5 Generalized polynomials for Determinant 43

P, NP and Mathematics – a computational complexity perspective 3

1. Prelude: computation, undecidability and the
limits of mathematical knowledge

Which mathematical structures can we hope to understand? Let us focus on the
most basic mathematical task of classification1. We are interested in a particular
class of objects, and a particular property. We seek to understand which of the
objects have the property and which do not. Examples include

1. Which Diophantine equations have solutions?

2. Which knots are unknotted?

3. Which dynamical systems are chaotic?

4. Which theorems are provable in Peano Arithmetic?

5. Which pairs of manifolds are diffeomorphic?

6. Which elementary statements about the Reals are true?

7. Which elliptic curves are modular?

A central question is what do we mean by understanding! When are we satisfied
that our classification problem was reasonably solved? Are there problems like
this which we can never solve? A central observation (popularized mainly by
Hilbert) is that “satisfactory” solutions usually provide (explicitly or implicitly)
procedures, which when applied to an object, determine (in finite time) if it has
the property or not. Hilbert’s problems (1) and (4) above were stated, it seems,
with expectation that the answer would be positive, namely that mathematicians
would be able to understand them in this sense.
The breakthrough developments in the 1930s, by Gödel, Turing, Church and
others led to the formal definition of an algorithm. This development, aside from
enabling the computer revolution, made mathematically precise what Hilbert
meant by a “mechanical procedure”. With it, precise theorems could be proved
on the limits of our knowledge; it led to proofs that some basic mathematical
problems, like (1) and (4) above, will never, in this natural sense be understood!
There cannot be any decision procedure (an algorithm which always halts) to
discern provable from unprovable statements in Number Theory (this was shown
independently by Turing and Church), or to discern solvable from unsolvable
Diophantine equations (by Davis, Putnam, Robinson and Mattiasevich). These
classification problems are undecidable.
The crucial ingredient in those (and all other undecidability) results, is showing
that each of these mathematical structures can encode computation. This is
known today to hold for many different structures in algebra, topology, geometry,
analysis, logic, and more, even though apriori the structures studied seem to be

1This context will be general enough to be interesting and possible ramifications to other
mathematical tasks are typically clear.

4 Avi Wigderson

completely unrelated to computation. This ubiquity makes every mathematician
a potential computer scientist in disguise. We will return to refined versions of
this idea later.
Naturally, these negative results did not stop mathematical work on these
structures and properties - it merely focused the necessity to understanding
interesting subclasses of the given objects. Specific classes of Diophantine
equations, were understood much better, e.g. Fermat’s Last Theorem and the
resolution of problem (7). The same holds for restricted logics for Number
Theory, e.g. Presburger arithmetic.
The notion of a decision procedure as a minimal requirement for understanding
of a mathematical problem has also led to direct positive results. It suggests that
we look for a decision procedure as a means, or as first step for understanding a
problem. Thus Haken [47] showed how knots can be so understood, with his
decision procedure for problem (2), and Tarski [106] showed that real-closed fields
can be understood with decision procedure for problem (6). Naturally, significant
mathematical, structural understanding was needed to develop these algorithms.
Haken developed the theory of normal surfaces, and Tarski invented quantifier
elimination, for their algorithms, both cornerstones of the respective fields. This
only reveals the obvious: mathematical and algorithmic understanding are
related and often go hand in hand. And what was true in previous centuries is
truer in this one – the language of algorithms is slowly becoming competitive
with the language of equations and formulas (which are special cases of
algorithms) for explaining complex mathematical structures.
Now that we have seen algorithmic mathematical understanding in principle, it is
natural to go beyond and try to quantify that level of understanding. Again, we
would use a computational yardstick for it. We argue that better mathematical
understanding goes hand in hand with better algorithms for “obtaining” that
understanding from the given structures. To formalize it, we shall start
introducing the computational terms that are central to the theory of
Computational Complexity.

2. The computational complexity of classification
(and other) problems

In this section we will develop the basic notions of data representation, efficient
computations, efficient reductions between problems, efficient verification of
proofs, the classes, P,NP, coNP and NP-complete problems.

2.1. A motivating example. Let us consider the following two
classification problems.

(1’) Which Diophantine equations of the form Ax2 + By + C = 0 are solvable by
positive integers?

(2’) Which knots on 3-dimensional manifolds bound a surface of genus ≤ g?

P, NP and Mathematics – a computational complexity perspective 5

Problem (1’) is a restriction of problem (1) above. Problem (1) was undecidable,
and it is natural to try to understand more restricted classes of Diophantine
equations. Problem (2’) is a generalization of problem (2) above in two ways (the
case of genus g = 0 corresponds to the knot being unknotted, and we are not
restricted to knots in R3). Problem (2) was decidable, and we may want to
understand (2’) even better.
At any rate, most mathematicians would tend to agree that problems (1’) and
(2’) have absolutely nothing to do with each other. They are from very different
fields, with completely different notions, goals and tools. However, the theorem
below suggests that this view may be wrong.

Theorem 2.1. Problems (1’) and (2’) are equivalent.

Moreover, the equivalence notion is natural and completely formal. Intuitively,
any understanding we have of one problem, can be simply translated into a
similar understanding of the other. The formal meaning will unfold in
subsection 2.10. To get there we need to develop the language and machinary
which yield such surprising results. We start with formally defining the the
(finite!) representation of objects in both problems, and in general.
Consider the set of all equations of the form Ax2 + By + C = 0 with integer
coefficients A,B, C. A finite representation of such equation is obvious - the
triple of coefficients (A,B,C). Given such a triple - does the corresponding
polynomial has a positive integer root (x, y)? Let 2DIO denote the subset of
triples for which the answer is YES.
Finite representation of inputs to problem (2’) is a bit more tricky, but still
natural. The inputs consist of a 3-dimensional manifold M , a knot K embedded
on it, and an integer G. A finite representation can describe M by a
triangulation (finite collection of tetrahedra and their adjacencies). The knot K
will be described as a link (closed path) along edges of the given tetrahedra.
Given a triple (M,K, G), does the surface that K bounds have genus at most G?
Let KNOT denote the subset for which the answer is YES.
Any finite object (integers, tuples of integers, finite graphs, finite complexes,
etc.)2 can be represented naturally by binary sequences (say over the alphabet
{0, 1}). Indeed, this encoding can be done such that going back and forth
between the object and its representation is simple and efficient (a notion to be
formally defined below). Consequently, we let I denote the set of all finite binary
sequences, and regard it as the set of inputs to all our classification problems. In
this language, given a binary sequence x ∈ I we may interpret it as a triple of
integers (A,B,C) and ask if the related equation is in 2DIO. This is problem
(1’). We can also interpret x as a triple (M,K, G) of manifold, knot and integer,
and ask if it is in the set KNOT. This is problem (2’).
Theorem 2.1 states that there are simple translations (in both directions)
between solving problem (1’) and problem (2’). More precisely, it provides
functions f, h : I→ I performing these translations:

2A theory of algorithms which directly operate on real or complex numbers is developed in
[12], which has natural parallels to some of of the notions and results we’ll meet.

6 Avi Wigderson

(A,B,C) ∈ 2DIO iff f(A,B, C) ∈ KNOT, and
(M,K, G) ∈ KNOT iff h(M,K, G) ∈ 2DIO.
So, if we have gained enough understanding of topology to solve e.g. the knot
genus problem, it means that we automatically have gained enough number
theoretic understanding for solving these quadratic Diophantine problems (and
vice versa).
The translating functions f and h are called reductions. We capture the
simplicity of a reduction in computational terms. We demand that it will be
efficiently computable. This is what we define next.

2.2. Efficient computation and the class P. In all that follows, we
focus on asymptotic complexity. Thus e.g. we care neither about the time it
takes to factor the number 267 − 1 (as much as Mersene cared about it), nor
about the time it takes to factor all 67-bit numbers, but rather about the
asymptotic behavior of factoring n-bit numbers, as a function of the input length
n. The asymptotic viewpoint is inherent to Computational Complexity Theory,
and we shall see in this article that it reveals structure which would be obscured
by finite, precise analysis.
Efficient computation (for a given problem) will be taken to be one whose
runtime on any input of length n is bounded by a polynomial function in n. Let
In denote all binary sequences in I of length n.

Definition 2.2 (The class P). A function f : I→ I is in the class P if there is
an algorithm computing f and positive constants A, c, such that for every n and
every x ∈ In the algorithm computes f(x) in at most Anc steps.

Note that the definition applies in particular to Boolean functions (whose output
is {0, 1}) which capture classification problems.
This definition was suggested by Cobham [20], Edmonds [31] and Rabin [84], all
attempting to formally delineate efficient from just finite (in their cases,
exponential time) algorithms. Of course, nontrivial polynomial time algorithms
were discovered earlier, long before the computer age. Many were discovered by
mathematicians, who needed efficient methods to calculate (by hand). The most
ancient and famous example is of course Euclid’s GCD algorithm, which bypasses
the factorization of the inputs when computing their common factor.

Why polynomial? The choice of polynomial time to represent efficient
computation seems arbitrary, and indeed different possible choices can be made.
However, this particular choice has justified itself over time from many points of
view. We list some important ones.
Polynomials typify “slowly growing” functions. The closure of polynomials under
addition, multiplication and composition preserves the notion of efficiency under
natural programming practices, such as using two programs in sequence, or using
one as a subroutine of another. This choice removes the necessity to describe the
computational model precisely (e.g. it doesn’t matter if we allow arithmetic
operations only on single digits or on arbitrary integers, since long addition,
subtraction, multiplication and division have simple polynomial time algorithms

P, NP and Mathematics – a computational complexity perspective 7

taught in grade school). Similarly, we need not worry about data representation:
one can efficiently translate between essentially any two natural representations
of a set of finite objects.
From a practical viewpoint, while a running time of, say, n2 is far more desirable
than n100, very few known efficient algorithms for natural problems have
exponents above 3 or 4. On the other hand, many important natural problems
which so far resist efficient algorithms, cannot at present be solved faster than in
exponential time. Thus reducing their complexity to (any) polynomial will be a
huge conceptual improvement.
The importance of understanding the class P is obvious. There are numerous
computational problems that arise (in theory and practice) which demand
efficient solutions. Many algorithmic techniques were developed in the past 4
decades and enable solving many of these problems (see e.g. the textbook [23]).
These drive the ultra-fast home computer applications we now take for granted
like web searching, spell checking, data processing, computer game graphics and
fast arithmetic, as well as heavier duty programs used across industry, business,
math and science. But many more problems yet (some of which we’ll meet soon),
perhaps of higher practical and theoretical value, remain elusive. The challenge
of characterizing this fundamental mathematical object – the class P of efficiently
solvable problems – is far beyond us at this point.
We end this section with a few examples of nontrivial problems in P of
mathematical significance. In each the interplay of mathematical and
computational understanding needed for the development of these algorithms is
evident.

• PRIMALITY TESTING: Given an integer, determine if it is prime.
Gauss literally challenged the mathematical community to find an efficient
algorithm, but it took two centuries to resolve. The story of this recent
achievement of [5] and its history are beautifully recounted in [43].

• LINEAR PROGRAMMING: Given a set of linear ineqaulities in many
variables, determine if they are mutually consistent. This problem, and its
optimization version, capture numerous others (finding optimal strategies of
a zero-sum game is one) and the convex optimization techniques used to
give the efficient algorithms [64, 61] for it do much more (see e.g. the books
[103]).

• FACTORING POLYNOMIALS: Given a multivariate polynomial with
rational coefficients, find its irreducible factors over Q. Again, the tools
developed in [75] (mainly regarding “short” bases in lattices in Rn) have
numerous other applications.

• HEREDITARY GRAPH PROPERTIES: Given a finite graph, test if
it can be embedded on a fixed surface (like the plane or the torus). A vastly
more general result is known, namely testing any hereditary property (one
which closed under vertex removal and edge contraction). It follows the

8 Avi Wigderson

monumental structure theory [90] of such properties, including a finite basis
theorem. and its algorithmic versions.

• HYPERBOLIC WORD PROBLEM: Given any presentation of a
hyperbolic group by generators and relations, and a word w in the
generators, does w represent the identity element. The techniques give
isoperimetric bounds on the Cayley graphs of such groups and more [44].

2.3. Efficient verification and the class NP. Let C ⊂ I be a
classification problem. We are given an input x ∈ I (describing a mathematical
object) and are supposed to determine if x ∈ C or not. It is convenient for this
section to view C as defining a property; x ∈ C are objects having the property,
and x 6∈ C are objects which do not. If we have an efficient algorithm for C, we
simply apply it to x. But if we don’t, what is the next best thing? One answer is,
a convincing proof that x ∈ C. Before defining it formally, let us see a couple of
motivating examples.
The first example is famous anecdote of a lecture by F. N. Cole, entitled ”On the
Factorization of Large Numbers”, at the 1903 AMS meeting. Without uttering a
word, he went to the blackboard, wrote

267 − 1 = 147573952589676412927 = 193707721× 761838257287

and proceeded to perform the long multiplication of the integers on the right
hand side to derive the integer on the left: Mersene’s 67’th number (which was
conjectured to be prime). No one in the audience had any questions.
What has happened? Cole demonstrated that the number 267 − 1 is composite.
Indeed, we can see that such a short proof can be given for any (correct) claim of
the form x ∈COMPOSITES, with COMPOSITES denoting the set of composite
numbers. The proof is simply a nontrivial factor of x. The features we want to
extract from this episode are two: The proofs are short and easily verifiable. The
fact that it was extremely hard for Cole to find these factors (he said it took him
“three years of Sundays”) did not affect in any way that demonstration.
A second example, which we meet daily, is what happens when we read a typical
Math journal paper. In it, we typically find a (claimed) theorem, followed by an
(alleged) proof. This, we are verifying claims of the type x ∈THEOREMS, where
THEOREMS is the set of all provable statements in, say, Set Theory. It is taken
for granted that the written proof is short (page limit) and easily verifiable
(otherwise the referee/editor would demand clarifications), regardless how long it
took to discover.
The class NP contains all properties C for which membership (namely
statements of the form x ∈ C) have short, efficiently verifiable proofs. As before,
we use polynomials to define both terms. A candidate proof y for the claim
x ∈ C must have length at most polynomial in the length of x. And the
verification that y indeed proves this claim must be checkable in polynomial time.
Finally, if x 6∈ C, no such y should exist.

Definition 2.3 (The class NP). The set C is in the class NP if there is a
function VC ∈ P and a constant k such that

P, NP and Mathematics – a computational complexity perspective 9

• If x ∈ C then ∃y with |y| ≤ |x|k and VC(x, y) = 1

• If x 6∈ C then ∀y we have VC(x, y) = 0

Thus each set C in NP may be viewed as a set of theorems in the complete and
sound proof system defined by the verification process VC .

A sequence y which “convinces” VC that x ∈ C is often called a witness or
certificate for the membership of x in C. Again, we stress that the definition of
NP is not concerned with how difficult it is to come up with a witness y. Indeed,
the acronym NP stands for “Nondeterministic Polynomial time”, where the
nondeterminism captures the ability of a hypothetical “nondeterministic”
machine to “guess” a witness y (if one exists), and then verify it deterministically.
Nonetheless, the complexity of finding a witnesses is of course important, as it
captures the search problem associated to NP sets. Every decision problem C
(indeed every verifier VC for C) in NP comes with a natural search problem
associated to it: Given x ∈ C, find a short witness y that “convinces” VC . A
correct solution to this search problem can be easily verified by VC .
While it is usually the search problems which occupy us, from a computational
standpoint it is often more convenient to study the decision versions. Almost
always both versions are equivalent3.
These definitions of NP were first given (independently and in slightly different
forms) by Cook [21] and Levin [71]. There is much more to these seminal papers
than this definition, and we’ll discuss it later at length.
It is evident that decision problems in P are also in NP. The verifier VC is
simply taken to be the efficient algorithm for C, and the witness y can be the
empty sequence.

Corollary 2.4. P ⊆ NP

A final comment is that problems in NP have trivial exponential time
algorithms. Such algorithms search through all possible short witnesses, and try
to verify each. Can we always speed up this brute-force algorithm?

2.4. The P vs. NP question, its meaning and importance.
The class NP is extremely rich (we’ll see examples a little later). There are
literally thousands of NP problems in mathematics, optimization, artificial
intelligence, biology, physics, economics, industry and more which arise naturally
out of different necessities, and whose efficient solutions will benefit us in
numerous ways. They beg for efficient algorithms, but decades (and sometimes
longer) of effort has only succeeded for a few. Is it possible that all sets in NP
possess efficient algorithms, and these simply were not discovered yet? This is the
celebrated P vs. NP question. It appeared explicitely first in the aforementioned
papers of Cook and Levin, but had some informal precursers. Of particular

3A notable possible exception is the set COMPOSITES and the suggested verification pro-
cedure to it, accepting as witness a nontrivial factor. Note that while COMPOSITES ∈ P as a
decision problem, the related search problem is equivalent to Integer Factorization, which is not
known to have an efficient algorithm.

10 Avi Wigderson

interest is a remarkable letter written by Gödel to von Neumann about 15 years
earlier which raises this fundamental question quite clearly, and shows how aware
Gödel was of its significance (see the surveys [99, 49] for the original letter and
translation, as well as much more on the subject at hand).

Open Problem 2.5. Does P = NP?

What explains the abundance of so many natural, important problems in the
class NP? Probing the intuitive meaning of the definition of NP, we see that it
captures many tasks of human endeavor for which a successful completion can be
easily recognized. Consider the following professions, and the typical tasks they
are facing (this will be extremely superficial, but nevertheless instructive):

• Mathematician: Given a mathematical claim, come up with a proof for it.

• Scientist: Given a collection of data on some phenomena, find a theory
explaining it.

• Engineer: Given a set of constraints (on cost, physical laws, etc.) come up
with a design (of an engine, bridge, laptop ...) which meets these
constraints.

• Detective: Given the crime scene, find “who’s done it”.

What is common to all this multitude of tasks is that we can tell a good solution
when we see one (or we at least think we can). In various cases “we” may be the
academic community, the customers, or the jury, but we expect the solution to be
short, and efficiently verifiable, just as in the definition of NP.
The richness of NP follows from the simple fact that such tasks abound, and
their mathematical formulation is indeed an NP-problem. For all these tasks,
efficiency is paramount, and so the importance of the P vs. NP problem is
evident. The colossal implications of the possibility that P = NP are evident as
well – every instance of these tasks can be solved, optimally and efficiently.
One (psychological) reason people feel that P = NP is unlikely, is that tasks as
above often require a degree of creativity which we don’t expect a simple
computer program to have. We admire Wiles’ proof of Fermat’s last theorem, the
scientific theories of Newton, Einstein, Darwin, Watson and Crick, the design of
the Golden Gate bridge and the Pyramids, and sometimes even Hercule Poirot’s
and Miss Marple’s analysis of a murder, precisely because they seem to require a
leap which cannot be made by everyone, let alone a by simple mechanical device.
Our intuition rebels against the possibility that finding solutions is always as easy
as verifying them. Indeed, we would argue that a fair intuitive translation of the
P vs. NP problem is can creativity be automated?, where creativity is taken to
be this abundant, verifiable kind. This inevitably leads us to:

Conjecture 2.6. P 6= NP

Back to mathematics! Given the discussion above, one may wonder why it is so
hard to prove that indeed P 6= NP – it seems completely obvious. We will

P, NP and Mathematics – a computational complexity perspective 11

discuss attempts and difficulties soon, developing a methodology which will
enable us to identify the hardest problems in NP. But before that, we turn to
discuss a related question with a strong relation to mathematics: the NP versus
coNP question.

2.5. The NP versus coNP question, its meaning and
importance. Fix a property C ∈ I. We already have the interpretations:

• C ∈ P if it is easy to check that object x has property C.

• C ∈ NP if it is easy to certify that object x has property C.

to which we now add

• C ∈ coNP if it is easy to certify that object x does not have property C.

where we formally define

Definition 2.7 (The class coNP). A set C is in the class coNP iff its
complement C̄ = I \ C is in NP.

While the definition of the class P is symmetric4, the definition of the class NP is
asymmetric. Having nice certificates that a given object has property C, does not
automatically entail having nice certificates that a given object doesn’t have it.
Indeed, when we can do both, we are achieving a mathematics’ holy grails of
understanding structure, namely necessary and sufficient conditions, sometimes
phrased as a duality theorem. As we know well, such results are rare. When we
insist (as we’ll do) that the given certificates are short, efficiently verifiable ones,
they are even rarer. This leads to the conjecture

Conjecture 2.8. NP 6= coNP

First note that this conjecture implies P 6= NP. We will discuss at length
refinements of this conjecture in section 4 on Proof Complexity.
Despite the shortage of such efficient complete characterizations, namely
properties which are simultaneously in NP ∩ coNP, they nontrivially exist. Here
is a list of some exemplary ones.

• LINEAR PROGRAMMING: Systems of consistent linear inequalities5

• ZERO-SUM GAMES6: Finite zero-sum games in which one player can
gain at least (some given value) v.

• GRAPH CONNECTIVITY The set of graphs in which every pair of
vertices is connected by (a given number) k disjoint paths.

4Having a fast algorithm to determine if an object has a property C is equivalent to having a
fast algorithm for the complementary set C̄.

5Indeed this generalizes to other convex bodies given by more general constraints, like semi-
definite programming.

6This problem was later discovered to be equivalent to LINEAR PROGRAMMING.

12 Avi Wigderson

• PARTIAL ORDER WIDTH Finite partial orders whose largest
anti-chain has at most (a given number) w elements.

• PRIMES: Prime numbers.

These examples of problems in NP ∩ coNP were chosen to make a point. At the
time of their discovery (by Farkas, von Neumann, Menger, Dilworth, and Pratt
respectively) these mathematicians were seemingly interested only in
characterizing these structures. It is not known if they attempted to find efficient
algorithms for these problems. However all of these problems turned out to be in
P, with some solutions entering the pantheon of efficient algorithms (e.g. the
Ellipsoid method of Khachian [64] and the Interior-Point method of
Karmarkar [61], both for LINEAR PROGRAMMING, and the recent
breakthrough of Agrawal, Kayal and Saxena [5] for PRIMES7

Is there a moral to this story? Only that sometimes, when we have an efficient
characterization of structure, we can hope for more – efficient algorithms. And
conversely, a natural stepping stone towards an elusive efficient algorithm may be
to first get an efficient characterization.
Can we expect this magic to always happen? Does NP ∩ coNP = P? At the end
of subsection 2.11 we shall see another list of problems in NP ∩ coNP which
have resisted efficient algorithms for decades, and for some (e.g. factoring
integers), humanity literally banks on their difficulty for electronic commerce
security. Indeed, the following is generally believed:

Conjecture 2.9. NP ∩ coNP 6= P

Note again that this conjecture 2.9 implies P 6= NP, but that it is independent
of conjecture 2.8.
We now return to develop the main mechanism which will help us study such
questions: efficient reductions.

2.6. Reductions – a partial order of computational difficulty.
This subsection deals with relating the computational difficulty of problems for
which we have no efficient solutions (yet).
Recall that we can regard any classification problem (on finitely described
objects) as a subset of our set of inputs I. Efficient reductions provide a natural
partial order on such problems, that capture their relative difficulty.

Definition 2.10 (Efficient Reductions). Let C,D ⊂ I be two classification
problems. f : I→ I is an efficient reduction from C to D if f ∈ P and for every
x ∈ I, x ∈ C iff f(x) ∈ D. In this case we call f an efficient reduction from C to
D. We write C ≤ D if there is an efficient reduction from C to D.

The definition of efficient computation allows two immediate observations on the
usefulness of efficient reductions. First, that indeed ≤ is transitive, and thus
defines a partial order. Second, that if C ≤ D and D ∈ P then also C ∈ P.

7It is interesting that assuming the Extended Riemann Hypothesis, a simple polynomial time
algorithm was given 30 years earlier by Miller [76].

P, NP and Mathematics – a computational complexity perspective 13

Formally, C ≤ D means that solving the classification problem C is
computationally not much harder than solving D. In some cases one can replace
computationally by the (vague) term mathematically. Often such usefulness in
mathematical understanding requires more properties of the reduction f than
merely being efficiently computable (e.g. we may want it to be represented as a
linear transformation, or a low dimension polynomial map), and indeed in some
cases this is possible. When such a connection between two classification
problems (which look unrelated) can be proved, it can mean the importability of
techniques from one area to another.
The power of efficient reductions to relate “seemingly unrelated” notions will
unfold in later sections. We’ll see that they can relate not only classification
problems, but such diverse concepts as hardness to randomness, average-case to
worst case difficulty, proof length to computation time, the relative power of
geometric, algebraic and logical proof systems, and last but not least, the security
of electronic transactions to the difficulty of factoring integers. In a sense,
efficient reductions are the backbone of computational complexity. Indeed, given
that polynomial time reductions can do all these wonders, no wonder we have a
hard time characterizing the class P!

2.7. Completeness. We now return to classification problems. The partial
order of their difficulty, provided by efficient reductions, allows us to define the
hardest problems in a given class. Let C be any collection of classification
problems (namely every element of C is a subset of I). Of course, here we will
mainly care about the class C = NP.

Definition 2.11 (Hardness and Completeness). A problem D is called C-hard if
for every C ∈ C we have C ≤ D. If we further have that D ∈ C then D is called
C-complete.

In other words, if D is C-complete, it is a hardest problem in the class C: if we
manage to solve D efficiently, we have done so for all other problems in C. It is
not apriori clear that a given class has any complete problems! On the other
hand, a given class may have many complete problems, and by definition, they all
have essentially the same complexity. If we manage to prove that any of them
cannot be efficiently solved, then we automatically have done so for all of them.
It is trivial, and uninteresting, that every problem in the class P is in fact
P-complete under our definition. It becomes interesting when we find such
universal problems in classes of problems for which we don’t have efficient
algorithms. By far, the most important of all classes is NP.

2.8. NP-completeness. As mentioned earlier, the seminal papers of Cook
[21] and Levin [71] defined NP, efficient reducibilities and completeness, but the
crown of their achievement was the discovery of a natural NP-complete problem.

Definition 2.12. [The problem SAT] A Boolean formula is a logical expression
over Boolean variables (that can take values in {0, 1}) with connectives ∧,∨,¬,
e.g. (x1 ∨ x2) ∧ (¬x3). Let SAT denote the set of all satisfiable Boolean formulae

14 Avi Wigderson

(namely those formulae for which there is a Boolean assignment to the variables
which gives it the value 1).

Theorem 2.13. [21, 71] SAT is NP-complete.

We recall again the meaning of that statement. For every set C ∈ NP there is an
efficient reduction f : I→ I such that x ∈ C iff the formula f(x) is satisfiable!
Furthermore, the proof gives an extra bonus which turns out to be extremely
useful: given any witness y that x ∈ C (via some verifier VC), the same reduction
converts it to a Boolean assignment satisfying the formula f(x). In other words,
this reduction translates not only between the decision problems, but also
between the associated search problems.
You might (justly) wonder how can one prove a theorem like that. Certainly the
proof cannot afford to look at all problems C ∈ NP separately. The gist of the
proof is a generic transformation, taking a description of the verifier VC for C,
and emulating its computation on input x and hypothetical witness y to create a
Boolean formula f(x) (whose variables are the bits of y). This formula simply
tests the validity of the computation of VC on (x, y), and that this computation
outputs 1. Here the locality of algorithms (say described as Turing machines)
plays a central role, as checking the consistency of each step of the computation
of VC amounts simply to a constant size formula on a few bits. To summarize,
SAT captures the difficulty of the whole class NP. In particular, the P vs. NP
problem can now be phrased as a question about the complexity of one problem,
instead of infinitely many.

Corollary 2.14. P = NP iff SAT ∈ P

A great advantage of having one complete problem at hand (like SAT), is that
now, to prove that another problem (say D ∈ NP) is NP-complete, we only
need to design a reduction from SAT to D (namely prove SAT ≤ D). We
already know that for every C ∈ NP we have C ≤ SAT , and transitivity of ≤
takes care of the rest.
This idea was used powerfully in the next seminal paper, of Karp [62]. In his
paper, he listed 21 problems from logic, graph theory, scheduling and geometry
which are NP-complete. This was the first demonstration of the wide spectrum
of NP-complete problems, and initiated an industry of finding more. A few years
later Gary and Johnson [35] published their book on NP-completeness, which
contains hundreds of such problems from diverse branches of science, engineering
and mathematics. Today thousands are known.

2.9. The nature and impact of NP-completeness. It is hard to
do justice to this notion in a couple of paragraphs, but we’ll try. More can be
found e.g. in [81].
NP-completeness is a unique scientific discovery – there seems to be no parallel
scientific notion which so pervaded so many fields of science and technology. It
became a standard for hardness for problems whose difficulty we have yet no
means of proving. It has been used both technically and alegorically to illustrate

P, NP and Mathematics – a computational complexity perspective 15

a difficulty or failure to understand natural objects and phenomena.
Consequently, it has been used as a justification for channeling effort in less
ambitious (but more productive) directions. We elaborate below on this effect
within mathematics.
NP-completeness has been an extremely flexible and extendible notion, allowing
numerous variants which enabled capturing universality in other (mainly
computational, but not only) contexts. It led to the ability of defining whole
classes of problems by single, universal ones, with the benefits mentioned above.
In particular, the whole evolution of computational complexity, the theory of
algroithms and most other areas in Theoretical Computer Science have been
guided by the powerful approach of reduction and completeness.
It would be extremely interesting to explain the ubiquity of NP-completeness.
Being highly speculative for a moment, we can make the following analogies of its
mystery with physics. The existence of NP-completeness in such diverse fields of
inquiry may be likened to the existence of the same building blocks of matter in
remote galaxies, begging for a common explanation of the same nature as the big
bang theory. We later discuss the near lack of natural objects in the (seemingly
huge) void of problems in NP which are neither in P nor NP-complete. This
raises wonders about possible “dark matter”, which we have not developed the
means of observing yet.

2.10. Some NP-complete problems. Again, we note that all
NP-complete problems are equivalent in a very strong sense. Any algorithm
solving one can be simply translated into an equally efficient algorithm solving
any other. We can finally see the proof of Theorem 2.1 from the beginning of this
section. It follows from the following two theorems.

Theorem 2.15. [8] The set 2DIO is NP-complete.

Theorem 2.16. [2] The set KNOT is NP-complete.

Recall that to prove NP-completeness of a set, one has to prove two things: that
it is in NP, and that it is NP-hard. In almost all NP-complete problems,
membership in NP (namely the existence of short certificates) is easy to prove.
E.g. for 2DIO one can easily see that if there is a positive integer solution to
Ax2 + By + C = 0 then indeed there is one whose length (in bits) is polynomial
in the lengths of A,B,C and so a short witness is simply a root. But KNOT is
an exception, and the short witnesses for the knot having a small genus requires
Haken’s algorithmic theory of normal surfaces, considerably enhanced (even short
certificates for unknottedness in R3 are hard to obtain, see [54]). Let us discuss
what these NP-completeness results mean, first about the relationship between
the two, and then about each individually.
The proofs that these problems are complete both follow by reductions from
(variants of) SAT . The combinatorial nature of these reductions may put doubt
into the possibility that the computational equivalence of these two problems
implies the ability of real “technology transfer” between topology and number
theory. Nevertheless, now that we know of the equivalence, perhaps simpler and

16 Avi Wigderson

more direct reductions can be found between these problems. Moreover, we stress
again that for any instance, say (M,K, G) ∈KNOT, if we translate it using this
reduction to an instance (A,B,C) ∈2DIO and happen (either by sheer luck or
special structure of that equation) to find an integer root, the same reduction will
translate that root back to a description of a genus G manifold which bounds the
knot K. Today many such NP-complete problems are known throughout
mathematics, and for some pairs the equivalence can be mathematically
meaningful and useful (as it is between some pairs of computational problems).
But regardless of the meaning of the connection between these two problems,
there is no doubt what their individual NP-completeness means. Both are
mathematically “nasty”, as both embed in them the full power of NP. If
P 6= NP, there are no efficient algorithms to describe the objects at hand.
Moreover, assuming the stronger NP 6= coNP, we should not even expect
complete characterization (e.g. above we should not expect short certificates that
a given quadratic equation does not have an positive integer root).
In short, NP-completeness suggests that we lower our expectations of fully
understanding these properties, and study perhaps important special cases,
variants etc. Note that such reaction of mathematicians may anyway follow the
frustration of unsuccessful attempts at general understanding. However, the
stamp of NP-completeness may serve as moral justification for this reaction. We
stress the word may, as the judges for accepting such a stamp can only be the
mathematicians working on the problem, and how well the associated
NP-completeness result captures the structure they try to reveal. We merely
point out the usefulness of a formal stamp of difficulty (as opposed to a general
feeling), and its algorithmic meaning.
We now list a few more NP-complete problems of different nature, to give a
feeling for the breadth of this phenomena. All but the last two appear in Karp’s
original article [62]. Again, hundreds more can be found in [35].

• 3COLOR: Given a graph, can its vertices be colored from {Red, Green,
Blue} with no adjacent vertices receiving the same color?

• KNAPSACK: Given a sequence of integers a1, ..., an and b, decide if there
exists a subset J such that

∑
i∈J ai = b.

• INTEGER PROGRAMMING: Given a polytope in Rn (by its
bounding hyperplanes), does it contain an integer point?

• CLIQUE Given a graph and an integer k, are there k vertices with all
pairs mutually adjacent?

• QUADRATIC EQUATIONS: Given a system of multivariate
polynomial equations of degree at most 2, over a finite field (say GF (2)), do
they have a common root?

• SHORTEST LATTICE VECTOR: Given a Lattice L in Rn and an
integer k, is the shortest nonzero vector of L of (Euclidean) length ≤ k?

P, NP and Mathematics – a computational complexity perspective 17

2.11. Other problems in NP (and outside it). We have seen that
NP contains a vast number of problems, but that difficulty-wise they seem to fall
into two equivalence classes. P, which are all efficiently solvable, and
NP-complete. Of course, if P = NP the two classes are the same. But assuming
P 6= NP, is there anything else? Ladner [69] proved the following result:

Theorem 2.17. [69] If P 6= NP, then there are infinitely many levels of
difficulty in NP. More precisely, there are sets C1, C2, · · · in NP such that for
all i we have have Ci ≤ Ci+1 but Ci+1 6≤ Ci.

But are there natural problems which do not fall in the main two classes P and
NP-complete? We know only of very precious few: those on the list below, and a
handful of others.

• INTEGER FACTORING: Given an integer, find its prime factors.

• APPROX SHORTEST LATTICE VECTOR: Given a lattice L in Rn

and an integer k, does the shortest vector of L has (Euclidean) length in
the range [k, kn].

• STOCHASTIC GAMES: White, Black and Nature alternate moving a
token on the edges of directed graph. Nature’s moves are random. Given a
graph, a start and target nodes for the token, does White have a strategy
which will make the token reach the target with probability ≥ 1/2?

• GRAPH ISOMORPHISM: Given two graphs, are they isomorphic?
Namely, is there a bijection between their vertices which preserves the
edges?

Clearly, we cannot rule out that efficient algorithms will be found for any of
them. But we do know that the first three are in NP ∩ coNP. Thus assuming
NP 6= coNP they cannot be NP-complete! A similar conclusion holds for the
fourth problem, which follows from the “interactive proof” for graph
non-isomorphism in Section 6.
Finding other natural examples (or better yet, classes of examples) like these will
enhance our understanding of the gap NP \ P. Considering the examples above,
we expect that mathematics is a more likely source for them than, say, industry.

2.11.1. Average-case complexity and one-way functions. It is important
to mention that the “worst-case” analysis we adopted throughout (looking at the
time to solve the worst input of each length) is certainly not the only interesting
complexity measure. Often “average-case” analysis, focusing on typical
complexity, is far more interesting to study. After all, solving a hard problem
most of the time may suffice in some applications. Algorithms for natural
problems under natural input distributions is an important field. But typically
the input distribution is unknown, and defining “average-case” complexity in a
meaningful way is highly nontrivial. This was first done by Levin [72], and the
reader can find more in [55, 37].

18 Avi Wigderson

There are also situations where hardness on average is crucial, as is the case in
Cryptography8. This important field, which led to the enormous growth of
electronic commerce, grew out of computational complexity, and relies on such
computational assumptions. We now turn to explain the main one briefly, and
recommed [38, 39] for much more.
The most basic primitive of modern cryptography is the one-way function, which
was first defined in the seminal paper of Diffie and Helman [28]. Intuitively, these
are functions which are easy to compute (on every input) but are hard on
average to invert. More precisely

Definition 2.18 (One-way function). A function f : I→ I is called one-way if
f ∈ P, but for any efficient algorithm A and every n,

Pr[f(A(f(x)) = x] < 1/3

where the probability is taken over the uniform distribution of n-bit sequences.

It is not hard to see that decision versions of one-way fuctions are in
NP ∩ coNP, and thus establishing their existence is harder than proving
Conjecture 2.9. Thus cryptography postulates their existence.
Remarkably, only a handful of candidates are known today. The most popular
are the multiplication of two primes (whose inverse is Integer Factorization), the
exponentiation modulo a prime number (whose inverse is Discrete logarithm)9,
and a certain linear operator (whose inverse gives the shortest vector in a lattice
problem)[3]. We note also that [73] constructed a complete one-way function,
namely a function which is one way if one-way functiosn exists at all.
We conclude with noting that one-way functions suffice only for some problems in
cryptography, and a seemingly more powerful primitive is the so called trap-door
function. We recommend the article [55] which deals with the relative strength of
such hardness assumptions discussed in this section, and the worlds they
“imply”. One basic problem is:

Open Problem 2.19. Does P 6= NP implies that one-way functions exits?

2.11.2. Other types of computational problems. There are many other
types of computational problems which arise naturally and do not fall into the
class NP. By far the most natural types are

• Optimization problems Fix an NP problem, and a cost function on
solutions (witnesses). Given an input, find the best solution for it (e.g find
the largest clique, the shortest path, the minimum energy configuration,
etc.)

• Counting problems Fix an NP problem. Given an input, find the
number of solutions (witnesses) for it. Many problems in Enumerative
Combinatorics and in Statistical Physics fall in this category.

8The fact that hardness is useful at all is a surpsising fact, and we shall meet it again when
discussing pseudorandomness.

9this problem has a variant over elliptic curves

P, NP and Mathematics – a computational complexity perspective 19

• Strategic problems Given a game, find an optimal strategy for a player.
Equivalently, given a position in the game, find the best move. Many
problems in Economics, Decsion Theory as well as Chess and Go fall in this
category.

• Total functions Finding objects which are guaranteed to exist (like local
optima, fixed points, Nash equilibria), usually by nonconstructive
arguments [80].

We will not elaborate on these families of important problems here. We only
remark that the methodology of efficient reductions and completeness illuminate
much of their computational complexity. They all fit in natural complexity
classes like NP, have complete problems, and are related in different ways to
each other and to the P vs. NP problem.

3. Lower bounds, and attacks on P vs. NP
To prove that P 6= NP we must show that for a given problem, no efficient
algorithm exists. A result of this type is called a lower bound (limiting from below
the computational complexity of the problem). Several powerful techniques for
proving lower bounds have emerged in the past decades. They apply in two (very
different) settings. We now describe both, and try to explain our understanding
of why they seem to stop short of proving P 6= NP. We only mention very
briefly the first, diagonalization, and concentrate on the second, Boolean circuits.

3.1. Diagonalization and relativization. The diagonalization
technique goes back to Cantor and his argument that there are more real
numbers than algebraic numbers. It was used by Gödel in his Incompleteness
Theorem, and by Turing in his undecidability results, and then refined to prove
computational complexity lower bounds. A typical theorem in this area is that
more time buys more computational power, e.g. there are functions computable
in time n3, say, which are not computable in time n2. The heart of such
arguments is the existence of a “universal algorithm”, which can simulate every
other algorithm with only small loss in efficiency.
Can such arguments be used to separate P from NP? This depends on what we
mean by “such arguments”. The paper by Baker, Gill and Solovey [13] suggested
a feature shared by many similar complexity results, called relativization, and
then proceeded to show that relativizing arguments do not suffice to resolve the
P vs. NP question. In the 3 decades since that paper complexity theory grew far
more sophisticated, but nevertheless almost all new results obtained do relativize.
However, a few exceptions in the areas of probabilistic proofs (e.g Theorem 6.3)
are known not to relativize, but these are essentially upper bound results. More
on this subject can be found in Chapter 14.3 in [79], Chapter 9.2 of [98], and
even more in [33].

20 Avi Wigderson

3.2. Boolean circuits. A Boolean circuit may be viewed as the “hardware
analog” of an algorithm (software). Computation on the binary input sequence
proceeds by a sequence of Boolean operations (called gates) from the set {∧,∨,¬}
(logical AND, OR and NEGATION) to compute the output(s). We assume that
∧,∨ are applied to two arguments. We note that while an algorithm can handle
inputs of any length, a circuit can only handle one input length (its number of
input “wires” it has). A circuit is commonly represented as a (directed, acyclic)
graph, with the assignments of gates to its internal vertices. We note that a
Boolean formula is simply a circuit whose graph structure is a tree.
Recall that the I was the set of all binary sequences, and that Ik is the set of
sequences of length exactly k. If a circuit has n inputs and m outputs, it is clear
that it computes a function f : In → Im. The efficiency of a circuit is measured
by its size, which is the analog of time in algorithms.

Definition 3.1 (Circuit size). Denote by S(f) the size of the smallest Boolean
circuit computing f .

As we care about asymptotic behavior, we will be interested in sequences of
functions f = {fn}, where fn is a function on n input bits. We will study the
complexity S(fn) asymptotically as a function of n, and denote it S(f). E.g. let
Par be the parity function, computing if the number of 1’s in a binary string is
even or odd. Then Parn is its restriction to n-bit inputs, and S(Par) = O(n).
It is not hard to see that an algorithm (say a Turing machine) for a function f
that runs in time T gives rise to a circuit family for the functions fn of sizes
(respectively) (T (n))2, and so efficiency is preserved when moving from
algorithms to circuits. Thus proving lower bounds for circuits implies lower
bounds for algorithms, and we can try to attack the P vs. NP this way.

Definition 3.2 (The class P/poly). Let P/poly denote the set of all functions
computable by a family of polynomial size circuits.

Conjecture 3.3. NP 6⊆ P/poly

Is this a reasonable conjecture? As mentioned above, P ⊆ P/poly. Does the
converse hold? It actually fails badly! There exist undecidable functions f (which
cannot be computed by Turing machines at all, regardless of their running time),
that have linear-size circuits. This extra power comes from the fact that circuits
for different input lengths share no common description (and thus this model is
sometimes called “non-uniform”).
So isn’t proving circuit lower bounds a much harder task than proving P 6= NP
question? There is a strong sentiment that the extra power provided by
non-uniformity is irrelevant to P vs. NP. This sentiment comes from a result of
Karp and Lipton [63], proving that NP ⊆ P/poly implies a suprising uniform
“collapse”, similar to, but weaker than the statement NP = coNP.
Still, what motivates replacing the Turing machine by the potentially more
powerful circuit families, when seeking lower bounds? The hope is that focusing
on a finite model will allow for combinatorial techniques to analyze the power
and limitations of polynomial-size circuits. This hope has materialized in the
study of restricted classes of circuits (see e.g. Section 3.2.2).

P, NP and Mathematics – a computational complexity perspective 21

3.2.1. Basic results and questions. We have already mentioned several basic
facts about Boolean circuits, in particular the fact that they can efficiently
simulate Turing Machines. The next basic fact is that most Boolean functions
require exponential size circuits.
This is due to the gap between the number of functions and the number of small
circuits. Fix the number of inputs bits n. The number of possible functions on n
bits is precisely 22n

. On the other hand, the number of circuits of size s is (via a
crudely estimating the number of graphs of that size) at most 2s2

. Since every
circuit computes one function, we must have s > 2n/3 for most functions.

Theorem 3.4. For almost every function f : In → {0, 1}, S(f) ≥ 2n/3.

So hard functions for circuits (and hence for Turing machines) abound. However,
the hardness above is proved via a counting argument, and thus supplies no way
of putting a finger on one hard function. We will return to the nonconstructive
nature of this problem in Section 4. So far, we cannot prove such hardness for
any explicit function f (e.g., for an NP-complete function like SAT).

Conjecture 3.5. S(SAT) 6= 2o(n)

The situation is even worse – no nontrivial lower-bound is known for any explicit
function. Note that for any function f on n bits (which depends on all its
inputs), we trivially must have S(f) ≥ n, just to read the inputs. The main open
problem of circuit complexity is beating this trivial bound.

Open Problem 3.6. Find an explicit function f : In → In for which
S(f) 6= O(n).

A particularly basic special case of this problem, is the question whether addition
is easier to perform than multiplication. Let ADD and MULT denote, respectively,
the addition and multiplication functions on a pair of integers (presented in
binary). For addition we have an optimal upper bound; that is, S(ADD) = O(n).
For multiplication, the standard (elementary school) quadratic-time algorithm
can be greatly improved [95] (via Discrete Fourier Transforms) to slightly
super-linear, yielding S(MULT) = O(n log n log log n). Now, the question is whether
or not there exist linear-size circuits for multiplication (i.e., is S(MULT) = O(n))?
Unable to prove any nontrivial lower bound, we now turn to restricted models.
There has been some remarkable successes in developing techniques for proving
strong lower bounds for natural restricted classes of circuits. We discuss in some
detail only one such model.

3.2.2. Monotone circuits. Many natural functions are monotone in a natural
sense. Here is an example, from our list of NP-complete problems. Let CLIQUE
be the function that, given a graph on n vertices (say by its adjacency matrix),
outputs 1 iff it contains a complete subgraph of size (say)

√
n (namely, all pairs of

vertices in some
√

n subset are connected by edges). This function is monotone,
in the sense that adding edges cannot destroy any clique. More generally, a

22 Avi Wigderson

Boolean function is monotone, if “increasing” the input (flipping input bits from
0 to 1) cannot “decrease” the function value (cause it to flip from 1 to 0).
A natural restriction on circuits comes by removing negation from the set of
gates, namely allowing only {∧,∨}. The resulting circuits are called monotone
circuits and it is easy to see that they can compute every monotone function.
A counting argument similar to the one we used for general circuits, shows that
most monotone functions require exponential size monotone circuits. Still,
proving a super-polynomial lower bound on an explicit monotone function was
open for over 40 years, till the invention of the so-called approximation method by
Razborov[85].

Theorem 3.7. [85, 1] CLIQUE requires exponential size monotone circuits.

Very roughly speaking, the approximation method replaces each of the {∧,∨}
gates of the (presumed small) monotone circuit with other, judiciously chosen
(and complex to describe) approximating gates, {∧̃, ∨̃} respectively. The choice
satisfies two key properties:

1. Replacing one particular gate by its approximator can only affect the
output of the circuit on very few (in some natural but nontrivial counting
measure) inputs. Thus in a small circuit, having a few gates, even replacing
all gates results in a circuit that behaves as the original circuit on most
inputs.

2. However, the output of every circuit (regardless of size) made of the
approximating gates, produces a function which disagrees with CLIQUE on
many inputs.

The CLIQUE function is well known to be NP-complete, and it is natural to
wonder if small monotone circuits suffice for monotone functions in P. However,
the approximation method was also used by Razborov [86] to prove a super
polynomial size lower bound for monotone circuits computing the PERFECT
MATCHING problem (which is monotone and is in P): given a graph, can one
pair up the vertices such that every pair is connected by an edge?

Theorem 3.8. [86] PERFECT MATCHING requires super polynomial size
monotone circuits.

Interestingly, no exponential lower bound is known for monotone circuits for this
problem, but different techniques [92] prove that it requires exponential size
monotone formulae (namely circuits which are trees), and [105] gives exponential
size monotone circuit lower bounds for another natural problem in P.

3.2.3. Why is it hard to prove circuit lower bounds?. The 1980’s have
seen a flurry of new techniques for proving circuit lower bounds on natural,
restricted classes of circuits. Besides the Approximation Method, these include
the Random Restriction method of Furst, Saxe, Sipser [34] and Ajtai [4] (used to
prove lower bounds on constant depth circuits), the Communication Complexity

P, NP and Mathematics – a computational complexity perspective 23

method of Karchmer and Wigderson [68] (used to prove lower bounds on
monotone formulae), and others (see the survey [16]). But they all fall short of
obtaining any nontrivial lower bounds for general circuits, and in particular
proving that P 6= NP.
Is there a fundamental reason for this failure? The same may be asked about any
long standing mathematical problem (e.g. the Riemann Hypothesis). A natural
(vague!) answer would be that, probably, the current arsenal of tools and ideas
(which may well have been successful at attacking related, easier problems) does
not suffice.
Remarkably, Complexity Theory can make this vague statement into a theorem!
Thus we have a “formal excuse” for our failure so far: we can classify a general
set of ideas and tools, which are responsible for virtually all restricted lower
bounds known, yet must necessarily fail for proving general ones. This
introspective result, developed by Razborov and Rudich [89], suggests a
framework called Natural Proofs. They first show that this framework
encapsulates all known lower bounds. Then they show that natural proofs of
general circuit lower bounds are unlikely, in the following sense. Any natural
proof of a lower nound surprisingly implies, as a side-effect, subexponential
algorithms for inverting every candidate one-way functions.
Specifically, a natural (in this formal sense) lower bound would imply
subexponential algorithms for such functions as Integer Factoring and Discrete
Logarithm, generally believed to be difficult (to the extent that the security of
electronic commerce worldwide rely on such assumptions). This connection
strongly uses pseudorandomness which will be discussed later. A simple corollary
is that no natural proof exist to show that Integer Factoring requires circuits of
size 2n1/100

(the best current upper bound is 2n1/3
).

One interpretation of the aforementioned result, is an “independence result” of
general circuit lower bounds from a certain natural fragment of Peano
Arithmetic. This may suggest that the P vs. NP problem may be independent
from Peano Arithmetic, or even Set Theory, which is certainly a possibility.
We finally note that it has been over 10 years since the publication of the Natural
Proof paper. The challenge it raised: prove a non natural lower bound was not
yet met!

4. Proof complexity

For extensive surveys on this material see [15] and in [93].
The concept of proof is what distinguishes the study of mathematics from all
other fields of human inquiry. mathematicians have gathered millennia of
experience to attribute such adjectives to proofs as “insightful, original, deep”
and most notably, “difficult”. Can one quantify, mathematically, the difficulty of
proving various theorems? This is exactly the task undertaken in Proof
Complexity. It seeks to classify theorems according to the difficulty of proving
them, much like Circuit Complexity seeks to classify functions according to the

24 Avi Wigderson

difficulty of computing them. In proofs, just like in computation, there will be a
number of models, called proof systems capturing the power of reasoning allowed
to the prover.
Proof systems abound in all areas of mathematics (and not just in Logic). Let us
see some examples.

1. Hilbert’s Nullstellenzatz is a (sound and complete) proof system in which
theorems are inconsistent sets of polynomial equations. A proof expresses
the constant 1 as a linear combination of the given polynomials.

2. Each finitely presented group can be viewed as a proof system, in which
theorems are words that reduce to the identity element. A proof is the
sequence of substituting relations to generate the identity.

3. Reidemeister moves are a proof system in which theorems are trivial,
unknotted, knots. A proof is the sequences of moves reducing the given
plane diagram of the knot into one with no crossings.

4. von Neumann’s Minimax theorem gives a proof system for every zero-sum
game. A theorem is an optimal strategy for White, and its proof is a
strategy for Black with the same value.

In each of these and many other examples, the length of the proof plays a key
role, and the quality of the proof system is often related to how short proofs it
can provide.

1. In Nullstellenzatz (over fields of characteristic 0), length (of the
“coefficient” polynomials, measured usually by their degree and height),
usually plays a crucial role in the the efficiency of commutative algebra
software, e.g. Grobner Basis algorithms.

2. The word problem in general is undecidable. For hyperbolic groups,
Gromov’s polynomial upper bound on proof length has many uses, perhaps
the most recent is in his own construction of finitely presented groups with
no uniform embeddings into Hilbert space [45]

3. Reidemeister moves are convenient combinatorially, but the best upper
bounds on length in this system to prove that a given knot is unknotted are
exponential [53]. Stronger proof systems were developed to give polynomial
upper bounds for proving unknottedness [54].

4. In zero-sum games, happily all proofs are of linear size.

We stress that the asymptotic view point – considering families of “theorems”
and measuring their proof length as a function of the description length of the
theorems – is natural and prevalent. As for computation, this asymptotic
viewpoint reveals structure of the underlying mathematical objects, and economy
(or efficiency) of proof length often means a better understanding. While this
viewpoint is appropriate for a large chunk of mathematical work, you may rebel

P, NP and Mathematics – a computational complexity perspective 25

that it cannot help explaining the difficulty of single problems, such as the
Riemann Hypothesis or P vs. NP. But even such theorems may be viewed
asymptotically (not always illuminating them better though). The Riemann
Hypothesis has equivalent formulations as a sequence of finite statements, e.g.
about cancellations in the Möbius function. More interestingly, we’ll see later a
formulation of P/poly vs. NP problem, as a sequence of finite statements which
are strongly related to the Natural Proofs paradigm mentioned above.
All theorems which will concern us in this section are universal statements (e.g an
inconsistent set of polynomial equations is the statement that every assignments
to the variables fails to satisfy them). A short proof for a universal statement
constitutes an equivalent formulation which is existential – the existence of the
proof itself (e.g. the existence of the “coefficient” polynomials in Nullstellensatz
which implies this inconsistency). The mathematical motivation for this focus is
clear – the ability to describe a property both universally and existentially
constitutes necessary and sufficient conditions – a holy grail of mathematical
understanding. Here we’ll be picky and quantify that understanding according to
our usual computational yardstick - the length of the existential certificate.
We shall restrict ourselves to propositional tautologies. This will automatically
give an exponential (thus a known, finite) upper bound on the proof length, and
will restrict the ballpark (as with P vs. NP) to the range between polynomial
and exponential. The type of statements, theorems and proofs we shall deal with
is best illustrated by the following example.

4.1. The pigeonhole principle - a motivating example.
Consider the well-known “pigeonhole principle”, stating that there is no injective
mapping from a finite set to a smaller one. While trivial, we note that this
principle was essential for the counting argument proving the existence of
exponentially hard functions (Theorem 3.4) – this partially explains our interest
in its proof complexity. More generally, this principle epitomizes non-constructive
arguments in mathematics, such as Minkowski’s theorem that a centrally
symmetric convex body of sufficient volume must contain a lattice point. In both
results, the proof does not provide any information about the object proved to
exist. We note that other natural tautologies capture the combinatorial essence
of topological proofs (e.g. Brauer’s fixedpoint theorem, the Borsuk-Ulam theorem
and Nash’ equilibrium) – see [80] for more.
Let us formulate it and discuss the complexity of proving it. First, we turn it into
a sequence of finite statements. Fix m > n. Let PHPm

n stand for the statement
there is no 1-1 mapping of m pigeons to n holes. To formulate it mathematically,
imagine an m× n matrix of Boolean variables xij describing a hypothetical
mapping (with the interpretation that xij = 1 means that the i’th pigeon is
mapped to j’th hole).

Definition 4.1 (The pigeonhole principle). The pigeonhole principle PHPm
n now

states that

• either pigeon i is not mapped anywhere (namely, all xij for a fixed i are
zeros),

26 Avi Wigderson

• or that some two are mapped to the same hole (namely, for some different
i, i′ and some j we have xij = xi′j = 1)10.

These conditions are easily expressible as a formula in the variables xij (called
propositional formula), and the pigeonhole principle is the statement that this
formula is a tautology (namely satisfied by every truth assignment to the
variables).
Even more conveniently, the negation of this tautology (which is a contradiction
can be captured by a collection of constraints on these Boolean variables which
are mutually contradictory. These constraints can easily be written in different
languages:

• Algebraic: as a set of constant degree polynomials over GF (2).

• Geometric: as a set of linear inequalities with integer coefficients (to
which we seek a {0, 1} solution).

• Logical: as a set of Boolean formulae.

We shall see soon that each setting naturally suggests (several) reasoning tools,
such as variants of Nullstellenzatz in the algebraic setting, of Frege systems in the
logical setting, and Integer Programming heuristics in the geometric setting. All
of these can formalized as proof systems, that suffice to prove this (and any
other) tautology. Our main concern will be in the efficiency of each of these proof
systems, and their relative power, measured in proof length. Before truning to
some of these specific systems, we discuss this concept in full generality.

4.2. Propositional proof systems and NP vs. coNP. .
Most definitions and results in this subsection come from the paper which
initiated this research direction, by Cook and Reckhow [24]. We define proof
systems and the complexity measure of proof length for each, and then relate
these to complexity questions we have met already.
All theorems we’ll consider will be propositional tautologies. Here are the salient
features that we expect11 from any proof system.

• Completeness: every true statement has a proof.

• Soundness: no false statement has a proof.

• Verification efficiency: Given a mathematical statement T and a
purported proof for it π, it can be easily checked if indeed π proves T in the
system. Note that here efficiency of the verification procedure refers to its
running-time measured in terms of the total length of the alleged theorem
and proof.

10Note that we do not rule out the possibility that some pigeon is mapped to more than one
hole - this condition can be added, but the truth of the principle remains valid without it.

11Actually, even the first two requirements are too much to expect from strong proof systems,
as Gödel famously proved in his Incompleteness Theorem. However, for propositional statements
which have finite proofs there are such systems.

P, NP and Mathematics – a computational complexity perspective 27

Remark 4.2. Note that we dropped the requirement used in the definition of
NP, limiting the proof to be short (polynomial in the length of the claim). The
reason is, of course, that proof length is our measure of complexity.

All these conditions are concisely captured, for propositional statements, by the
following definition.

Definition 4.3 (Proof systems). [24] A (propositional) proof system is a
polynomial-time Turing machine M with the property that T is a tautology if
and only if there exists a (“proof”) π such that M(π, T) = 1.12

As a simple example, consider the following “Truth-Table” proof system MTT .
Basically, this machine will declare a formula T a theorem if evaluating it on
every possible input makes T true. A bit more formally, for any formula T on n
variables, the machine MTT accepts (π, T) if π is a list of all binary strings of
length n, and for each such string σ, T (σ) = 1.
Note that MTT runs in polynomial time in its input length, which the combined
length of formula and proof. But in the system MTT proofs are (typically) of
exponential length in the size of the given formula. This leads us to the definition
of the efficiency (or complexity) of a general propositional proof system M – how
short is the shortest proof of each tautology.

Definition 4.4 (Proof length). [24] For each tautology T , let SM (T) denote the
size of the shortest proof of T in M (i.e., the length of the shortest string π such
that M accepts (π, T)). Let SM (n) denote the maximum of SM (T) over all
tautologies T of length n. Finally, we call the proof system M polynomially
bounded iff for all n we have SM (n) ≤ nO(1).

Is there a polynomially bounded proof system (namely one which has polynomial
size proofs for all tautologies)? The following theorem provides a basic
connection of this question with computational complexity, and the major
question of Section 2.5. Its proof follows quite straightforwardly from the
NP-completeness of SAT, the problem of satisfying propositional formulae (and
the fact that a formula is satisfiable iff its negation is a tautology).

Theorem 4.5. [24] There exists a polynomially bounded proof system if and only
if NP = coNP.

In the next section we focus on natural restricted proof systems. We note that a
notion of reduction between proof systems, called polynomial simulation, was
introduced in [24] and allows to create a partial order of the relative power of
some systems. This is but one example to the usefulness of the methodology
developed within Complexity Theory after the success of NP-completeness.

12In agreement with standard formalisms (see below), the proof is seen as coming before the
theorem.

28 Avi Wigderson

4.3. Concrete proof systems. All proof systems in this section are of
the familiar variety, starting with the deductive system introduced in The
Elements of Euclid for Plane Geometry. We start with a list of formulae, and
using simple (and sound!) derivation rules infer new ones (each formula is called
a line in the proof). In the contradiction systems below, we start with a
contradictory set of formulae, and derive a basic contradiction (e.g. ¬x ∧ x,
1 = 0, 1 < 0), depending on the setting. We highlight some results and open
problems on the proof length of basic tautologies in algebraic, geometric and
logical systems.

4.3.1. Algebraic proof systems. We restrict ourselves to the field GF (2).
Here a natural representation of a Boolean contradiction is a set of polynomials
with no common root. We always add to such a collection the polynomials x2 − x
(for all variables x) which ensure Boolean values (and so we can imagine that we
are working over the algebraic closure).
Hilbert’s Nullstellensatz theorem suggests a proof system. If f1, f2, · · · fn (with
any number of variables) have no common root, there must exist polynomials
g1, g2, · · · gn such that

∑
i figi ≡ 1. The gi’s constitute a proof, and we may ask

how short its description is.
A related, but far more efficient system, (intuitively based on computations of
Grobner bases), is Polynomial Calculus, abbreviated PC, which was introduced in
[19]. The lines in this system are polynomials (represented explicitly by all
coefficients), and it has two deduction rules, capturing the definition of an ideal:
For any two polynomials g, h and variable xi, we can use g, h to derive g + h, and
we can use g and xi to derive xig. It is not hard to see (using linear algebra),
that if this system has a proof of length s for some tautology, then this proof can
be found in time polynomial in s. Recalling our discussion on P vs. NP, we
don’t expect such a property from really strong proof systems.
The PC is known to be exponentially stronger than the one suggested above.
More precisely, there are tautologies which require exponential length
Nullstellensztz proofs, but only polynomial PC-proofs. However, strong size lower
bounds (obtained from degree lower bounds) are known for PC system as well.
Indeed, the pigeonhole principle is hard for this system. For its natural encoding
as a contradictory set of quadratic polynomials, Razborov [87] proved

Theorem 4.6. [87] For every n and every m > n, SPC(PHPm
n) ≥ 2n/2, over every

field.

4.3.2. Geometric proof systems. Yet another natural way to represent
Boolean contradictions is by a set of regions in space containing no integer
points. A wide source of interesting contradictions are Integer Programs from
Combinatorial Optimization. Here, the constraints are (affine) linear inequalities
with integer coefficients (so the regions are subsets of the Boolean cube carved
out by halfspaces). A proof system infers new inequalities from old ones in a way
which does not eliminate integer points.

P, NP and Mathematics – a computational complexity perspective 29

The most basic system is called Cutting Planes (CP), introduced by Chvatal [25].
Its lines are linear inequalities with integer coefficients. Its deduction rules are
(the obvious) addition of inequalities, and the (less obvious) dividing the
coefficients by a constant (and rounding, taking advantage of the integrality of
the solution space)13.
Let us look at the pigeonhole principle PHPm

n again. It is easy to express it as a
set of contradictory linear inequalities: For every pigeon, the sum of its variables
should be at least 1. For every hole, the sum of its variables should be at most 1.
Thus adding up all variables in these two ways implies m ≤ n, a contradiction.
Thus, the pigeonhole principle has polynomial size CP proofs.
While PHPm

n is easy in this system, exponential lower bounds were proved for
other tautologies, and we explain how next. Consider the tautology CLIQUEk

n: No
graph can simultaneously have a k-clique and a a legal k − 1-coloring. It is easy
to formulate it as a propositional formula. Notice that it somehow encodes many
instances of the pigeonhole principle, one for every k-subset of the vertices.

Theorem 4.7. [82] SCP(CLIQUE
√

n
n) ≥ 2n1/10

The proof of this theorem by Pudlak [82] is quite remarkable. It reduces this
proof complexity lower bound into a circuit complexity lower bound. In other
words, he shows that any short CP-proof of tautologies of certain structure, yields
a small circuit computing a related Boolean function. You probably guessed that
for the tautology at hand, the function is indeed the CLIQUE function
introduced earlier. Moreover, the circuits obtained are monotone, but of the
following, very strong form. Rather than allowing only ∧,∨ as basic gates, they
allow any monotone binary operation on real numbers! Pudlak then goes to
generalize Razborov’s approximation method (Section 3.2.2) for such circuits and
proves an exponential lower bound on the size they require to compute CLIQUE.

4.3.3. Logical proof systems. The proof systems in this section will all have
lines that are Boolean formulae, and the differences will be in the structural
limits imposed on these formulae. We introduce the most important ones: Frege,
capturing “polynomial time reasoning”, and Resolution, the most useful system
used in automated theorem provers.
The most basic proof system, called Frege system, puts no restriction on the
formulae manipulated by the proof. It has one derivation rule, called the cut rule:
from the two formulas A ∨ C, B ∨ ¬C we may infer the formula A ∨B. Every
basic book in Logic has a slightly different way of describing the Frege system -
one convenient outcome of the computational approach, especially the notion of
efficient reductions between proof systems, is a proof (in [24]) that they are all
equivalent, in the sense that the shortest proofs (up to polynomial factors) are
independent of which variant you pick!
The Frege system can polynomially simulate both the Polynomial Calculus and
the Cutting Planes systems. In particular, the counting proof described above for

13E.g. from the inequality 2x+4y ≥ 1 we may infer x+2y ≥ 1
2
, and by integrality, x+2y ≥ 1.

30 Avi Wigderson

the pigeonhole principle can be carried out efficiently in the Frege system (not
quite trivially!), yielding

Theorem 4.8. [17] SFrege(PHPn+1
n) = nO(1).

Frege systems are basic in the sense that they are the most common in Logic,
and in that polynomial length proofs in these systems naturally corresponds to
“polynomial-time reasoning” about feasible objects. In short, this is the proof
analog of the computational class P. The major open problem in proof
complexity is to find any tautology (as usual we mean a family of tautologies)
that has no polynomial-size proof in the Frege system.

Open Problem 4.9. Prove superpolynomial lower bounds for the Frege system.

As lower bounds for Frege are hard, we turn to subsystems of Frege which are
interesting and natural. The most widely studied system is Resolution. Its
importance stems from its use by most propositional (as well as first order)
automated theorem provers, often called Davis-Putnam or DLL procedures [30].
This family of algorithms is designed to find proofs of Boolean tautologies,
arising in diverse applications from testing computer chips or communication
protocols, to basic number theory results.
The lines in Resolution refutations are clauses, namely disjunctions of literals
(like x1 ∨ x2 ∨ ¬x3). The inference cut rule simplifies to the resolution rule: for
two clauses A,B and variable x, we can use A ∨ x and B ∨ ¬x to derive the
clause A ∨B.
Historically, the first major result of proof complexity was Haken’s14 [48]
exponential lower bound on Resolution proofs for the pigeonhole principle.

Theorem 4.10. [48] SResolution(PHPn+1
n) = 2Ω(n)

To prove it, Haken developed the bottleneck method, which is related to both the
random restriction and approximation methods mentioned in the circuit
complexity chapter. This lower bound was extended to random tautologies (under
a natural distribution) in [26]. The width method of [18] provides much simpler
proofs for both results.

4.4. Proof complexity vs. circuit Complexity. These two areas
look like very different beasts, despite the syntactic similarity between the local
evolution of computation and proof. To begin with, the number of objects they
care about differ drastically. There are doubly exponentially number of functions
(on n bits), but only exponentially many tautologies of length n. Thus a
counting argument shows that some functions (albeit non explicit) require
exponential circuit lower bounds (Theorem 3.4), but no similar argument can
exist to show that some tautologies require exponential size proofs. So while we
prefer lower bounds for natural, explicit tautologies, existence results of hard
tautologies for strong systems are interesting in this setting as well.

14Armin Haken, the son of Wolfgang Haken cited earlier for his work on knots

P, NP and Mathematics – a computational complexity perspective 31

Despite the different nature of the two areas, there are deep connections between
them. Quite a few of the techniques used in circuit complexity, most notably
Random Restrictions were useful for proof complexity as well. The lower bound
we saw in the previous subsection is extremely intriguing: a monotone circuit
lower bound directly implies a (nonmonotone) proof system lower bound! This
particular type of reduction, known as the Interpolation Method was successfully
used for other, weak, proof systems, like Resolution. It begs the question if one
can use reductions of a similar nature to obtain lower bounds for strong system
(like Frege), from (yet unproven) circuit lower bounds?

Open Problem 4.11. Does NP 6⊆ P/poly imply superpolynomial Frege lower
bounds?

Why are Frege lower bounds hard? The truth is, we don’t know. The Frege
system (and its relative, Extended Frege), capture polynomial time reasoning, as
the basic objects appearing in the proof are polynomial time computable. Thus
superpolynomial lower bounds for these systems is the proof complexity analog of
proving superpolynomial lower bounds in circuit complexity. As we saw, for
circuits we at least understand to some extent the limits of existing techniques,
via Natural Proofs. However, there is no known analog of this framework for
proof complexity.
We conclude with a tautology capturing the P/poly vs. NP question. Thus we
use proof complexity to try showing that proving circuit lower bounds is difficult.
This tautolgy, suggested by Razborov, simply encodes the statement
NP 6⊆ P/poly, namely that SAT does not have small circuits. More precisely, fix
n, an input size to SAT, and s, the circuit size lower bound we attempt to
prove15. The variables of our “Lower Bound” formula LBs

n encode a circuit C of
size s, and the formula simply checks that C disagrees with SAT on at least one
instance φ of length n (namely that either φ ∈ SAT and C(φ) = 0 or φ 6∈ SAT
and C(φ) = 1.) Note that LBs

n has size N = 2O(n), so we seek a superpolynomial
in N lower bound on its proof length16.
Proving that LBs

n is hard for Frege will in some sense give another explanation to
the difficulty of prove circuit lower bound. Such a result would be analogous to
the one provided by Natural Proofs, only without relying on the existence of
one-way functions. But paradoxically, the same inability to prove circuit lower
bounds seems to prevent us from proving this proof complexity lower bound!
Even proving that LBs

n is hard for Resolution has been extremely difficult. It
involves proving hardness of a weak pigeonhole principle17 – one with
exponentially more pigeons than holes. It was finally achieved with the
tour-de-force of Raz [91], and further strengthening of [88].

15e.g. we may choose s = nlog log n for a superpolynomial bound, or s = 2n/1000 for an
exponential one

16Of course, if NP ⊆ P/poly then this formula is not a tautology, and there is no proof at all.
17This explicates the connection we mentioned between the pigeonhole principle and the count-

ing argument proving existence of hard functions

32 Avi Wigderson

5. Randomness in computation

The marriage of randomness and computation has been one of the most fertile
ideas in computer science, with a wide variety of ideas and models ranging from
cryptography to computational learning theory to distributed computing. It
enabled new understanding of fundamental concepts such as knowledge, secret,
learning, proof, and indeed, randomness itself. In this and the next section we
will just touch the tip of the iceberg, things most closely related to the questions
of efficient computation and proofs. The following two subsections tell the
contradicting stories on the power and weakness of algorithmic randomness.
Good sources are [77, 38] and the relevant chapters in [93].

5.1. The power of randomness in algorithms. Let us start with
an example, which illustrates a potential dilema met by mathematicians who try
to prove identities. Assume we work here over the Rationals Q. The n× n
Vandermunde matrix V (x1, · · · , xn) in n variables has (xi)j−1 in the (i, j)
position. The Vandermunde Identity states:

Proposition 5.1. det V (x1, · · · , xn) ≡
∏

i<j(xi − xj)

While this particular identity is simple to prove, many others like it are far
harder. Suppose you conjectured an identity f(x1, · · ·xn) ≡ 0, concisely
expressed (as above) by a short formula say, and wanted to know if it is true
before investing much effort in proving it. Of course, if the number of variables n
and the degree d of the polynomial f are large (as in the example), expanding
the formula to check that all coefficients vanish will take exponential time and is
thus infeasible. Indeed, no subexponential time algorithm for this problem is
known! Is there a quick and dirty way to find out?
A natural idea suggests itself: assuming f is not identically zero, then the variety
it defines has measure zero, and so if we pick at random values to the variables,
chances are we’ll miss it. If f is identically zero, every assignment will evaluate to
zero. It turns out that the random choices can be restricted to a finite domain,
and the following can be simply proved:

Proposition 5.2. [94, 110] Let f be a nonzero polynomial of degree at most d in
n variables. Let ri be uniformly and independently chosen from {1, 2, · · · , 3d}.
Then Pr[f(r1, · · · rn) = 0] ≤ 1/3.

Note that since evaluating the polynomial at any given point is easy given a
formula for f , the above constitutes an efficient probabilistic algorithm for
verifying polynomial identities. Probabilistic algorithms differ from the
algorithms we have seen so far in two ways. First, they postulate the ability to
toss coins and generate random bits. Second, they make errors. The beauty is,
that if we are willing to accept both (and we should!), we seem to be getting far
more efficient algorithms for seemingly hard problems.
The deep issue of whether randomness exists in nature has never stopped humans
from assuming it anyway, for gambling, tie breaking, polls and more. A

P, NP and Mathematics – a computational complexity perspective 33

fascinating subject of how to harness seemingly unpredictable weak sources of
randomness (such as sun spots, radioactive decay, weather, stock-market
fluctuations or Internet traffic) and converting them into a uniform stream of
independent, unbiased coin flips, is the mathematical study of randomness
extractors which we shall not describe here (see the excellent survey [96]). We
shall postulate access of our algorithms to such perfect coin flips, and develop the
theory from this assumption. We note that whatever replaces these random bits
in practical implementations of probabilistic algorithms seems empirically to
work pretty well.
The error seems a more serious issue - we compute to discover a fact, not a
“maybe”. However, we do tolerate uncertainty in real life (not to mention
computer hardware and software errors). Observe that the error of probabilistic
algorithm is much more controllable - it can be decreased arbitrarily, with small
penalty in efficiency. Assume our algorithm makes error at most 1/3 on any
input (as the one above). Then running it k times, with independent random
choices each time, and taking a majority vote would reduce the error to exp(−k)
on every input!
Thus we revise our notion of efficient computation to allow probabilistic
algorithms with small error, and define the probabilistic analog BPP (for
Bounded error, Probabilistic, Polynomial time) of the class P.

Definition 5.3 (The class BPP). [36] The function f : I→ I is in BPP if there
exists a probabilistic polynomial time algorithm A, such that for every input x,
Pr[A(x) 6= f(x)] ≤ 1/3.

Again, we stress that this probability bound is over the internal coin-tosses of the
algorithm, and holds for every input. Moreover, replacing the error probability
1/3 by exp(−|x|) leaves the definition unchanged (by the amplification idea
above).
Probabilistic algorithms were used in Statistics (for sampling) and Physics
(Monte Carlo methods), before Computer Science existed. However, their
introduction into Computer Science in the 1970s, starting with the probabilistic
Primality tests of Solovey-Strassen[102] and Rabin [83], was followed by an
avalanche that increased the variety and sophistication of problems amenable to
such attacks tremendously - a glimpse to this scope can be obtained e.g. from the
textbook [77]. We restrict ourselves here only to those which save time, and note
that randomness seems to help save other resources as well!
We list here a few sample problems which have probabilistic polynomial time
algorithms18, but for which the best known deterministic algorithms require
exponential time. These are amongst the greatest achievements of this field.

• GENERATING PRIMES: Given an integer x (in binary), produce a
prime in the interval [x, 2x].

• POLYNOMIAL FACTORING:[60] Given an arithmetic formula

18Strictly speaking they are not in BPP as they compute relations rather than functions.

34 Avi Wigderson

describing a multivariate polynomial (over a large finite field), find its
irreducible factors19

• PERMANENT APPROXIMATION:[59] Given a nonnegative real
matrix, approximate its permanent20 to within (say) a factor of 2.

• VOLUME APPROXIMATION:[27] Given a convex body in high
dimension (e.g. a polytope given by its bounding hyperplanes),
approximate its volume21 to within (say) a factor of 2.

The most basic question about this new computational paradigm of probabilistic
computation, is whether it really adds any power over deterministic computation.

Open Problem 5.4. Does BPP = P?

The empirical answer is a emphatically NO: we have no idea in sight as to how to
solve the problems above, and many others, even in subexponential time
deterministically, let alone in polynomial time. However, the next subsection
should change this viewpoint.

5.2. The weakness of randomness in algorithms. Let us start
from the end: if any of the numerous NP-complete problems we saw above is
hard then randomness is weak. There is a tradeoff between what the words hard
and weak formally mean. To be concrete, we give perhaps the most dramatic
such result of Impagliazzo and Wigderson [56].

Theorem 5.5. [56] If SAT cannot be solved by circuits of size 2o(n) then
BPP = P. Moreover, SAT can be replaced in this statement by any problem
which has 2O(n)-time algorithms22.

Rephrasing, exponential circuit lower bounds on essentially any problem of
interest imply that randomness can be always eliminated from algorithms
without sacrificing efficiency (up to polynomial). Many variants of this result
exist. Weakening the assumed lower bound does weaken the derterminisitic
simulation of randomness, but leaves it highly nontrivial. For example, if
NP 6⊆ cP/poly then BPP has deterministic algorithms with subexponential
runtime exp(nε) for every ε > 0. Moreover, analogs are known where the
hardness assumption is uniform (of the type P 6= NP), e.g. [57].
Note one remarkable nature of such theorems: if one computational task is hard,
than another is easy!

19Note that it is not even clear that the output has a representation of polynomial length –
but it does!

20Unlike its relative, the determinant, which can be easily computed efficiently by Gauss elim-
ination, the permanent is known to be #P -complete (which implies NP-hardness) to compute
exactly

21Again, computing the volume exactly is #P -complete.
22This class includes mostNP-complete problems, but far more complex ones, e.g. determining

optimal strategies of games, not believed to be in NP

P, NP and Mathematics – a computational complexity perspective 35

We are now faced with deciding which of two extremely appealing beliefs to drop
(as we discover that they are contradictory!). Either that natural problems (e.g.
NP-complete ones) cannot be solved efficiently, or that randomness is extremely
powerful. Given that our intuition about the former seems far more established,
we are compelled to conclude that randomness cannot significantly speed-up
algorithms, and indeed BPP = P.

Conjecture 5.6. BPP = P

We now turn to give a high level description of the ideas leading to this
surprising set of results, which are generally known under the heading Hardness
vs. Randomness23. We refer the reader to the surveys in [38, 93] for more.
We are clearly after a general way of eliminating the randomness used by any
(efficient!!) probabilistic algorithm. Let A be such an algorithm, working on
input x, and using as randomness the uniform distribution Un on binary
sequences of length n. Assume A computes a function f , and its error on any
input is at most 1/3. The idea is to “fool” A, replacing the distribution Un by
another distribution D, without A noticing it!
This leads to the key definition of pseudorandomness of Yao [108].

Definition 5.7 (Pseudorandomness). [108] Call a distribution D pseudorandom
if no efficient process24 can “tell it apart”25 from the uniform distribution Un.

By the definition, any such distribution is as good as Un, as A’s computation on
x is and efficient process.

Remark 5.8. This definition specializes a more general one of computational
indistinguishability between probability distributions, which originates in the
landmark paper of Goldwasser and Micali [14]. This key behavioristic definition
of randomness underlies the mathematical foundations of modern cryptography
which are layed out in that paper. We also note that computational
indistinguishability suggests a coarsening of the usual statistical distance (L1

norm) between probability distributions, and we will see its importance again in
Section 6.2

Back to our derandomization task. Can we efficiently generate a pseudorandom
distribution D from only very few random bits? Specifically, we would like to
compute D = G(Um) where G is a deterministic polynomial time algorithm and
m << n. Such functions G which produce psedorandom distributions from short
random seeds are called pseudorandom generators. With them, a deterministic
simulation will only need to enumerate all possible 2m seed values (rather than
the trivial 2n). For each such seed it will use the output of G as “randomness”
for the computation of A on x, and take a majority vote. As the error of A was
at most 1/3 under Un, and A’s output probability changes by at most 1/9

23The title of Silvio Micali PhD thesis, who, with his advisor Manuel Blum constructed the
first hardness based pseudorandom bit generator.

24This can mean an algorithm or a circuit.
25E.g. produce a given output with noticably different probability, say 1/9.

36 Avi Wigderson

between D and Un, the new error is at most 4/9, so the majority vote will
correctly compute f(x), for every x. If m gets down to O(log n), then
2m = nO(1), and this becomes a deterministic polynomial time algorithm.
But how can we construct such a pseudorandom generator G? Since the
definition of pseudorandomness depends on the computational limitations of the
algorithm, one might hope to embed some hard function g into the workings of
the generator G, and argue as follows. If an efficient process can distinguish the
output of G from random, we will turn it into an efficient algorithm for solving
the (assumed hard) function g. This yields a contradiction.
Thus the heart is this conversion of hardness into pseudorandomness. The two
main different methods for implementing this idea are the original generator of
Blum-Micali and Yao[14, 108] (which must use “one-way” functions 2.11.1 as its
hard g’s), and the one by Nisan-Wigderson [78] (which can use any function g
with an exponential time algorithm). We note that here the hardness required of
g is of the average-case variety, which is either assumed in the former, or has to
be obtained fromworst-case hardness in the latter. Thus this field invents and
uses new types of efficient reductions, translating nonstandard computational
tasks (from distinguishing a random and pseudorandom distributions, to
computing a function well on average, to computing it in the worst case.
We note that this very general line of attack may benefit from specialization. We
saw that to derandomize a probabilistic algorithm all we need is a way to
efficiently generate a low entropy distribution which fools it. But for specific,
given algorithms this may be easier that for all of them. Indeed, careful analysis
of some important probabilistic algorithms, and the way they use their
randomness, has enabled making them deterministic via tailor-made generators.
These success stories (of which the most dramatic is the recent deterministic
primality test of [5]) actually suggest the route of probabilistic algorithms and
then derandomization as a paradigm for deterministic algorithm design. More in
the textbook [77]. Finally, me mention the remarkable result of [65] showing that
derandomizing the simple probabilistic algorithm embodied in Proposition 5.2 is
equivalent to proving certain circuit lower bounds.
We conclude by stressing randomness remains indispensible in many fields of
computer science, including cryptography, distributed computing, and as we shall
see next, probabilistic proofs.

6. Randomness in proofs

The introduction of randomness into proofs has been one of the most powerful
ideas in Theoretical Computer Science, with quite a number of unexpected
concsequences, and in particular new, powerful characterizations of NP. This
section summarizes the main defintions and results of this research direction.
Again, we refer the readers to the survesy in [58, 38, 93] and the references
therein for more detail.
Let us start again with an example. Consider the graph isomorphism problem

P, NP and Mathematics – a computational complexity perspective 37

mentioned in Section 2.11: given two graphs G and H, determine if they are
isomorphic. No polynomial time algorithm is known for this problem. Now
assume that an infinitely powerful teacher (who in particular can solve such
problems), wants to convince a limited, polynomial time student, that two graphs
G, H are isomorphic. This is easy – the teacher simply provides the bijection
between the vertices of the two graphs, and the student can verify that edges are
preserved. This is merely a rephrasing of the fact that ISO, the set of all
isomorphic pairs (G, H), is in NP. But is there a similar way for the teacher to
convince the students that two given graphs are not isomorphic? It is not known
if ISO ∈ coNP, so we have no such short certificates for nonisomorphism. What
can be done?

Here is an idea from [41], which allows the student and teacher more elaborate
interaction, as well as coin tossing. The student challenges the teacher as follows.
He (secretly) flips a coin to choose one of the two input graphs G or H. He then
creates a random isomorphic copy K of the selected graph, by randomly
permuting the vertex names (again with secret coin tosses). He then presents the
teacher with K, who is challenged to tell if K is isomorphic to G or H. Observe
that if G and H are indeed non isomorphic as claimed, then the answer is unique,
and the challenge can always be met (recall that the teacher has infinite
computational power). If however G and H are isomorphic, no teacher can guess
the origin of K with probability greater than 1/2. Simply, the two distributions:
random isomorphic copy of G, and random isomorphic copy of H, are identically
distributed, and so cannot be told apart regardless of computational power.
Furthermore, if the teacher succeeds in a 100 independent challenges of this type,
his probability of succeeding in all when G and H are isomorphic go down to
2−100, yielding an overwhelmingly convincing interactive proof that the graphs
are indeed non isomorphic. And we note another remarkable fact: if you are
worried about the need for the student to hide his coin tosses, there is another
(more sophisticated) interactive proof due to [46] in which all coin tosses of the
student are available to the prover!

We return to the general discussion. We have already discussed proof systems in
sections 2.3 and 4. In both, the verifier that a given witness to a given claim is
indeed a proof was required to be an efficient deterministic procedure. In the
spirit of the previous section, we now relax this requirement and allow the verifier
to toss coins, and err with a tiny probability.

To make the quentiefiers in this definition clear, as well as allow more general
interaction between the prover and the verifier, it will be convenient to view a
proof system for a set S (e.g., of satisfiable formulae) as a game between an
all-powerful prover and the (efficient, probabilistic) verifier: Both receive an
input x, and the prover attempts to convince the verifier that x ∈ S.
Completeness dictates that the prover succeeds for every x ∈ S. Soundness
dictates that every prover fails for every x 6∈ S. In the definition of NP, both of
these conditions should hold with probability 1 (in which case we may think of the
verifier as deterministic). In probabilistic proof systems we relax this condition,
and only require that soundness and completeness hold with high probability

38 Avi Wigderson

(e.g. 2/3, as again the error can be reduced arbitrarily via iteration and majority
vote). In other words, the verifier will only rarely toss coins that will cause it to
mistake the truth of the assertion.
This extension of standard NP proofs was suggested independently in two
papers – one of Goldwasser, Micali and Rackoff [40] (whose motivation was from
Cryptography, in which interactions of this sort are prevalent), and the other by
Babai [9] (whose motivation was to provide such interactive “certificates” for
natural problems in group theory which were not known to be in coNP). While
the original definitions differed (in whether the coin tosses of the verifier are
known to the prover or not), the paper of Goldwasser and Sipser [46] mentioned
above showed both models equivalent.
This relaxation of proofs is not suggested as a substitute to the notion of
mathematical truth. Rather, much like probabilistic algorithms, it is suggested to
greatly increase the set of claims which can be efficiently proved in cases where
tiny error is immaterial. As we shall see below, it turns out to yield enormous
advances in computer science, while challenging our basic intuition about the
very nature of proof. We exhibit three different remarkable manifestations of
that: the first shows that we can prove many more theorems, the second that we
can convince others that we have a correct proof of a given theorem without
revealing anything else about our proof, and the third that verifiers need only
look at a handful of bits in a proof to be convinced of its validity.

6.1. Interactive proof systems. When the verifier is deterministic, we
can always assume that the prover simply sends a single message (the purported
“proof”), and based on this message the verifier decides whether to accept or
reject the common input x as a member of the target set S.
When the verifier is probabilistic, interaction may add power. We thus consider a
(randomized) interaction between the parties, which may be viewed as an
“interrogation” by a persistent student, asking the teacher “tough” questions in
order to be convinced of correctness. Since the verifier ought to be efficient (i.e.,
run in time polynomial in |x|), the number of such rounds of questions is
bounded by a polynomial.

Definition 6.1 (The class IP). [40, 9] The class IP (for Interactive Proofs)
contains all sets S for which there is a verifier that accepts every x ∈ S with
probability 1 (after interacting with an adequate prover), but rejects any x 6∈ S
with probability at least 1/2 (no matter what strategy is employed by the prover).

We have already seen the potential power of such proofs in the example of graph
isomorphism above, and several others were given. But the full power of IP
begun to unfold only after an even stronger proof system, allowing multiple
provers, was suggested by Ben-Or et. al. [11] (motivated by cryptographic
considerations). A lively account of the rapid progress is given in [10]. One
milestone was showing that IP proofs can be given to every set in coNP
(indeed, much more, but for classes we have not defined).

Theorem 6.2. [74] coNP ⊆ IP.

P, NP and Mathematics – a computational complexity perspective 39

This was shortly followed by a complete characterization of IP by Shamir [97].
He proved it equivalent to PSPACE , the class of sets computable with
polynomial memory (and possibly exponential time). We note that this class
contains problems which seem much harder than NP and coNP, e.g. finding
optimal strategies of games.

Theorem 6.3. [97] IP = PSPACE.

We conclude by noting that this success story required the confluence and
integration of ideas from different “corners” of computational complexity. A
central technical tool which was developed for these results, and would paly a
major role in Section 6.3, is the arithmetic encoding of Boolean formulae by
polynomials, and the ultra-fast verification of their properties.

6.2. Zero-knowledge proof systems. Assume you could prove the
Riemann Hypothesis. You want to convince the mathematical world of your
achievement, but am extremely paranoid that if you revealed the proof, someone
else will claim it was his idea. Is there a way to resolve this dilema? Hold on.
The thrust in this section is not to prove more theorems, but rather to have
proofs with additional properties. Randomized and interactive verification
procedures as in Section 6.1 allow the (meaningful) introduction of zero-knowledge
proofs, which are proofs that yield nothing beyond their own validity.
Such proofs seem impossible – how can you convince anyone of anything they do
not know already, without giving them any information? In mathematics,
whenever we cannot prove a theorem ourselves, we feel that seeing a proof will
necessarily teach us something we didn’t know!
Well, the interactive proof above, that two graphs are non isomorphic, at least
suggest that in some special cases zero-knowledge proofs are possible! Note that
in each round of that proof, the student knew perfectly well what the answer to
his challenge was, so he learned nothing. In other words, if the graphs were
indeed non isomorphic, he could have generated the conversation without the
teacher’s help! Nevertheless, the conversation convinced him that indeed the
graphs were non isomorphic.
How can we define this notion formally? Extending the intuition above, we
demand that on every correct claim, the verifier should be able to efficiently
generate, by himself, (the probability distribution of) his conversation with the
prover. More generally, we would be satisfied if what the verifier can generate by
himself is indistinguishable from the actual conversation (in the same sense as
pseudorandom distributions are indistinguishable from the uniform distribution
5.7).
This important definition of zero knowledge proof was suggested in the same
seminal paper [40] which defined interactive proofs.
Now which theorems have zero-knowledge proofs? Well, if the verifier can
determine the answer with no aid, it is trivial. Thus, any set in BPP has a
zero-knowledge proof, in which the prover says nothing (and the verifier decides
by itself). A few examples believed outside BPP like Graph Non-Isomorphism,
have are known to have such proofs unconditionally.

40 Avi Wigderson

What is surprising is that if one allows the standard assumpion of cryptography,
namely assuming that one-way functions exist (see section 2.11.1), then
zero-knowledge proofs exist for every theorem of interest! Goldreich, Micali and
Wigderson [41] proved:

Theorem 6.4. [41] Assume the existence of one-way functions. Then every set
in NP has a zero-knowledge interactive proof.

Here again we see the power of reductions and completeness! This theorem is
proved in 2 steps. First, [41] gives a zero-knowledge proof for statements of the
form a given graph is 3-colorable, using various structural properties of this
problem. Then, it uses the NP-completeness of this problem (in the strong form
which allows efficient translation of witnesses, not just instances, mentioned after
Theorem 2.12) to infer that all NP sets have a zero-knowledge proof.
We stand by the interpretation above of this theorem. If you proved the Riemann
Hypothesis, and were nerveous to reveal the proof lest the listener would rush to
publish it first, you could convince him/her, beyond any reasonable doubt, that
you indeed have such a proof, in a way which will reveal no information about it.
Simply use the proof that 3COLOR is NP-complete to translate the statement
of the Riemann Hypothesis into the appropriate graph, translate your proof of it
into the appropriate legal 3-coloring, and use the protocol of [41].
But the grand impact of this theorem is not in the above toy application.
Zero-knowledge proofs are a major tool for forcing participants in cryptographic
protocols to behave correctly, without compromising anyone’s privacy. This is
combined with the secure evaluation of functions [109, 42], where (completely
different) reductions and completeness are again central to the proof. Together
they allow for the implementation of just about any cryptographic task (for a
good example for the complexity of such tasks try to imagine playing a game of
Poker over the telephone).

6.3. Probabilistically checkable proofs. In this section we turn to
one of the deepest and most surprising discoveries on the power of probabilistic
proofs, and its consequences to the limits of approximation algorithms.
We return to the non-interactive mode, in which the verifier receives a (alleged)
written proof. But now we restrict its access to the proof so as to read only a
small part of it (which may be randomly selected). An excellent analogy is to
imagine a referee trying to decide the correctness of a long proof by sampling a
few lines of the proof. It seems hopeless to detect a single “bug” unless the entire
proof is read. But this intuition is valid only for the “natural” way of writing
down proofs! It fails when robust formats of proofs are used, (and, as usual, we
tolerate a tiny probability of error).
Such robust proof systems are called PCPs (for Probabilistically Checkable
Proofs). Loosely speaking, a pcp system for a set S consists of a probabilistic
polynomial-time verifier having access to individual bits in a string representing
the (alleged) proof26. The verifier tosses coins and accordingly accesses only a

26in case of NP-proofs the length of the proof is polynomial in the length of the input

P, NP and Mathematics – a computational complexity perspective 41

constant number of the bits in the alleged proof. It should accepts every x ∈ S
with probability 1 (when given a real proof, adequately encoded), but rejects any
x 6∈ S with probability at least 1/2 (no matter to which “alleged proof” it is
given).
A long sequence of ideas and papers, surveyed in [6, 104], culminated in the
“PCP theorem” of Arora et.al.:

Theorem 6.5 (The PCP Theorem). [7] Every set in NP has a pcp system.
Furthermore, there exists a polynomial-time procedure for converting any
NP-witness to the corresponding, “robust” pcp-proof.

Indeed, the proof of the PCP Theorem suggests a new way of writing “robust”
proofs, in which any bug must “spread” all over. Equivalently, if the probability
of finding a bug found in these handful of bits scanned by the verifier is small
(say ¡1/10), the theorem is correct! This remarkable theorem was proved with a
rather complex and technical proof, which has resisted significant simplification
for over a decade. However, a conceptually different proof which is very elegant
and much simpler was given last year by Dinur [29].
The reader may find a syntactic similarity between PCPs and error correcting
codes. In the latter, if the probability of a bit being flipped in an encoded
message is small, then the message can be correctly recovered from its noisy
encoding. Indeed there is deep connections, and the cross fertilization between
these two areas has been very significant.
The main impact of the PCP Theorem (and its variants) is due to its connection,
discovered by Feige et. al. [32], to hardness of approximation (elaborated on in
the surveys above). The PCP theorem has revolutionized our ability to argue
that certain problems are not only hard to solve exactly, but even to get a rough
approximation. We note that in practice, a near-optimal solution to a hard
problem may be almost as good as an optimal one. But for decades, till the PCP
theorem came along, we had almost no means of proving hardness of
approximation results. Even with the PCP theorem, these are typically much
harder to prove than standard NP-completeness results. We mention two
examples of the strongest such inapproximability results, both due to
Hastad [50, 51]. Both are nearly tight, in that it is NP-hard to approximate the
solution by the factor given, but trivial to do so with slightly bigger factor. In
both ε > 0 can be arbitrarility small constant.

• LINEAR EQUAIONS Given a linear system of equations over GF(2),
approximate the maximum number of mutually satisfiable ones, to within a
factor of 2− ε (clearly, a factor 2 is trivial: a random assignment will do).

• CLIQUE Given a graph with n vertices, approximate its maximum clique
size to within a factor n1−ε (clearly, a factor n is trivial: one vertex will
do).

42 Avi Wigderson

7. Some concrete open problems

We conclude this paper with a short list of open problems. They were all chosen
so as to be free of any reference to computational models. Indeed all have simple
elementary definitions, are natural and inviting. However, they all arise from
attempts to prove computational lower bounds and have been open for decades.
Solving any of them will represent important progress.
In all problems F is a field (of your choice – the questions are of interest for any
field). We let Mn(F) denote all n× n matrices over F and GLn(F) all invertible
ones. When asking for an explicit matrix B, we really mean an infinite family Bn

with some finite description.

7.1. Gauss elimination. For a matrix A ∈ GLn(F) let G(A), the Gauss
elimination complexity of A, denote the smallest number of row and column
operations which transform A to a diagonal matrix.

Open Problem 7.1. Find an explicit Boolean matrix B with G(B) 6= O(n).

7.2. Matrix rigidity. A matrix A ∈ Mn(F) is (k, r)-rigid if for every
matrix A′ obtained from A by changing (arbitrarily) the values of at most k
entries per row, rk(A′) ≥ r (where rk is the rank over F).

Open Problem 7.2. Find an explicit Boolean matrix which is
(
√

n, n/100)-rigid.
Find an explicit Boolean matrix which is (n/100,

√
n)-rigid.

7.3. Permanent versus Determinant. Define as usual the
determinant and permanent polynomials by Detn(X) =

∑
σ∈Sn

sgn(σ)
∏

i Xi,σ(i)

and Pern(X) =
∑

σ∈Sn

∏
i Xi,σ(i).

Let m(n) be the smallest value m such that Pern is a projection of Detm.
Namely that the permanent of an n× n variable matrix X can be written as the
determinant of an m×m matrix whose every entry is either a variable from X or
a constant from F .

Open Problem 7.3. Prove that m(n) 6= nO(1)

Note that the field F cannot have characteristic 2.

7.4. Tensor rank (of matrix multiplication). For three n× n
matrices of variables X, Y, Z define the trilinear form T (X, Y, Z) by its action on
the standard basis: for every i, j, k we have T (Xij , Yjk, Zki) = 1 and T = 0 on all
other triples.
A rank 1 tensor is a product of linear forms (one in X, one in Y , one in Z), and
the rank of a tensor is the smallest number of rank 1 tensors which add up to it.

Open Problem 7.4. Determine if the rank of T is O(n2) or not.

P, NP and Mathematics – a computational complexity perspective 43

7.5. Generalized polynomials for Determinant. The notion of
tensor rank is slightly extended here to the affine case.
Let X be a set of variables. A generalized monomial is simply a product of affine
functions over X. A generalized polynomial is a sum of generalized monomials.
Clearly generalized polynomials compute “normal” polynomials in F [X], but
sometimes they may be sparser (have fewer monomials). For a polynomial
q ∈ F [X] let s(q) denote the minimum number of generalized monomials needed
to express q as a generalized polinomial.

Open Problem 7.5. Prove that s(Detn) 6= nO(1).

Acknowledgements

Parts of this paper are revisions of material taken from a joint survey on
Computational Complexity with Oded Goldreich, to be published in the
Princeton “Compendium to mathematics” edited by Tim Gowers. I am greatful
to several coleagues for illuminating comments on early versions of this
manuscript: Noga Alon, Sanjeev Arora, Oded Goldreich, Alex Lubotzky, Sasha
Razborov and Peter Sarnak.

References

[1] Alon, N. and Boppana R., The Monotone Circuit Complexity of Boolean Functions,
Combinatorica 7 (1) (1987), 1-22.

[2] Agol, I., Hass, J. and Thurston, W. P., The Computational Complexity of Knot
Genus and Spanning Area, Transactions of the Amercan Mathematical Society
(2005).

[3] Ajtai, M., Generating Hard Instances of Lattice Problems, STOC (1996), 99-108.

[4] Ajtai, M., Σ1-formulae on finite structures, Annals of Pure and Applied Logic 24(1)
(1983), 1-48.

[5] Agrawal, M., Kayal, N. and Saxena, N., Primes is in P, Annals of Math 160 (2)
(2004), 781–793.

[6] Probabilistic checking of proofs and the hardness of approximation problems, Ph.D.
Thesis, UC Berkeley, (1994). Revised version in

http://eccc.hpi-web.de/eccc-local/ECCC-Books/sanjeev_book_readme.html

[7] Arora, S., Lund, C., Motwani, R., Sudan, M., and Szegedy, M., Proof verification
and the hardness of approximation problems, Journal of the ACM 45(3) (1998),
501-555.

[8] Adleman, L. and Manders, K., Computational complexity of decision problems for
polynomials, Proceedings of 16th IEEE Symposium on Foundations of Computer
Science (1975), 169–177.

44 Avi Wigderson

[9] Babai, L., Trading group theory for randomness. Proceedings of the Seventeenth
Annual ACM Symposium on Theory of Computing, (1985), 421–429.

[10] Babai, L., E-mail and the unexpected power of interaction, in Proc. 5th IEEE
Structure in Complexity Theory conf., (1990), 30-44.

[11] Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A., Efficient Identification
Schemes Using Two Prover Interactive Proofs, Advances in Cryptography, CRYPTO
89, LNCS 435, Springer-Verlag, (1989), 498-506.

[12] Blum,L., Cucker, F., Shub, M. and Smale, S., Complexity and Real Computation.
Springer, 1998.

[13] Baker, T., Gill, J. and Solovay, R., Relativizations of the P=?NP question, SIAM
Journal on Computing 4 (1975), 431-442.

[14] Blum, M. and Micali, S., How to generate chryptographically secure sequences of
pseudorandom bits, SIAM Journal on Computing 13 (1984), 850-864.

[15] Beame, P. and Pitassi, T., Propositional Proof Complexity: Past, Present, and
Future, Bulletin of the EATCS, 65 (1998).

[16] Boppana, R. and Sipser, M., The complexity of finite functions. in [70].

[17] Buss, S., Polynomial size proofs of the propositional pigeonhole principle, Journal
of Symbolic Logic 52 (1987), 916-927.

[18] Ben-Sasson, E. and Wigderson, A., Short Proofs are Narrow - Resolution made
Simple, STOC (1999), 517-526.

[19] Clegg, M., Edmonds, J. and Impagliazzo, R., Using the Groebner Basis Algorithm
to Find Proofs of Unsatisfiability, STOC (1996), 174-183.

[20] Cobham, A., The intrinsic computational difficulty of functions. In Proc. Logic,
Methodology, and Philosophy of Science II, North Holland, (1965), 24–30.

[21] Cook, S.A., The Complexity of Theorem-Proving Procedures, Annual ACM
Symposium on Theory of Computing (1971), 151-158.

[22] Cook, S.A., The P vs. NP Problem. CLAY Mathematics Foundation Millenium
Problems, http://www.claymath.org/millennium

[23] Cormen, T.H., Leiserson, C. and Rivest, R., Introduction to Algorithms. MIT
Press, 1991.

[24] Cook, S.A. and Reckhow, R.A., The Relative Efficiency of Propositional Proof
Systems, Journal of Symbolic Logic 44 (1979), 36-50.

[25] Chvatal, V., Edmonds polytopes and a hierarchy of combinatorial problems,
Discrete Mathematics 4 (1973), 305-337.

[26] Chvatal, V. and Szemeredi, E., Many hard examples for resolution, Journal of the
ACM 35(4) (1988), 759-768.

[27] Dyer, M., Frieze, A., and Kannan, R., A random polynomial time algorithm for
approximating the volume of a convex body. Journal of the ACM, 38(1), (1991),
1–17

[28] Diffie, W. and Hellman, M., New directions in cryptography, IEEE IT-22 (1976),
644-654.

[29] Dinur, I., The PCP Theorem by gap amplification. 38th STOC, (2006).

P, NP and Mathematics – a computational complexity perspective 45

[30] Davis, M., Logemann, G., and Loveland, D., A machine program for theorem
proving. Journal of the ACM, 5(7), (1962), 394–397.

[31] Edmonds, J., Paths, Trees, and Flowers, Canadian Journal of Mathematics 17
(1965), 449-467.

[32] Feige, U., Goldwasser, S., Lovasz, L., Safra, S. and Szegedy, M., Interactive proofs
and the hardness of approximating cliques. Journal of the ACM 43(2) (1996),
268-292.

[33] Fortnow, L., The role of relativization in complexity theory, Bulletin of the
European Association for Theoretical Computer Science 52 (1994), 229-244.

[34] Furst, M., Saxe, J. and Sipser, M., Parity, circuits and the polynomial time
hierarchy, Math. Systems Theory 17 (1984), 13-27.

[35] Garey, M.R. and Johnson, D.S., Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, 1979.

[36] J. Gill. Computational complexity of probabilistic Turing machines. SIAM Journal
on Computing, 6, (1977), 675-695.

[37] Goldreich, O., Notes on Levin’s Theory of Average-Case Complexity, ECCC
TR97-058, (1997).

[38] Goldreich, O., Modern Cryptography, Probabilistic Proofs and Pseudorandomness,
Algorithms and Combinatorics series 17 (1999), xvi-182.

[39] Goldreich, O., Foundation of Cryptography. (in two volumes: Basic Tools and Basic
Applications), Cambridge University Press, 2001 and 2004.

[40] Goldwasser, S., Micali, S., and Rackoff, C., The Knowledge Complexity of
Interactive Proof Systems, SIAM Journal on Comput., 18 (1), (1989), 186-208.

[41] Goldreich, O., Micali, S. and Wigderson, A., Proofs that Yield Nothing but their
Validity, or All Languages in NP have Zero-Knowledge Proof Systems, Journal of
the ACM 38(1) (1991), 691-729.

[42] Goldreich, O., Micali, S. and Wigderson, A., How to Play any Mental Game,
STOC (1987), 218-229.

[43] Granville, A., It is easy to determine whether a given integer is prime, Bulletin of
the American Mathematical Society 42 (2005), 3-38.

[44] Gromov, M., Hyperbolic groups. S.M. Gersten, editor, Essays in Group Theory,
Springer-Verlag, (1987), 75-264.

[45] Gromov, M., Random walk in random groups, Geom. Funct. Anal. 13 (1), (2003),
73-146.

[46] Goldwasser, S. and Sipser, M., Private coins versus public coins in interactive proof
systems. In Advances in Computing Research, Silvio Micali, editor, 5, JAC Press,
Inc., (1989), 73–90.

[47] Haken, W., Theorie der Normalflachen: Ein Isotopiekriterium fur den Kreisknoten,
Acta Math. 105 (1961), 245-375.

[48] Haken, A., The Intractability of Resolution, Theor. Comput. Sci. 39 (1985),
297-308.

[49] Hartmanis, J., Godel, von Neumann and the P=?NP problem, Bulletin of the
European Association for Theoretical Computer Science (EATCS), 38, (1989),
101–107.

46 Avi Wigderson

[50] H̊astad, J., Clique is hard to approximate within n1−ε. Acta Mathematica 182
(1999), 105-142.

[51] H̊astad, J., Some optimal inapproximability results, Journal of the ACM 48
(2001), 798-859.

[52] Hochbaum, D., (ed.) Approximation Algorithms for NP-Hard Problems. PWS 1996.

[53] Hass, J., Lagarias, J.C., The number of Reidemeister Moves Needed for
Unknotting, J. Amer. Math. Soc. 14 (2001), 399-428.

[54] Hass, J., Lagarias, J.C. and Pippenger, N., The Computational Complexity of
Knot and Link Problems, Journal of the ACM 46 (1999), 185-211.

[55] Impagliazzo, R., A personal view of average-case complexity, Proc. of the 10th
IEEE Annual Conference on Structure in Complexity Theory (1995), 134-147.

[56] Impagliazzo, R. and Wigderson, A., P=BPP unless E has Subexponential Circuits:
Derandomizing the XOR Lemma, STOC (1997), 220-229.

[57] Impagliazzo, R. and Wigderson, A., Randomness vs. Time: De-randomization
under a uniform assumption, Proc. of the 39th FOCS (1998), 734-743.

[58] Johnson, D., The Tale of the Second Prover, J. Algorithms, 13(3) (1992), 502-524.

[59] Jerrum, M., Sinclair, A., Vigoda, E., A polynomial-time approximation algorithm
for the permanent of a matrix with nonnegative entries. J. ACM 51(4), (2004),
671-697.

[60] Kaltofen, E. Polynomial Factorization. In Computer Algebra: Symbolic and
Algebraic Computation, 2nd ed., Springer-Verlag, (1983), 95-113.

[61] Karmarkar, N., A New Polynomial-Time Algorithm for Linear Programming,
Combinatorica 4 (1984), 373-394.

[62] Karp, R., Reducibility among combinatorial problems, Complexity of Computer
Computations R. E. Miller and J. W. Thatcher (eds.), Plenum Press, (1972), 85-103.

[63] Karp, R. and Lipton, R.J., Turing machines that take advice, L’Enseignement
Mathematique 28(3-4) (1982), 191-209

[64] Khachian, L., A polynomial time algorithm for linear programming, Soviet
Mathematics Doklady 10 (1979), 191-194.

[65] Kabanets, V., Impagliazzo, R., Derandomizing Polynomial Identity Tests Means
Proving Circuit Lower Bounds, Computational Complexity 13(1-2), (2004), 1-46.

[66] Kushilevitz, E. and Nisan, N., Communication Complexity. Cambridge University
Press, 1996.

[67] Kitaev, A., Shen,A. and Vyalyi, M., Classical and Quantum Computation. AMS,
2002.

[68] Karchmer, M. and Wigderson, A., Monotone Circuits for Connectivity require
Super-Logarithmic Depth, SIAM Journal on Discrete Mathematics 3 (2) (1990),
255-265.

[69] Ladner, R., On the Structure of Polynomial Time Reducibility, Journal of the
ACM 22(1) (1975), 155-171.

[70] van Leeuwen, J., (ed.): Handbook of Theoretical Computer Science, Volume A,
Algorithms and Complexity. MIT Press/Elsevier, 1990.

P, NP and Mathematics – a computational complexity perspective 47

[71] Levin, L.A., Universal search problems, Problemy Peredaci Informacii 9 (1973),
115-116. English translation in Problems in Information Transmission 9 (1973),
265-266.

[72] Levin, L.A., Average Case Complete Problems, SIAM Journal on Computing 15(1)
(1986), 285-286.

[73] Levin, L.A., One-Way Functions and Pseudorandom Generators, Combinatorica
7(4) (1987), 357-363.

[74] Lund, C., Fortnow, L., Karloff, H., Nisan, N., Algebraic Methods for Interactive
Proof Systems, Proc. of the 31st FOCS, (1990), 2–10.

[75] Lenstra, A.K., Lenstra Jr., H.W. and Lovsz,L. Factoring polynomials with rational
coefficients, Math. Ann. 261 (1982), 515-534.

[76] Miller, G.L., Riemann’s Hypothesis and Tests for Primality. J. Comput. Syst. Sci.
13(3), (1976), 300-317.

[77] Motwani, R., and Raghavan, P., Randomized Algorithms. Cambridge University
Press, 1995.

[78] Nisan, N. and Wigderson, A., Hardness vs. Randomness, Journal of Computer
Systems and Sciences 49 (2) (1994), 149-167.

[79] Papadimitriou, C.H., Computational Complexity. Addison Wesley, 1994.

[80] Papadimitriou, C.H., On the complexity of the parity argument and other
inefficient proofs of existence, Journal of Computer and System Sciences 48(3)
(1994), 498-532.

[81] Papadimitriou, C.H., NP-completeness: A retrospective, Proceedings of ICALP ’97
Springer LNCS, 1997.

[82] Pudlak,P., Lower bounds for resolution and cutting planes proofs and monotone
computations, Journal of Symbolic Logic 62(3) (1997), 981-998.

[83] Rabin, M. O., Probabilistic algorithm for testing primality, Journal of Number
Theory 12 (1980), 128-138.

[84] Rabin, M., Mathematical theory of automata. In Proceedings of the Nineteenth
ACM Symposium in Applied Mathematics, (1966), 153-175.

[85] Razborov, A.A., Lower bounds for the monotone complexity of some Boolean
functions, Doklady Akademii Nauk SSSR 281 (4) (1985), 798-801. English
translation in Soviet Math. Doklady 31 (1985), 354-357.

[86] Razborov, A.A., Lower bounds of monotone complexity of the logical permanent
function, Matematicheskie Zametki 37(6) (1985), 887-900. English translation in
Mathematical Notes of the Academy of Sci. of the USSR 37 (1985), 485-493.

[87] Razborov, A.A., Lower Bounds for the Polynomial Calculus, Computational
Complexity 7 (4) (1998), 291-324.

[88] Razborov, A.A., Resolution Lower Bounds for Perfect Matching Principles, Journal
of Computer and System Sciences, 69 (1), (2004), 3-27.

[89] Razborov, A.A. and Rudich, S., Natural Proofs, Proc. of the 26th Symposium on
Theory of Computing (1996), 203-213.

[90] Robertson, N. and Seymour, P., Graph Minors I–XIII, Journal Combinatorial
Theory B (1983-1995).

48 Avi Wigderson

[91] Raz, R., Resolution lower bounds for the weak pigeonhole principle, Journal of the
ACM 51(2) (2004), 115-138.

[92] Raz, R. and Wigderson, A., Monotone Circuits for Matching require Linear Depth,
Journal of the ACM 39 (1992), 736-744.

[93] Rudich, S. and Wigderson, A., Editors: Computational Complexity Theory.
Park-City Mathematics Institute series 10 AMS publications, 2000.

[94] Schwartz, J.T., Fast probabilistic algorithms for verification of polynomial
identities, Journal of the ACM 27(4) (1980), 701-717.

[95] Schonhage, A. and Strassen, V., Schnelle Multiplikation grosser Zahlen.
Computing, 7, (1971), 281– 292.

[96] Shaltiel, R., Recent Developments in Explicit Constructions of Extractors, Bulletin
of the EATCS 77 (2002), 67-95.

[97] Shamir, A., IP = PSPACE. Journal of the ACM, 39, (1992), 869–877.

[98] Sipser, M., Introduction to the Theory of Computation. PWS (1997).

[99] Michael Sipser: The History and Status of the P versus NP Question, STOC
(1992), 603-618.

[100] Smale, S., Mathematical Problems for the Next Century, in Mathematics:
Frontiers and Perspectives, AMS (2000), 271-294.

[101] Strassen, V., Algebraic Complexity Theory, in [70].

[102] Solovay, R. M. and Strassen, V., A fast Monte-Carlo test for primality, SIAM
Journal on Computing 6 (1) (1977), 84-85.

[103] Schrijver, A., Combinatorial Optimization – Polyhedra and Efficiency. Algorithms
and Combinatorics series, Springer Verlag, 2004.

[104] Madhu Sudan. Efficient Checking of Polynomials and Proofs and the Hardness of
Approximation Problems, ACM Distinguished Theses. Lecture Notes in Computer
Science, no. 1001, Springer, (1996).

[105] Tardos, E., The Gap Between Monotone and Non-Monotone Circuit Complexity
is Exponential, Combinatorica 7(4), (1987), 141-142.

[106] Tarski, A., A decision method for elementary algebra and geometry. University of
California Press, 1951.

[107] Valiant, L.G., Completeness classes in algebra, Proceedings of the eleventh annual
ACM Symposium on Theory of Computing (1979), 249-261.

[108] Yao, A.C., Theory and application of trapdoor functions, Proc. of the 23th Annu.
IEEE Symp. on Foundations of Computer Science (1982), 80-91.

[109] Yao, A.C., How to generate and exchange secrets. In Proceedings of the 27th
Annual IEEE Symposium on Foundations of Computer Science, (1986), 162–167.

[110] Zippel, R. E., Probabilistic algorithms for sparse polynomials, EUROSCAM’79
(1979), Springer LNCS 72, 216-226.

Avi Wigderson
School of mathematics
Institute for Advanced Study
Princeton NJ 08540
USA

E-mail: avi@ias.edu

