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Abstract. The embedding problem for a class of graphs called rectilinear graphs is discussed. These
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1 1. Introduction. The problem we address in this paper is an embedding problem
1 for a class of graphs which we call rectilinear graphs. These graphs are important in
‘ many VLSI layout problems. In fact, this problem arose in the implementation of ALI
| [71,[8], a procedural language for VLSI design currently under development at
Princeton. An embedding algorithm can be used to automate the production of VLSI
layouts in many procedural design systems.

The following is an informal description of rectlinear graphs and their embeddings.
The vertices of a rectilinear graph have degree at most four. The edges incident on
! each vertex are given distinct labels from the set {Left, Right, Up, Down}. Suppose we
place the vertices on the grid points of a rectangular grid, and for each edge draw a
straight line segment between its endpoints. We call the result an embedding of the
graph, if the edges lie along grid lines, no two edges cross, and the directions of the
edges at each vertex are consistent with their labels.

Consider the following model for VLSI layout design. A VLSI layout is described
hierarchically using cells and wires that connect the cells together. Each cell C is
enclosed within a rectangle R(C), and has four lists of pins, one each for the left, top,
right, and bottom of rectangle R(C). Each wire w is denoted by a pair of pins (ps P})>
such that p; and p; are pins of different rectangles, and are of opposite types. For
example, if p; is a right pin then p; should be a left pin. Given such a description of a
VLSI layout, our aim is to produce an embedding of the description on the plane,
such that (i) no two bounding rectangles touch each other, (i) the pins appear in the
correct order on the bounding rectangles, (iii) the wires are straight and rectilinear,
and (iv) no two wires cross each other. Later on, we can fill each bounding rectangle
R(C) with the embedding of the cell C in the same manner.

The restriction that wires cannot be bent may seem unrealistic, but this is certainly
the case in many design systems including ALI If a wire has to be bent, the user
specifies that by breaking up the wire into several straight wires and placing cells at
each of the turn points of the wire. In ALI, for example, the user can incorporate
routing algorithms in a ALI program to determine how the wires are to be bent. The
restriction that wires cannot cross implies that wé are dealing with the wires on a single
layer. For a layout with multiple layers, it is clearly necessary that the wires on each
layer do not cross.

It is easy to observe that the above description of a layout induces a rectilinear
graph, whose vertices are the pins and the corners of the bounding rectangles, and
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whose edges are the wires and the segments created on the bounding rectangles by
the vertices.

For VLSI applications, we need efficient algorithms to recognize and then actually
embed rectilinear graphs. In this paper, we present an O(n) recognition algorithm
and an O(n?*) embedding algorithm, where n is the number of vertices in the graph.
Thus, a hierarchically described VLSI layout with cell instances C,, C,,- - -, C,, can
embedded ir time O (Y[, n?), where n; is the number of pins in cell instance C..

An embedding of a rectilinear graph is just a relative placement of the vertices
(cells) on a rectangular grid, such that no two edges cross. Some of the relative
placement information is already present in the description of a rectilinear graph. For
example, if (a, b) is the rightgoing edge of vertex a, then a should be to the left of b,
and q, b should be on the same horizontal grid line. Hence, an embedding can be
viewed as a “‘completion” of the rectlinear graph description. We showed in a different
paper [10] that the completion problem for a slightly more relaxed VLSI layout model
is NP-complete. In light of this result, the results in this paper have become more
important.

In § 2, we present formal definitions of rectlinear graphs and thier embeddings.
In § 3, we mention some properties of rectlinear graphs. We discuss some topological
properties of the embeddings in § 4. A necessary and sufficient condition for biconnected
rectilinear graphs to be embeddable is presented in § 5. A similar condition for arbitrary
rectilinear graphs is the main result in § 6. We also describe a O(n) recognition
algorithm in this section. In § 7, we use the ideas of the previous sections to obtain an
O(n?) embedding algorithm. An important subclass of rectilinear graphs is discussed
in §8. In §9, we discuss extensions and open problems. For definitions of graph
theoretic terminology used in this paper, please refer to [1],[2].

2. Definition of the problem. First we give a formal definition of a rectilinear
graph.

DEFINITION 2.1. A rectilinear graph G is a triple (V, E, A), where V is the vertex
set, E is the edge set, and

A VXV->2U{e}, where 2={L,R,D, U}

is a vertex ordering relation with the following properties:
for every a,b,ce V and XeX
(i) A((a,b))=e={a,b}e E
(ordering is specified only between adjacent vertices);
(i) A((a, b))=LeA((b,a))=R,A((a, b))=Der((b,a))=U,;
(iii) A((a, b))=X=A((c, b)) # X,V # a (no overlapping edges).
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Each vertex in a rectilinear graph has degree at most four, and each edge (a, b),
as it goes from one vertex a to another b, has a nonempty label on it, which in the
embedding will indicate the direction (left, right, down, or up) in which the edge leaves
a vertex a. There can be at most one edge with a particular label emanating from each
vertex. The undirected graph G(V, E) will be referred to as the underlying graph.
Figure 2.1 (like all other figures) gives an illustration of a rectilinear graph.

Now we define what sort of an embedding we are looking for.

DEFINITION 2.2. An embedding of a rectilinear graph G(V, E, A) on a rectangular
grid is given by two mappings x,y: V> Z (the integers) which are the x and y
coordinates respectively of the vertices. These mappings obey:

1. The ordering relation, A, i.e. for all edges {a, b}€ E

A((a, b)) =L=y(a)=y(b), x(a)> x(b),
A((a, b)) = R=>y(a)=y(b), x(a) < x(b),
A((a, b)) =D=>x(a) = x(b), y(a)> y(b),
A((a, b)) = U=x(a) =x(b), y(a) <y(b).

2. Planarity, no two edges cross, i.e. for each pair of nonadjacent edges {a, b},
{c, d} such that A((a, b)) =R and A((c, d)) = U, the relation

x(a)=x(c)=x(b) and y(c)=y(a)=y(d)

does not hold.

An embedding of a rectilinear graph on a rectangular grid is one in which the
vertices are placed at grid points, the edges run along grid lines in the directions given
by their labels, and no two edges cross each other except if they share a vertex. Also,
an edge cannot touch a vertex unless it is incident on it. We say that a rectilinear graph
is embeddable if it has an embedding. We will show in the next section that not all
rectilinear graphs are embeddabile.

Now our main problem can be stated simply: Given a rectilinear graph G(V, E, A),
is it embeddable, and if it is, find an embedding.

3. Some comments on rectlinear graphs. In this section we list some properties
of rectilinear graphs and their embeddings. Some of these properties will give an
indication of why our problem is different from other embedding problems, in par-
ticular, planar graph embedding [3], [6].

1. Embeddability is a hereditary property. Subgraphs are defined in the usual
fashion, but here the labels of edges are inherited. This is obvious, but worth mentioning,
because this will be used in the proofs.

2. If each connected component of a rectilinear graph is embeddable then the
graph itself is embeddable. So, without loss of generality we will restrict ourselves to
connected rectilinear graphs.

3. Rectilinear graphs with nonplanar underlying graphs are clearly rot embed-
dable. So it is not interesting to consider those graphs. However, not every rectilinear
graph with a planar underlying graph is embeddable. In Fig. 3.1, we have two simple
cycles which are not embeddable. ‘

4. In contrast with planarity, embeddability is not a property determined by the
biconnected components. Fig. 3.2 provides an illustration of this fact.

5. This problem is a restriction of an NP-complete problem [10], [12]. For each
wire w, we are given its orientation (horizontal or vertical), and a set V,, of vertices.
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FI1G. 3.1. Two nonembeddable rectilinear cycles.

(a) (b)

FIG. 3.2. Two nonembeddable rectilinear graphs whose biconnected components are embeddable.

The wire w has to touch each vertex in the set V,, (the vertices could be touched in
any order). Then, the embedding problem becomes NP-complete.

6. If we relax the rectilinearity of the edges and impose only the cyclic ordering
of the edges at each vertex, then there is an O(| V) algorithm [11]. The cyclic orderings
automatically determines the faces of the embedding (if one exists). Thus a embeddable
rectilinear graph has a unique embedding in this sense.

4. Topological structure of embeddings. There is a natural way to extend the
function A to paths and cycles in the graph as follows. Given a path P=(v,, v,, - - -, v,)
we define A(P) = A((vg, 1,))A (v, 13)) - - - A((v,-1, 1,)). We define a similar extension
for cycles where now v, = v,. A becomes a mapping that associates with each path or
cycle in the graph a string in =* which is the concatenation of labels along the path
or cycle. Note that strings containing RL, DU, LR, UD as substrings do not represent
paths. Also the direction in which we traverse a path and the starting point in a cycle
are important. An example of this mapping can be found in Fig. 4.1.

Next we define two topological operations on rectilinear graphs. These operations

will simplify a rectilinear graph while preserving its topological structure. Let G be a
rectilinear graph.

A{(abcdefgh)) = LURDRUL

FIG. 4.1. The extension of A to paths.
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Operation 1—Edge contraction. Let (abcd) be a path in G such that both b and
¢ have degree 2, and A ((abcd)) = XYX where X, Y e3. Contract the edge (b, ¢) to
the vertex b. The resulting path (abd) will have A((abd)) = XX. We abbreviate this
operation by XYX » XX (Fig. 4.2(1)).

Operation 2— Vertex deletion. Let (abc) be a path in G such that vertex b has
degree 2, and A((abc))= XX where Xe3. Delete the vertex » and introduce the
edge (a,c). The resulting edge (a, ¢) will have A((a, c)})=X. We abbreviate this
operation by XX - X (Fig. 4.2(2))

C(bLf.d
U
0———JR J _fl), = o = L)
a b a b d
R R (2) R
a b c a._%:

FIG. 4.2. Edge contraction and vertex deletion.

In a natural way we can define inverses for the above two operations which we
will refer to as edge expansion and vertex addition respectively.

LemMaA 4.1. Let G be a rectilinear graph and G' be the graph resulting from G by
the application of a sequence of the above four operations. Then G’ is also rectilinear
and moreover G' is embeddable if and only if G is embeddable.

Proof. The proof is easy and is left to the reader. [

DEFINITION 4.1. Given a string y € £* representing a path or a cycle, the simplified
form 7 of v is obtained by repeatedly applying the reduction rules XYX - XX and
XX > X, where X, Ye3 until they cannot be applied any more. If vy represents a
cycle then it is treated as a cyclic string.

In Fig. 4.3 we give a path and a cycle along with their simplified forms.

>

RDLDR - R RDLDRULDLURDLU - RDLU

F1G. 4.3. Simplification of a path and a cycle.

LEmMmMA 4.2, Every string y € 2* has a unique simplified form.

Proof. The replacement system defined by the two reduction rules have the
Church-Rosser property [9]. O

DEFINITlONp4.2p. Ay s[quare is one of the cyclic strings LURD or ;DR U.

Sometimes we may distinguish between two squares by their start1+ng labels.

DEerFINITION 4.3. A spiral is a substring of (LURD)" or (LDRU)".

LEMMA 4.3. Every path is embeddable.
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Proof. Every spiral is embeddable. Since any path simplifies to a spiral, by Lemma
4.1 it is also embeddable. 0

So it is the cycles which make the problem nontrivial. The following lemma is a
crucial fact about cycles.

LeEMMA 4.4. A cycle is embeddable if and only if it simplifies to a square.

Proof. If. A square is embeddable and hence by Lemma 4.1 any cycle which
simplifies to a square is also embeddable.

Only if. Let f be an embeddable cycle and A(f)=y. By Lemma 4.1, the cycle
defined by 7 is also embeddable. Let | 7| = n. Look at the embedding of . Since it has
no crossings the embedding is a simple polygon. Therefore the interior angles of this
polygon sum to (n—2)*%180°. Since ¥ is a spiral all its interior angles are 90°. The
only solution to nX90 =(n—2)Xx 180 is n =4. Therefore ¥ is a square. 0

The proof of the previous lemma suggests another useful characterization of
embeddable cycles. Going along a cycle f=wvi02" " Ualy in the counterclockwise
direction, let us denote by ¢;(v;) the angle at vertex v;, which is the angle between
(vi_,, v;) and (v, v;11), and by @(f) the sum of these angles.

LEMMA 4.5. A cycle f=v,0," " 0,01, nZ4 is embeddable if and only if ¢(f) =
Y, ep(v)=(n£2)x180°

Proof. Suppose f is embeddable, then its embedding is a simple polygon. Depend-
ing on whether we sum the interior angles or exterior angles we should get (n£2)X
180°.

To prove the sufficient part we show by induction on n that f simplifies to a
square. The possible values for ¢;(v;) are 90°, 180°, 270°. The basis for induction is
n=4. In this case the given sum of the angles is either 360° or 1,080°, which implies
that each angle is either 90° or 270° respectively. So f must be a square by itself.

Assume that the claim is true for all values less than n and let n> 4. If for some
i, ¢;(v;) =180° then A(v- vivi+1) = XX. We can apply vertex deletion at v; to obtain
F=v0 Uiy -+ U0y Then o(f") =o(f)—¢;(v;) =((n—1)+2)x180°, and by
induction we are done.

This leaves the case where all angles are either 90° or 270°. Since n>4 and
o(f)=(n=2)x180° not all the angles can be equal. Hence there must be a k such
that ¢;(v,) # @ (vi+1)- Hence we have A (0r_; Uxlx+1 Uk+2) = X YX. Apply edge contrac-
tion to obtain ' =v, * * * Uk UU+2 " * * Upl). The edge contraction removed 360° from
the angle sum and added 180°. Hence o(f)=((n—1)£2)x180° ]

DEFINITION 4.4. A complement of a path P with respect to a square & is any path
P¢ in the graph such that PP“ is a cycle which simplifies to o.

LEMMA 4.6. Given a path P, all its complements with respect to a square o, which
have the same start and end labels, have a unique simplified form.

Proof. Let AP)=a=XX, - X, Since aisa spiral we have X; = X;fori =j(4).
Assume that k>4 and that the spiral @ and the square o are either both clockwise
or both counterclockwise. Then o must be a substring of a. Since o is a cyclic string
we can assume that o =X, X,X:X,.

Let P° be a complement of P with respect to o and let A(P€)=B. Since k>4, B
must spiral in the opposite direction to a. Since both @ and B are simplified aB can
be simplified only at the borders between the two strings. Write B = 8,828, such that
BsaB, = a. We are allowed to shift 83 because af is a cyclic string. Then it is clear
that B, € {Xx_3 Xk X €} and B3 {e, X, X, X.}. B, is the “‘essential part” of B. Since
la|=k and o =4, we must have |B2] = k—4. From the possible values of B, and B3,
and the fact that B is a spiral opposite in direction to a, we can conclude that
B2= Xy 1Xi—2 - Xa. Weuse k>4 in order for 8, not to be an empty string. Therefore

B o ——
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B={e, Xi, Xi—3X:} Xi—1 * * Xule, X1, X, X,}, which is unique but for the start and
end labels. The arguments in the cases where « and o are in opposite directions and
for k =4 are similar. 0O

S. Biconnected rectilinear graphs. In this section we discuss an algorithm for
recognizing biconnected rectilinear graphs. Note that the ordering relation A induces
a cyclic ordering of the edges incident at each vertex v. For convenience we will need
the following definition.

DEeFINITION 5.1. Let v be a vertex in a rectilinear graph G. Define Ls(v) to be
the cyclic list of the neighbors of v in G in the counterclockwise order.

Using these lists, we can define the essential notion of a candidate face of a
biconnected rectilinear graph.

DEFINITION 5.2. Let G =(V, E, A) be a biconnected rectilinear graph. With each
edge e =(vy, 1), v, > v," we associate two lists of vertices called candidate faces CFy(e)
and CF(e) which are defined as follows. CF,(e) = Uy, U2, " ", Uk, Uksy Whele 1% 1,
for 1=i<j=k, and v, =v for some i, 1=i<k—-1. Also, for each [, 1<I<k+1,
iy is the successor of v,_; in the cyclic list Ls(v,). CF,(e) is similarly defined but
starting with v,, v,.

It is easy to see that CF, and CF, are uniquely defined. An illustration of this
definition is given in Fig. 5.1.

6 7

Lg(1)=(5,2) and L5(2)=(1,7,3)
CF,(e)=2,1,5,6,7,2 and CF,(e)=1,2,7,6,5,4,3,2

FIG. 5.1. Candidate faces.

We now need a lemma about biconnected undirected graphs. Let us define a
biconnected graph to be minimal if for every edge e in the graph G—e is not
biconnected. The following lemma is taken from [2] and is stated without proof.

LemMA 5.1. If G is a minimal biconnected graph having at least four vertices then
G contains a vertex of degree two.

LEMMA 5.2. In any biconnected graph G which is not a simple cycle, there is a
simple path P=(v,, v,), (03, v3), - -, (0,1, 1,), r = 2, with the intermediate vertices (if
any) v, 1<i<r all having degree 2, such that the graph G' = G — P is biconnected.

Proof. Transform the given graph G to another graph G” by replacing all paths
of the form P=(v,, v;), (v;, v3), " -+, (v,_4, v,) Where the vertices v, i # 1, r all have
degree 2, by the edge (v,, v,). So for each edge e in G” we have a corresponding path
P. in G. Note that the degree of any vertex in G” is at least three. If G" has multiple
edges between some two vertices, say # and w, then in G there must be at least two
parallel paths between u and w. Since G is not a simple cycle any one of those paths

! For convenience we assume that V is a set of integers.
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will serve our purpose. If G” does not have multiple edges then it must have at least
4 vertices. By Lemma 5.1 G” cannot be minimal. Therefore there is an edge e in G”
such that G”— e is biconnected, which implies that G — P, is also biconnected. 0

The following theorem gives a necessary and sufficient condition for a biconnected
rectilinear graph to be embeddable.

THEOREM 5.1. Let G=(V, E, A) be a biconnected rectilinear graph with at least
three edges. Then G is embeddable if and only if for each edge e in the graph both the
candidate faces CF,(e) and CF,(e) represent simple embeddable cycles in the graph
(i.e. the starting and ending vertices are identical, and it simplifies to a square). Moreover,
if the graph is embeddable each such distinct candidate face corresponds to a face in
the planar embedding.

Proof. Only if. Supposing for some edge e=(v,, v;), CF\(e) is not a cycle, i.e.
CF(e)=uvy, Ug,* * *, Uiy Uksy With v;= v, for some i, 1 <i<k—1. Suppose G is
embeddable. Look at the cycle v, - -, vy, v+, in the embedding. Suppose that the
edge (v;_,, v;) is inside this cycle. There can be no other edges (u, v;), i <j=k inside
this cycle, otherwise u would have appeared instead of v, in CF,(e). From this
observation and the fact that the embedding is planar, it follows that v; is an articulation
vertex, which contradicts the biconnectedness of G. The case where (v;_ |, v;) is outside
the cycle is similar (both cases are depicted in Fig. 5.2).

Uisy

F1G. 5.2. Two possible embeddings of CF,(e).

Suppose CF,(e) is a cycle but is not embeddable. Since CF(e) is a subgraph of
G, G itself cannot be embeddable. Similar arguments hold for CF,(e).

If. The proof of this part is by induction on the number of edges. The basis for
the induction are simple embeddable cycles. Assume that the claim is true for any
biconnected rectilinear graph which has less than k edges. Let G be a biconnected
rectilinear graph which is not a simple cycle and which has k edges. By Lemma 5.2,
there is a simple path P=(vy, v,), (vs, v3),* -+, (v,—y, v,) with the vertices v, i#1,r
all having degree 2, such that the graph G’ = G — P is biconnected. v, and v, will have
degree greater than two. Also assume that v,> v, and ey, = (v, v3).

Since all our candidate faces are cycles, if an edge e lies on a candidate face f
then either CF(e)=f or CF,(e)=f. So each edge will be present in exactly two of
these candidate faces. Hence the path P will appear in CF(e,,) and its reverse path
will appear in CF,(e,;). Let

f1=CFI(.eIZ):vl9 Uy m 5 Uy Uy, '9u['9 Uy,
fr=CFy(e;3) =0, 0,1, ", Uy, Wi, "+ *, W, U, and
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It follows from the definition of the candidate faces f; and f that the vertices u; v, w,
appear consecutively in that order in Ls{(v,) and that wy, v, u; appear similarly in
Ls(v,) (see Fig. 5.3). Therefore for each edge in f; or f, which is not in P, the new
candidate face in G’ will be f; which is a simple cycle.

We still have to show that f; is embeddable. Since f, and f, are both embeddable
e(f)=(r+jx2)x180° and ¢(f,) = (r+k+2)x180°. However, since f, and f, share
the edge e, it isimplied by the definition of candidate faces that ¢ (fuy=(r+j+2)x180°
and ¢(f,) = (r+k+2)x 180° is impossible. With a little bit of algebraic manipulation
we can show that ¢(f3)=((j+k+2)+2)x180°. Since f; has j+k+2 vertices by
Lemma 4.5, it is embeddable. Thus the candidate faces for G’ are the same as those
for G, excepting for f; replacing the two faces f; and f,. So for each edge in G’ its
two candidate faces are again simple embeddable cycles. By the induction hypothesis
G’ is embeddable and each distinct candidate face corresponds to a face in its embed-
ding. The orderings of the edges at the vertices v; and v, imply that the end edges
(v,, v,) and (v,_, v,) of the path P are both trying to go inside the face corresponding
to fs.

F1G. 5.3. The two cycles f,, f, and the path P.

We are left to show that we can add the path P back without destroying embeddabil-
ity. Find any rectilinear path P’ in the face corresponding to f; in the embedding of
G’, that starts and ends with A((v,, v5)) and A((v,—,, v,)) respectively. This is clearly
possible although we may have to extend the grid in order for P’ to liec on the grid
lines. P’ creates a face in the embedding with the path P, = v,u u, - - - wv;. If f3is not
the outside face then A(P; P )= A(f;) = A(P;P)= 0. The case when f; is the outside
face is slightly more complicated. There are two such different paths P’ depending on
the new outer face that is created. However, for one of the two the above holds and
suppose this is the one we chose. By definition both P and P’ are complements of P,
with respect to g, they also share the same start and end labels, and by lemma 4.6 we
have A(P) = A (P). Therefore G'+ P’ can be obtained from G by applying a sequence
of the four topological operations, and since G’ + P’ is embeddable, by Lemma 4.1 G
is also embeddable. It is easy to see that the two new faces we get after inserting P in
the embedding of G’ correspond to f; and f,. O

The above theorem leads to the following algorithm for recognizing embeddable
biconnected rectilinear graphs. The algorithm also outputs the faces of the embedding
if the graph happens to be embeddable.

Algorithm check-biconnected(G);
begin
if G is an edge then return;




364 GOPALAKRISHNAN VIJAYAN AND AVI WIGDERSON

if [E|>3 |V|-6 then
begin
write (‘“‘not embeddable™);
quit
end;
for each edge e do
begin
mark [e, 1]:= false;
mark [e, 2]:= false
end;
for each edge e do
fori=1to2do
begin
if not mark [e, i] then
begin
f = candidate-face (e, i);
if not embed-cycle (f) then
begin
write (“‘not embeddable’);
quit
end;
for each edge ¢’ =(v,, v;) in f do
if v, > v, then mark [e', 1}:= true
else mark [e’, 2]:= true;
output (f)
end
end
end.

Boolean function embed-cycle ( f) returns value true if f is an embeddable cycle.
If f is a cycle then we simplify using the reduction rules and check if we end up with
a square. This can be done in time linear in the size of f. Function call candidate-face
(e, i) returns the candidate face CF;(e) and the function can be implemented exactly
as described in Definition 5.2. In the calls to this function, each edge e can be traversed
at most twice, due to the flags mark [e, 1] and mark [e, 2]. Therefore the algorithm
runs in time O(| V]). We conclude this section with a lemma which will let us identify
the outer face in a rectilinear graph.

LEMMA 5.3. Let G be an embeddable biconnected rectilinear graph. For all interior
faces f in the embedding of G, ¢(f)=(n—2)x180°, and for the unique exterior face f.,
e(f)=(n+2)x180°

Proof. Consider the embedding of G. The faces of the embedding are determined
by G, and are simple polygons in the plane. By the definition of ¢, for every interior
we count the interior angles, and for the exterior face we count the exterior angles.
The lemma follows. (Remember that if G is a simple cycle, the embedding has two
faces). 0O

LeEMMA S5.4. Let G be an embeddable biconnected rectilinear graph, f, the exterior
face in its embedding and v a vertex on f,. If ¢;(v)=180°, then G can be embedded
inside a polygon of shape U, as shown in Fig. 5.4a. If ¢;, =270°, then G can be embedded
inside a polygon of shape W, as shown in Fig. 5.4b.

Proof. The proof is easy and left to the reader. 0O
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6. Articulation vertices. In this section we examine the conditions under which
the embeddability of the biconnected components of the graph imply the embeddability
of the graph itself. Clearly, this will depend on the way components meet at articulation
vertices. In Fig. 3.2, we showed two examples of nonembeddable rectilinear graphs,
each of which decomposes into two embeddable biconnected rectilinear graphs.

In those cases, the two biconnected components are not “‘compatible” at the
articulation vertex. However, the situation need not be so local. Fig. 6.1 depicts two
nonembeddable graphs, each of which decomposes into three embeddable biconnected
components, so that the components meeting at each articulation vertex are compatible.
Note that an edge is a (trivial) biconnected component.
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FI1G. 6.1. Decompositions of nonembeddable graphs.

If v is an articulation vertex in a graph G, then its removal results in several
connected subgraphs G; of G. We will refer to the subgraphs G, + v, as the subgraphs
meeting at v. Throughout this section we will implicitly assume that we are dealing
with rectilinear graphs whose biconnected components are embeddable.

DEerFINITION 6.1. Let B, and B, be two nentrivial biconnected components of a
rectilinear graph G that share an articulation vertex v. Then B; and B, are said to
interlace if the horizontal edges at v belong to B, and the vertical edges belong to B,
(Fig. 3.2a). We also say that v is an interlace vertex. Any articulation vertex that does
not have this property is said to be interlace-free.

LEMMA 6.1. A rectilinear graph G which has an interlace articulation vertex v is
not embeddable.

Proof. Let B, and B, be the two biconnected components sharing the vertex v.
Since B, and B, are nontrivial, the horizontal edges at v lie on a cycle in B; and the
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vertical edges lie on a cycle in B,. It is impossible to draw G on the plane without
these two cycles crossing. O

DerFINITION 6.2. Let B, and B, be two noninterlacing biconnected components
of G that share an articulation vertex v, and assume B, is nontrivial. Then B, is said
to dominate B, at v (or, B, is inside B;) if either (i) v is not on the exterior face of
By, or (ii) edges (v, u) and (v, w) at the vertex v are on the exterior face of B,, and
u, w are consecutive in that order in Ls(v) (note that they are always consecutive in
Lg (v)). If neither B, dominates B, nor B, dominates B,, then B, and B, are said to
be outside each other.

The intuition behind the above definition is that in the embedding, one biconnected
component must lie wholly inside some face of the other if one edge of it does. This
is due to the planarity criterion. Clearly, if biconnected components B, and B, that
share an articulation vertex v dominate each other, the graph is not embeddable (this
is the case in Fig. 3.2b).

Let B; and B, be two biconnected components of a graph G that share an
articulation vertex v, such that B, dominates B,. Let G’ be the subgraph of G meeting
at v that contains B,. If G is embeddable then in any embedding of G, all of G’ should
lie inside one face of B,. This suggests extending the relation “dominate” as follows:

DEerINITION 6.3. Let B={B,, B,, - - -, B,,.} be the set of biconnected components
of G. We say that B; dominates B; if there exists a biconnected component B, and an
articulation vertex v, such that (i) B, and B; share v, (ii) B; dominates B, at v, and
(iil) B; and B, are both subgraphs of one of the connected subgraphs meeting at v,

Let us denote by V(G) the vertex set of the graph G and by E(G) the edge set.

LEmMMA 6.2. If in a rectilinear graph G, there exists some pair of biconnected
components B, and B, that dominate each other, then G is not embeddable.

Proof. If B, and B, share an articulation vertex v, then as mentioned earlier G
is not embeddable. Suppose that B, and B, are disjoint. Since B, and B, dominate
each other, there must be articulation vertices v,, v,, biconnected components B}, B5,
and subgraphs G, G,, such that for i=1,2, (i) B; and B; share v, (ii) B; dominates
B; at v;, and (iii) G; is one of the subgraphs meeting at v; and contains B}. Let us
assume that G is embeddable. From (i) v,€ V(G)), (ii) G, lies wholly inside B; in the
embedding, and (iii) V(G,)N V(B,) ={v,}, we can conclude that v, must be properly
inside a polygon defined by the face f, of B, containing v,. Similarly v, should be
properly inside the polygon defined by a face f, of B, containing v,. Therefore some
vertices of f, must lie outside f; and the two faces must intersect, and hence G is not
embeddable. 0O

Given a rectilinear graph G, with a set of biconnected components B and a set
of articulation vertices A, we can construct a tree T of biconnected components such
that

V(T)=AUB, and E(T)={(v,B)lveA,BeB,ve V(B)}.

LemMA 6.3. Let G be a rectilinear graph with the set of biconnected components
B and tree of biconnected components T. Let B be a leaf in the tree T which is adjacent
to an articulation vertex v of degree 2 in T. If B dominates B' the other biconnected
component adjacent to v in T, then B dominates every other biconnected component in B.

Proof. The only two subgraphs meeting at v are B and G~ B+ v and the proof
follows from Definition 6.3. 0O

If no two biconnected components dominate each other, then the relation ‘“domi-
nate’’ induces a partial order on B. A nondominating element in this partial order is
a biconnected component which does not dominate any biconnected component.
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COROLLARY 6.1. If for a rectlinear graph G *“‘dominate” is a partial order, then
there exists a nondominating biconnected component which is a leaf in the tree T of
biconnected components.

Proof. Any trivial biconnected component (which is just an edge) must be non-
dominating. If any vertex in T (corresponding to an articulation vertex in G) is adjacent
to two leaves, then either the two leaves are nontrivial and not dominating, or one of
them is a trivial biconnected component. If no vertex in T is adjacent to two leaves,
then all leaves are adjacent to vertices of degree 2, and there are at least two such
leaves. If two of these leaves are dominating, then by Lemma 6.3 the two leaves
dominate each other which is a contradiction that “dominate” is a partial order. In
fact all of these leaves must be nondominating. [

THEOREM 6.1. Let G be a rectlinear graph and B its set of biconnected components.
G is embeddable if and only if

(i) every biconnected component B in B is embeddable,
(ii) every articulation vertex in G is interlace-free, and

(iii) ‘‘dominate” induces a partial order on B.

Proof. The necessary part follows from Lemma 6.1 and Lemma 6.2.

The sufficient part is shown by induction on the number of vertices. The basis for
induction is any biconnected rectilinear graph. Let G be not biconnected with | V(G)| =
n. Assume that the claim is true for all smaller graphs. Look at the tree T of biconnected
components. By Corollary 6.1, there exists a leaf B in T which is nondominating. Let
v be the articulation vertex shared by B and G’ = G — B + v, the rest of the graph. G’
being a subgraph of G also satisfies the conditions of the claim. By induction hypothesis
G’ is embeddable. By condition (i), B is also embeddable. If B is a single edge it is
easy to add the edge to the embedding of G'. Assume B is nontrivial. Since B is
nondominating, v must lie on the exterior face f, of B and ¢y, (v) # 90° (why?).

Embed G’ and B separately and consider the vertex v in both embeddings. If
¢;.(v) =180°, then v is only one edge in G'. Add six new grid lines to the embedding
of G’, create the shape U as shown in Fig. 6.2a, magnify the embedding, and embed
B in the U as in Lemma 5.4. If ¢, (v) =270°, then v is either on just one edge in G,
or on two perpendicular edges in G'. In both cases, add six new grid lines, create the
shape W and embed B as shown in Fig. 6.2b. 0O

Before we describe an algorithm for testing embeddability, we need an algorithm
for testing whether *“dominate” is a partial order on the set of biconnected components.
From the tree T of biconnected components,'we construct T a partially directed tree
as follows. Assume that no biconnected component dominates and is dominated at
the same vertex. If so then “‘dominate” is not a partial order. Direct edge (v, B) from
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FIG. 6.2. Adding B to the embedding of G'.
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B to v if B dominates at v. Direct edge (v, B) from v to B if B is dominated at v.
Leave all the other edges undirected.

This partially directed tree T can be constructed in linear time as follows. Find
the faces of each of the biconnected components using the algorithm check-biconnected.
This takes O(] V) time. Check for dominations at each articulation vertex as described
in Definition 6.2. There are at most 4 biconnected components at each articulation
vertex and hence there are at most 12 (ordered) pairs to be tested for domination (in
fact only 2 tests are necessary, how?). Construct T by directing the edges of T as
described earlier. Note that articulation vertices and biconnected components can be
found in O(| V|) [1]. For each vertex x in T, denote by di,(x), dou(x), and d(x), the
number of incoming arcs, the number of outgoing arcs, and the number of undirected
edges of x respectively. The rest of the algorithm is given below.

Algorithm check-dominate-po (G);
begin
construct T
for each vertex x in T do
if d;,(x)>1 then
begin
write (*‘not a partial order”);
quit
end;
if search (T) then write (“yes, partial order”)
else write (“not a partial order’)

end;
function search (T): boolean;
begin
if T =& then search = true
else begin
if3BeB with 4,,(B)=0, d,,(B)+d(B)=1 then
begin

Let v be the neighbor of B;
if d,,(v)+d,.(v)+d(v)=1 then search = search (T —{B})
else search:=search (T—{B, ¢})
end else search = false
end.

The above algorithm can be easily shown to be correct using Definition 6.3 and
Corollary 6.1. The boolean function search can be implemented nonrecursively to run
in linear time by maintaining a queue of the leaves of T.

Given the biconnected components and articulation vertices, checking that the
articulation vertices are interlace-free can be done in O(] V) time. Let check-interlace-
free be a procedure that checks a given articulation vertex for interlace-freedom. We
end this section with aO(] V) algorithm for testing embeddability of rectilinear graphs.

Algorithm check-rectilinear (G);

begin
Decompose G into its biconnected components;
for each biconnected component B do check-biconnected (B);
for each articulation vertex v do check-interlace-free (v);
check-dominate-po (G)

end.
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7. An embedding algorithm. In the previous section we gave an algorithm for
testing embeddability. This algorithm can be easily modified into an algorithm which
gives an embedding. However, the complexity of this naive algorithm would be O(| V).
The reasoning is as follows. The path P’ that we find in the proof of Theorem 5.1
could be O(| V) long. For each topological operation that we apply on this path to
transform it to the path P, we update the coordinates of the vertices in the embedding
once. Thus for each path added we require O(|V|) time. There can be O] V1) such
paths and hence the complexity of the algorithm is O(|V}®). To reduce the complexity
to O(|V|)?), we have to make sure that the path P’ is never longer (asymptotically)
than the path P. In this case the sum of the lengths of all such paths P’ is O(|V]), and
the O(|V]?) complexity follows. In the following, we show how we can always find
such paths, describe the algorithm, and analyze its complexity.

LeEMMA 7.1. Let G be a planar biconnected multigraph with minimum degree three.
Then any embedding of G has an interior face of size at most five.

Proof. The dual G? of G is also a planar graph. Since G has minimum degree 3,
G“ is a simple graph. Hence G? has at least two vertices of degree=5 [2]. G is
biconnected and hence one of the vertices must correspond to a face whose size is less
than or equal to 5. O

LemMMA 7.2. Given an embedding of a planar biconnected graph G, which is not
a cycle, there is a simple path P, such that (i) the interior vertices of P all have degree
2, (ii) the end vertices of P have degree = 2, (iii) P appears in an interior face f in the
planar embedding, and (iv) 5-|P|z[f].

Proof. As in the proof of Lemma 5.2, transform G to G' by replacing all paths
with property (i) and (ii) by edges. By Lemma 7.1, G’ has an interior face f of size
at most 5. The longest of all the paths in G corresponding to the edges of f will satisfy
conditions (iii) and (iv). O

To get an embedding of a given rectilinear graph, we first test if the graph is
embeddable and then apply the following algorithm.

Algorithm embed-rectilinear (G);

begin
for each biconnected component B do embed-biconnected (B);
Jjoin-the-embeddings;

end.

Algorithm embed-biconnected (B);
begin
get-long-path (P, P,, 0);
embed-rectilinear (B— P);
find-path-in-embedding (P', P,, 0);
apply-operations-and-transform (P', P)
end.

Procedure get-long-path returns paths P, P,, and square o, such that P satisfies
the conditions of Lemma 7.2, and the interior face f = PP, simplifies to o. ByLemma 7.2
such a path exists.

Procedure find-path-in-embedding traces a path P’ in the embedding of B— P,
such that P’ starts and ends in the same directions as P, and P'P; simplifies to o. P’
and P are both complements of P; with respect to the square o. Since PP, is an interior
face, P’ can be obtained by starting in the required direction, then following the path
P, in the embedding of B— P, and ending in the required direction (Fig. 7.1). This will
result in P’ being a complement of P, with respect to . We have |P'| = O(|P,|) = O(|P|).
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F1G. 7.1. Finding the path P’ in the embedding of B—P.

Procedure apply-operations-and-transform applies a sequence of the four topologi-
cal operations to P’ in the embedding of B~ P+ P’ and transforms it to P thus resulting
in a embedding of B. This is done by first simplifying the path P’ and then expanding
the simplified path to get the path P (Fig. 7.2). The number of operations applied will

be O(|P|+|P')) = O(|P)).

.

T

B-P+P

FiG. 7.2. Path addition, simplification and expansion.

Procedure join-embeddings takes the embeddings of the biconnected components
and puts them together to get an embedding for G. This is done essentially following
the proof of Theorem 6.1. Find a nondominating component B. Recursively embed
G' = G — B. Join the embeddings of B and G’ using the shapes U or W as shown in
Fig. 6.2.

The algorithm can be shown to be correct using the material developed in the
previous three sections. We now analyze the complexity of each step in the algorithm
and show that the total complexity is O(| V|?).

Procedure join-embeddings updates each coordinate at most once per recursive
call. The total number of calls is bounded by the number of biconnected components.
Hence this procedure takes O(|V/|?) time.

Procedure get-long-path can be implemented to run in O(|V]) time each time it
is called. Remember that we can get the faces of a biconnected graph from the testing
algorithm, and searching all faces to get the required face takes linear time. Procedure
find-path-in-embedding takes O(|P,)) = O(|V]) time. These two procedures will be
invoked at most O(| V) time. Hence total time spent in these calls is O(| V).

Procedure apply-operations-and-transform applies a sequence of O(P)
operations. Each edge in G will appear in only one such path P. Hence the sum of
the lengths of all such paths P is O(|V]). Each operation updates at most o( V)
coordinates. Therefore the time spent in calls to this procedure is o V).

~
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8. Consistent rectilinear graphs. Certain rectilinear graphs cannot be drawn on
the grid even if we relax the planarity criterion. We say that a rectilinear graph
G(V, E, A) is consistent if it can be drawn on the grid satisfying the ordering relation
A. In other words, G is consistent if the set of equality and inequality constraints
generated in part 1 of Definition 2.2 is consistent.

The equality constraints define an equivalence relation on the set of coordinates
of the vertices of G. Let us denote by e(x) the equivalence class containing the
coordinate x. Denote by I, and I, the sets of x-coordinate and y-coordinate inequality
constraints respectively. Construct two directed graphs G,(V,, E,) and G,(V, E,) as
follows:

Vi={e(x)lx==x(a),ac V} and E,={(x,, x,)|x;>x,¢€L}.

V, and E, are similarly defined.

It can be easily shown that G is consistent if and only if the two directed graphs
G, and G, are both acyclic. A solution to the coordinates, which satisfies the constraints
will correspond to a (possibly) nonplanar embedding of G on the grid. This can be
obtained by performing the topological sort operation [5] on the two acyclic digraphs.
In fact this will yield a solution that minimizes the area of the rectangle bounding the
embedding.

In a nonplanar embedding of a consistent rectilinear graph on the grid, all crossings
are between horizontal edges and vertical edges. The vertical edges can be assigned
one layer, and the horizontal edges can be assigned a second layer. In other words
the “thickness” [2] of a consistent rectilinear graph is less than or equal to two.

9. Extensions, open problems, and conclusions.

1. It can be easily shown that the area of the embedding given by the algorithm
in this paper can be made O(|V|’) without extra time penalty. There are graphs that
require this much area. To minimize the area is NP-complete if the input graph is
allowed to be disconnected. The minimization problem is open for connected rectilinear
graphs.

2. The embedding problem of appropriately defined graphs for other grids
(triangular, hexagonal, etc.), seems to be interesting in light of certain systolic layouts
for VLSI [4] that use them. It originally seemed to us that the ideas of this paper will
carry through without much change to other grids. They do not. *“Triangular” graphs,
for example, may have triangles which must be equilateral in any embedding. This
rigidity (which does not appear in the rectilinear case), makes some of our results false
for these graphs.

3. If we allow two layers for the embedding (each of which must be planar), then
assigning horizontal and vertical edges to different layers easily solves the problem.
However, in reality the user decides which wire will be on which layer. The results in
this paper give only a necessary condition for the embeddability of such a multilayered
rectilinear graph. Under what conditions can we obtain compatible embeddings on
the different layers (i.e. embeddings that have corresponding vertices at the same grid
points)?

4. An interesting class of graphs that contains all rectilinear graphs is the class of
graphs in which the edges incident on each vertex are cyclically ordered (now there
is no degree or direction constraints). The corresponding problem is whether a graph
in this class can be laid on the plane consistent with the cyclic orderings of the edges
at each vertex, so that no edges cross. This problem can be solved in linear time [11].

We conclude by observing that even linear time and space algorithms may not be
considered efficient for VLSI applications, due to the huge size of the graphs involved.
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However, if the layout is given by a “good” hierarchical description, then both time
and space complexity of our algorithms can be reduced considerably. ALI allows |
hierarchical description of layouts through its cell mechanism [8]}, and our algorithms
will be implemented in ALIL

AXIOMS F(Q
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