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Say that a parallel algorithm that uses p processors and N (> p) shared memory
locations is given. The problem of simulating this algorithm by p processors and
only p shared memory locationy without increasing the running time by more than
a constant factor is considered. A solution for a family of such parallel algorithms
is given. The solution utilizes the idea of dynamically changing locations of the
addresses of the algorithm throughout the simulation.

1. INTRODUCTION

The current state of technology implies that memories which include many
cells must be partitioned into a number of modules each containing many
cells; where, only one cell (or a small number of cells) of each module can
be accessed at a time. For more on this, see Kuck (1977) and Gottlieb et al.
(1983). On the other hand, many published parallel algorithms are designed
for abstract shared-memory models of parallel computation, where the
processors have free access to each cell of the shared memory for both read
and write purposes. An obvious difficulty arises when one wants to simulate
these algorithms on buildable machines. One approach is to require that
designers of algorithms (for abstract shared-memory models of parallel
computation) limit, as much as possible, the size of the shared memory that
the algorithm must use. This is usually done in favor of more local
computations in which each processor accesses its own Jocal memory only.
Kuck mentions several papers that practiced this ad hoc approach. Even in
cases where such a limitation is possible this approach puts some undesirable
additional burden on the designer.

174
0019-9958/83 $3.00

DYNAMIC PARALLEL MEMORIES 175

Let us be a bit more precise. Given a shared memory model of parallel
computation D we define M(D) to be the model of computation which is
derived from D by partitioning the shared memory of D into modules so that
po more than one cell of each module can be accessed at a time. If there are
several simultaneous requests for the same common memory location in
M(D) they are treated in the same way as in D. If there are several
simultaneous requests for different cells of the same module, they are queued
and responded one at a time.

The granulrity problem is defined as the problem of simulating a cycle of
D by M(D). Automatic solutions for the general case where we do not know
anything about the cycle to be simulated are discussed in Mehlhorn and
Vishkin (1983). They suggest a multi-stage approach for attacking the
granularity problem. We mention the two main stages. The first stage
designed to keep us “out of trouble,” in the average casc, utilizes universal
hashing in the simulating machine M(D). M(D) itself picks at random a
hashfunction from an entire class of hashfunctions before each simulation of
an algorithm, instead of a specific hashfunction. This is shown to keep
memory contention low. The idea behind the second stage is to keep several
copies of each memory address in distinct memory modules. This idea, in
conjunction with fast algorithms for picking the “right” copy of each
requested address is shown to decrease memory contention for the worst case
results of the first stage.

The main result of the present paper is that in a few general cases the idea
of dynamically changing locations of addresses among modules throughout
the performance of an algorithm provides a solution for the granularity
problem in constant time utilizing only as many modules as the number of
processors.

2. A RELATION BETWEEN MODELS OF PARALLEL COMPUTATION

The main model of parallel computation that is used in the present paper
is the exclusive-read exclusive-write parallel random-access machine (EREW
PRAM). It ecmploys p processors (RAMs) P,,..P, that operate
synchronously in parallel. Eeach processor has access to both a shared
memory of size N and its private local memory. Simultaneous access of
more than one processor to the same memory location is not allowed. At
each cycle a processor may either perform an operation that relates to its
local memory or read from a shared memory address or write into a shared
memory address. The convention of not allowing simultaneous access by
several processors to the same memory location is used in Lev, Pippenger.
and Valiant (1981). This model is a member in a whole family of shared-
memory parallel RAM models of computation. We refer the reader to
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Stockmeyer and Vishkin (1982) for a formal definition of these models
including the list of operations they allow and to Vishkin (1983) for a recent
survey of results concerning them.

A second model of computation that we employ is the module parallel
machine (MPM). It employs r processors R, R,,..., R, and is similar to the
EREW PRAM with the following exception. The L cells of the shared
memory are partitioned among m modules. Only one cell of each module can
be accessed at any cycle of the MPM. In both models of computation the
program for each processor is located in its local memory.

How do these models relate?

(1) Every algorithm for 2’11’1 EREW PRAM that employs p processors
and shared memory of size N can be run on an MPM using p processors and
N nonempty modules. This trivial observation follows readily by employing
one memory cell at each module of the MPM.

(2) Suppose that we are given an algorithm for the MPM that
employs p processors and m shared memory modules; suppose that module i,
1 <i< m, contains N, cells; suppose that m < p and the algorithm runs in
(at most) T cycles. This algorithm can be simulated by the EREW PRAM in
O(T) cycles using p procesgors, shared memory of size m and the local
memory that is used by processor P;, 1 i m (resp. m <i< p), of the
EREW PRAM is greater by N, than (resp. is the same as) the local memory
of processor R; of the MPM.

The rest of this section is devoled to outline how this is done. Processor P;
is “responsible” for simulating the behavior of processor R;, for 1 <i p.In
addition, Processor P, is “‘responsible” for simulating the behavior of module
i. 1 <i<m. For the latter purpose each cell of module i of the MPM is
represented by a corresponding cell in the local memory of processor P;,
L <igm.

The simulation proceeds as follows. Each cycle f, 1 << T, of the MPM
is simulated by three pulses of the EREW PRAM denoted (1, 1), (7, 2), and
(. 3). :

Pulse (¢, 1):
If R, performed, at cycle ¢, an operation that relates to its local memory only
Then P, does the same with respect to its local memory
Else If R, performed a read instruction from cell j of shared memory
module /
Then P; writes into shared memory cell {:
“cell j is requested”
Else If R, wrote some value v into cell j of shared memory module /
Then P; writes into shared memory cell /:
“write v into cell j”

y— -
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Pulse (t,2):

(Only processors P, 1 <i<m, are active)

If shared memory cell i contains: “cell j is requested”

Then P, copies the contents of its local memory address which corresponds
to cell j of module i of the MPM into common memory cell 1.

Else If shared memory cell i contains:
“write v into cell j7

Then P, copies v into its local address corresponding to cell j of

module i

Pulse (1, 3):
If R, performed at cycle ¢ a read instruction from a cell of module !
Then P, reads the contents of shared memory cell [

Proofs of correctness of this simple simulation and our claims regarding
time and space complexity are straightforward.

3. REDUCING THE SIZE OF THE SHARED MEMORY

Suppose we are given an algorithm (designed for the EREW PRAM)
which employs p processors, uses N shared memory locations and runs in T
cycles for some input. Suppose p < N. Question. s it possible to simulate
this algorithm on an EREW PRAM that employs the same number of
processors and “significantly™ less than N shared memory cells, without
increasing the running time “too much?”

The following fact gives some hope: Since there are p processors, no more
than p shared-memory addresses may be accessed at the same time.

Before we proceed to our main theorem, we would like to say the
following regarding the most general case.

Remark. In general, using a shared memory of size O(pT) should
suffice. The reason for this is that we can maintain all shared memory cells
which arc actually being accessed in the course of the algorithm in 2-3 trees.
A processor may initialize only one cell at a time. Therefore, the number of
shared memory cells that can be initialized is O(pT). The paper Paul,
Vishkin, and Wagener (1983) shows how to perform the search and insertion
operations that may be required for the simulation of one cycle of the
algorithm in O(log pT) time of the simulating (EREW PRAM) machine.

MAIN THEOREM. Let S be a program for an EREW PRAM which is
designated for some set of inputs I. Suppose S uses p processors, N shared-
memory locations, local memories of sizes m,,my....,m, of respective
processors, and runs in at most T cveles for each input in I. Assume that for
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each cycle t, 1 <t £ T, each of the p processors and all inputs in I there is at
most one conunon memory address that can be accessed by this processor at
this cvcle. Then, a program S’ for an EREW PRAM can be constructed
Jrom S such that S' simulates S for each input in [ using p processors, only p
shared-memory locations, m;+ [N/p|+ O(T) (1 i< p) local memory
locations of respective processors, and O(T) pulses.

Before we proceed to the proof we would like to discuss the significance of
our theorem. First, observe that the assumptions of the theorem are readily
satisfied if the cardinality of / is one. This is simply because an execution of
a parallel program on some input x results in at most one common memory
access at a time by each processor! Problem. Find instances where “common
memory access patterns” of a program S, for a set of inputs /, are the same
(or about the same) for all the inputs in

It turns out that researchers in the field of numerical computations iden-
tified the notion of serial straight-line programs, which characterizes many of
the known programs for problems in this field. For a definition of serial
straight-line programs see Aho, Hopcroft, and Ullman (1974, Sect. 1.5).
Serial straight-line programs for inputs of size n do not include branching,
loops, or indirect addressing. Therefore, for all inputs of size »n and for each
time unit of such a program theysame registers are being accessed.

Heller (1978) includes references to numerous numerical parallel
algorithms. Many of these algorithms satisfy such “uniform™ (local and
common) memory access pattern property including algorithms for
evaluating arithmetic expressions of a given format (see Winograd, 1975),
the “naive™ matrix multiplication, the “naive” raising of an n x n matrix to
the nth power (in particular, transitive closure; see Savage and Ja'Ja', 1981),
and others. So, our theorem is applicable to these programs. Note, however,
that for our theorem we may dispense with the uniform local memory access
pattern property and ease a little the uniform common memory property; as
tong as no more than one common memory address can be accessed for each
processor and each 1 << T.

Proof of the Theorem. Let us call the time units of S cycles and the time
units of S’ pulses. Assume, w.l.g., that N/p is an integer. Otherwise, we
“add” some dummy common memory addresses in order to increase N to
the next multiple of p. Let P, P,,..P, (resp. R,R,,.,R,) be the
processors of the EREW of § (resp. §'). Let x, , 1 < i< m,, be the Jocal
registers of processor P, 1<k p, and w;, | < j<N, be the common
memory locations of S. We set x; , 1 < i< m,, to be local memory locations
of processor R, which corresp(l)nd, respectively, to local registers x,,
I < i< my, of processor P,, for I < k< p. Let u;, 1 <j< p, be the common
memory locations of S’. Set Vi 1 <k p V< j<N/p, to be local registers
of processor R, (in addition to x; , xi ....).
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Generally speaking, we design S’ in such a way that processor R,
simulates the behavior of processor P, 1 <k< p; each local memory
location x;, simulates x, ; and the locations of the form uj and y,, 51mu.late
the w, locations. The additional O(T) Jocal memory locations are required
for the code of S’ as explained at the end.

By our assumption no more than p of the w, locations may be accessed at
each cycle of S. Denote the w, locations which may be accessediat cycle ¢,
I<IST, by v, U0 Uy s (In a cycle where I’ess than p w/s may be
accessed we sct some of these u,’'s to represent w;'s which are not acce.?sed
by any processor for any input uring this cycle).. In any case, the locations
Uy Upyreeesly, ATE P distinct common memory locations.

A High-Level Description of S’
The following condition is satisfied just before the simulation of cycle ¢,
1<t T, of Sby S’ starts:
(¥) Each processor R,. 1< k < p, keeps the content of exactly one of

. v, in a local memory location of the form y, ; and no

the variables Uys Upprnns Uy, ' >
more than N/p of the w; locations of S are stored in the local memory o

each processor Ry, | <k < p. .
Every cycle ¢ of S is simulated by S’ in three pulses:

(1) The fetch pulse. Processor R, which keeps the contents of variable
b, in its v, local variable assigns it into u;.
(2) The “real-thing” pulse.
If processor P, performs in cycle t an instrution which relates
to its local registers only (or remains idle) .
Then processor R, does the same with respect to its
corresponding x;_registers
Else (processor P, performs an instruction of the form:
x,, « v, -read from memory, or
Uy, X, write into common mempry)
processor R, performs the same replacing v, by u;
and x, by x;,.
(3) The store pulse. Processor R, copies the contents of some {one) u;

into one of its y, variables so that condition (+) will hold for every cycle

which follows.

The remainder of the proof is devoted to showing that there is a way to
partition initially the w/s among the local memories of. tﬁhe R, Proces_sors,
and perform the store pulses of all cycles such that condlt.xon (+) is satisfied
before the simulation of each cycle. This is done by reducing our problem to
an edge coloring problem on a bipartite graph.
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Consider an auxiliary digraph G which is defined as follows.

(a) Tt has (T + 2N/p) X p vertices. T X p of these vertices represent
the common memory locations Uy I<r<T 1€« p. N of these vertices
denqted z*,ﬁ: —(N/p)+ 10, 1 < J < p. represent each of the W,
L'<i<N. They are called input vertices. The last N vertices denotes v

T+1<iT+ Nip. 1<j<p, represent also each of the Wl gi{/\}.
They are called output vertices.

(b) There exists an edge of the form v, - ¢_ if
j .(I

(I) both v, and v, stand for the same w;; and

’ .
(2) s> and there is no v, such that s >r > and v, stands
for w,. '

It .shoulq be obvious that the out-degree of each Voo —(N/p)+ 1 <1LT
L < j< p, is one and the out-degree of the other vertices is zero, and the in-
degree of _each'v,j. PSIKT+HN/p, 1<jg p is one and the in-degree of the
other vertices is zero.

Layer t of G (L, in short) is the set fo 1 1<j< ply ~(N/p) + 1 <rg
Tb+ N/p. The correspondence between layers 1, 2,.... T and cycles should be
obvious. y

. Our solution assigns each edge of the form v, - U¢ to a processor R,. This
implies that processor R, stores the content of]uj into a local variablekof the
form Vi, at the store pulse of cycle ¢ (if £ <0, then a y, variable contains the
input value that corresponds to u,,); later, at the fetch pulse of cycle s
processor R, assigns the content of Vi, into u; (if s > T, then a v, variable
contains the output value that corresponds to v, ) o

In prder to satisly the (+) condition through&)/ut the simulation it is readily
sufficient to do the following. Partition the edges of G into p sets
C!, C,...., C, such that for any two edges e, and e, of the same set both: (1
tail(e,) and tail(e,) belong to different layers, and (2) head(e,) and head(e,)
belong to different layers. This partitioning enables us to associate each éf
these sets with a processor which will do the work corresponding to edges of
this set.

Sti.ll, a further simplification of the problem is possible. Consider another
auxiliary graph H; a bipartite undirected graph. Note that // may include
p.ar_al'lel edges. Let {a,,a,,.., Arinpt and b\ b, b be the two
disjoint sets of vertices of H. The connection to the digraph G becomes clear
through the definition of the edges of H. There is a one-to-one correspon-
dence between the edges of G and the edges of H. Let v, - v, be an edge of
G. '.I'l.len. the corresponding edge in H is of the form (b,qu‘). Our edge
partitioning problem for G translates into the following edge partitioning
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problem for the undirected graph H. Partition the edges of H into p sets such
that no two edges of the same set share an end point.

This is the well-known edge coloring problem for a bipartite graph. Since
the degrec of each vertex in H is not greater than p, a known theorem (see
Ore, 1967) implics that it is possible to partition the the edges of H into p
sets as required.

Algorithms that achieve this partitioning: We refer the reader to Gabow
and Kariv (1982) for sequential algorithms and Lev er al. (1981) for parallel
algorithms.

We would like to ascertain that the proof of the theorem is completed. The
set (color) of the edge in M corresponding to an edge of the form vy
where —(N/p)+ 1 <1 <0, yields a processor R,. Now, the contents of the
w, that corresponds to this edge is initially in one of its ¥y, locations. We
need exactly (N/p) ¥y, locations. for | k< p, for this initialization. At
each fetch pulse of the simulation of a cycle ¢, 1 <1< T, we “release” one
Vip F< k< p. This released p, can be used to store the w; that has to be
stored by processor R, as a result of the store pulse that follows, I < k < p.
The introduction of the v,’s, T+ | <t < T + N/p, gives actually an “equal™
partition of the outputtedj w,'s which was not “promised” in the theorem.
They are not necessary for the proof.

For ecach cycle 1, 1 <1< T, the code of §' at each procesor R, must
specify the v, to be released and reoccupied. the u, into which this Py, s
copied in the fetch pulse. the u, (if any) that may be accessed in the real-
thing pulse and the u, copied into Vi, in the store pulse. Thus, the code of §”
is longer by O(T) than the code of S at each local memory.

Extensions

All the results in this paper can be extended in a straightforward manner
to more permissive models of parallel computation where simultaneous
access of several processors to the same memory location is allowed; in
particular, the powerful concurrent-read concurrent-write (CRCW) PRAM
allows several processors to read (or write) simultaneously from (into) the
same memory location. See Stockmeyer and Vishkin (1982) for more on
these models of computation.
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For a fixed graph property O, the complexity of the prqblem: (iiven a gragh Gt:
does G have property Q7 is usually investigated as a fu.ncuon ofll' I, (.he r;/umI e{hg
vertices in G, with the assumption that the input size is polynomlal'm [ V. nh is
paper the complexity of these problems is investigated when .thF input grhap thls
given by a succinct representation. By a succinct representation Ft is meant t athcg
input size is polylog in [ V| It is shown that graph pr.ob‘l’ems which arclspgro?sund
this way become intractable. Actually, no “non?rnvnal p‘roblem could be pund
which can be solved in polynomial time. The main resu¥t is characte’l:lgmi; harr%j
class of graph properties for which the respective ‘tsuccljct problen}'n1 is tha—[ athc:
Trying to locate these problems within the P-Time hierarchy s owiq o
succinct versions of polynomially equivalent problems may not be polynomially
equivalent.

1. INTRODUCTION

The design of efficient algorithms for graph.the‘(‘)retic problems is ahmaigr
rescarch area in recent years. The word “efficient”™ generally means t 'at Cej
amount of computing resources is minimized. One. of the ways Co?]S'lldeiE
frequently is the use of complex data. structures in algorltt}m&lw ile en(f
assumption is made that the input is given by some cor?ventlona repres r
tation. Traditionally. graphs are represented by e;ther adJacef\cy matrltclesdo
adjacency lists with representation siz.e Qf O{V|*) and O(]Ell), gcspeiel: \,3,8
For graphs that are relatively small this is perfectly ac?eptab e, but w o e
deal with graphs that have a huge number of ve.rtlces the conven ltO :
representations are quite costly. In the areas of architectural design system
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