Planarity of Edge Ordered Graphs

Gopalakrishnan Vijayan & Avi Wigderson

Department of Electrical Engineering and Computer Science
Princeton University
Princeton, New Jersey 08544

Technical Report #307
December 1982

ABSTRACT

An edge ordered graph is an undirected graph together
with cyclic orderings of the edges at each vertex. An edge
ordered graph is said to be planar, if there is a planar
embedding of the graph in which the cyclic orderings of the
edges at the vertices are preserved. These graphs have
applications in VLSI layout problems. In this paper, we
describe a linear time algorithm for recognizing planar
edge ordered graphs.
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1. Introduction

Suppose we are given a graph G and in addition we are given a cyclic
ordering of the edges at each vertex. We call such graphs edge ordered
graphs, or in short ordered graphs. We are interested in the following
question: Does G have a planar embz=dding in which at each vertex the
edges appear counterclockwise in the given cyclic order? If an ordered
graph has such a planar embedding we call it embeddable, otherwise it is
non-embeddable.

An efficient algorithm to answer the above question has important
applications in VLSI. Censider each vertex in the graph to be a cell in a
VLSI layout and the edges coming out in order to be the wires connecting
this cell to the outside world. The ordering of the wires at each cell is a
property of the cell and cannot be changed. We are now interested in
finding a placement of the cells and the wires so that there are no cross-
ings between the wires. Of course, in a real application we have to deal
with stiraight line horizontal or vertical wires. This problem will be dealt
with in a different paper [5].

In this paper we present a linear time algorithm for recognizing edge
ordered graphs. We first deal with biconnected ordered graphs and then
proceed to discuss articulation vertices in ordered graphs. For a
definition of biconnected graphs and articulation vertices the reader is
referred to [1]. As we shall see later, unlike in ordinary planar embedding
[3], joining together the embeddings of the biconnected components at
the articulation verti-es may not always be possible. Unless otherwise
mentioned all graphs in this paper are simple graphs.

2 Some Comments and Definitions

We first mention some obvious but imporiant properties of ordered
graphs. Clearly no ordered graph whose underlying graph ( obtained by
ignoring the cyclic orderings } is nonplanar can be embeddable. But there
are ordered graphs which are not embeddable even though the
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underlying graph is planar. In figure 2.1 we have an example of one such
graph. If an ordered graph is embeddable then it has a unique embed-
ding in the sense that the faces of the planar embedding are completely
determined by the cyclic orderings. We now need some definitions
including that of an edge ordered graph.
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Figure 2.1

A non-embeddable edge ordered graph

Definition 2.1: An edge ordered graph G is given by G = (V.L), where V is
the set of vertices, and L = {Z.(v) | veV], where Lg(v) is a cyclic list of
vertices adjacent to v , satisfying v € Lg(u) e u € Lg(v). The edge set is
givenby E ={{uw) |u € Lev);uw € V3.

For convenience in a later definition we assume that the vertices are
denoted by integers, i.e. V is a set of integers. Subgraphs of G are

defined in the usual fashion but they now inherit the edge orderings at
each vertex from G.

Definition 2.2: An ordered graph G = (V,L) is said to be embeddable if
there exists a planar embedding of G in which at each vertex v the edges
appear counterclockwise in the order defined by the cyclic list Lg(v).

3. Biconnecied Ordered Graphs

In this section we discuss the algorithm for biconnected ordered
graphs. We first define what we call cendidale Jaces for a biconnected
ordered graph.

Definition 3.1: Let G = (V,L) be a biconnected ordered graph. With each
edge e = (v,,vy), v, > v, we associate two lists of vertices called caondidate
Jaces  CFi{e) and CFyle) which are defined as follows.
CFy(e) =vyvp - - 2y u,,, where v, # v; for 1<1 <j<k, and v,, = v; for
some %, 1<% <k-1i. Also, for each 1,1 <1 <k+1, v;4, 15 the successor of
vy in the cyclic list Lg(v,). CFu(e) is similarly defined but starting with
Up,U;.

It is easy to see that CF, and CF, are uniquely defined. For the graph
in figure 2.1, CF (e;) = 4,2,1,3,2 and CFyle,) = 2.4,3.1.2.
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We now need a lemma about biconnected undirected graphs. Let us
cdefine a biconnected graph to be minimal if for every edge e in the
craph G—e is not biconnected. The following lemma is taken from [2] and
s stated without proof.

Lemma 3.1: If G is a mintmeal biconnected graph having at least four ver-
fices then G contains a vertex of degree two.

lemma 3.2: In any biconnected graph G which is not a simple cycle,
there is a simple path P = (v,vp).(wavs) - - (vro1v), 7 =2, with the
intermediate vertices ( if any ) »;,7 # 1,r all having degree 2, such that
the graph &' = G-P is biconnected.

Proof: Transform the given graph G to another graph " by replacing all
paths of the form P =(v,vp),(vaws), - - .(v,1.v,) where the vertices
z;, 1 # 1,7 all have degree 2, by the edge (v,,2,). So for each edge e in G"
we have a corresponding path P, in G. Note that the degree of any vertex
in G" is at least three. If " has multiple edges between some two ver-
Hces, say u and w, then in G there must be at least two parallel paths
between u and w. Since G is not a simple cycle any one of those paths
will serve our purpose. If G" does not have multiple edges then it must
have at least 4 vertices. By lemma 3.1 G" cannot be minimal. Therefore
there is an edge ¢ in G" such that G"—e is biconnected, which implies
that G-F, is also biconnected. =

The following theorem gives a necessary and sufficient condition for a
biconnected ordered graph to be embeddable.

Figure 3.1
Two possible embeddings of CF\(e)

Theorem 1: Let G = (V,L) be an biconnecied ordered graph with at least
“hree edges. Then G is embeddable if and only if for each edge e in the
grzph both the candidate faces CF,{e) and CFg(e) represent simple
cveles in the graph (ie. the starting and ending vertices are identical).
¥oreover, if the graph is embeddable each such distinct candidate face
corresponds to a face in the planar embedding.
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Figure 3.2
The two cycles f,.f . and the path P
Proof:
only if: Suppose for some edge e=(v,;v;), CF,(e) is not a cycle, i.e
CFy(e) =v,vg, - - - Up U4+ With v; =v,, for some i, 1 <i <k-1. Suppose
G is embeddable. Look at the cycle v;, - - - .4 %+, in the embedding. Sup-

pose that the edge {v;_,,%;) is inside this cycle. There can be no other
edges (u,v5),1 < j <k inside this cycle, otherwise » would have appeared
instead of v;,, in CF;(e). From this observation and the fact that the
embedding is planar, it follows that v; is .an articulation vertex, which
contradicts the biconnectedness of G. The case where (v;-;,7;) is outside
the cycle is similar ( both cases are depicted in figure 3.1 ). Similar argu-
ment holds if CFp(e) is not a cycle.

tf; The preof of this part is by induction on the number of edges. The
basis for the induction are simple cycles, for which the claim is certainly
true. Assume that the claim is true for any biconnected ordered graph
which has less than k¥ edges. Let G be a biconnected ordered graph which
is not a simple cycle and which has k& edges. By lemma 3.2, there is a sim-
ple path P = (v,vy). (vavg), - - .(vp_y,v) with the vertices »;,i # 1, all
having degree 2, such that the graph G' = G—P is biconnected. v, and v,
will have degree greater than two. Also assume that »;>wv, and
ez = (v.v2).

Since all our candidate faces are cycles, if an edge e lies on a candi-
date face f then either CF,(e) = f or CFy(e) = f. So each edge will be
present in exaclly two of these candidate faces. Hence the path P will
appear in CF;{e;;) and its reverse path will appear in CFy{e3). Let

.= CF;(exz) SV Ve Uy, UGV,
Fo= CFale) = v,y -+ vy wy, - gy, and
Fs=vpw, - WU Uy, ;Y

- It follows from the definition of the candidate faces f, and f, that the
vertices ujvpw, appear consecutively in that order in Lg{v,) and that
wy Uy _y.u, appear similarly in Lg{(v, ) { see figure 3.2 ). Therefore {or each
edge in f, or f, which is not in P, the new candidate face in G will be f4
which is a simple cycle. Thus the candidate {aces for G' are the same as
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those for G, excepting for fs replacing the two faces f, and f,. So for
each edge in G’ its two candidate faces are again simple cycles. By induc-
tion hypothesis &' is embeddable and each distinct candidate face
corresponds to a face in its embedding. The orderings of the edges at the
vertices v; and v, imply that the end edges (vyvg) and (v,_;v,.) of the
path P are both trying to go inside the face corresponding to f5. It is
now a simple matter to insert the path P into that face. Also this action
will cut this face into two new faces of ¢ corresponding to the candidate
faces f; and f, This completes the proof of the theorem. »

The above theorem leads io the following algorithm for recognizing
embeddable biconnected ordered graphs. The algorithm also outputs the
faces of the embedding if the graph happens to be embeddable.

Algorithm embed-biconnected((),
begin
if Gis an edge then reiumrn,;
i |E| >3|V|-6 then gquit( 'not embeddable )
for each edge e do
begin
mark[e,1]:= false:
mark[e,2]:= false
end,
for each edge e do
fori= 1to Z2do

begin
if not mark[e i] then
begin
J := candidate-face( e, i );
if f # cycle then guit( not embeddable * )i
for each edge e’ = (v,,v,) in J do
v, > v, then markfe'.1]:= true
else mark|e'.2].= true;
output (1)
end
end

end
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Function call candidate-face(e,i) returns the candidate face CF;(e)
and the function can be implemented exactly as described in definition
3.1. In the calls to this function, each edge e can be traversed at most
twice, due to the flags mark[e,1] and mark[e,2]. Therefore the algorithm
runs in time O(| V).

4. Articulation Vertices

Now we turn our attention to articulation vertices in ordered graphs.
In the following definition we isolate the articulation vertices that create
problems.

Definition 4.1: Let G be an ordered graph . An articulation vertex u in G
is said to be wllegal if there are four vertices v, vzvsv, appearing in that
order ( not necessarily consecutively ) in the cyclic list Lg(u), such that
U, v, are in one biconnected component and v,,vg are in a different com-
ponent. An articulation vertex which is not illegal is said to be legal.

The following two lemmas reveal why legal articulation vertices
behave nicely while illegal ones don't.

Figure 4.1
A legal articulation vertex u

Lemma 4.1: Let « be an legal articulation vertex in an ordered graph G.
Let its removal result in connected subgraphs G, - ,G.'. Let G be the
result of adding to G' the vertex u and the edges to u Irom vertices in
G;'. Then G is embeddable if and only if each G; is embeddable.

Proof: If any & is not embeddable then clearly G cannot be embeddable.
Let each of the G be embeddable. We now use induction on k the number
of subgraphs meeting at u. The claim is certainly true for k = i. Let the
claim be true for any k <r. Since u is legal we have for some j > 1, ver-
tices vy, - - - w; appearing consecutively in the cyclic list Lg(u), such that
these are the only vertices adjacent to « belonging to some subgraph, say
the last one G,. By induction hypothesis the graph G’ obtained from G by
removing G —u is embeddable. Let v, v;' be the predecessor of v, and
the successor of v; respectively in Lg(u). It is possible that v, = v;". Let



us draw the embedding of ¢’ such that edges (u,v,) and (u,v;") appear on
the outside face, ie. on the exterior region. This can always be done
without destroying the ordering of edges at any vertex [2, page 66]. Simi-
larly make (u,v,) and (u,v;) appear on the outside face in the embedding
of G,. All we need to do now is to join the two embeddings at u«, as shown
in figure 4.1, to get an embedding for G. =

Figure 4.2
An illegal articulation vertex u

Lemma 4.2: I an ordered graph G contains an illegal articulation vertex
then G is not embeddable. :

Proof: Let # be an illegal articulation vertex in G. We have four vertices
v,,v2.V5V; in that order in the cyclic list Lg{u) such that v, v are in one
biconnected component G, and vpv, are in another G, (figure 4.2). Any
two edges in a biconnected graph must lie on a simple cycle[1]. Hence
the edges {u.wv,;)& (uws) lie on a cycle €, in G, and the edges
(u,vp) & (u,v,) lie on a cycle Cz in Gp. It is impossible to draw G on the
plane with the these four edges appearing in the prescribed order
without €, and Cp crossing each other. Hence G is not embeddable. =

We are now in a position to state a necessary and sufficient condition
for an ordered graph to be embeddable.

Theorem 4.1: An edge ordered graph & is embeddable if and only if every
biconnected component of G is embeddable and every articulation vertex
is legal.

Proof: If ¢ is embeddable then any biconnected component of G is also
embeddable. Also by lemma 4.2 all its articulation vertices must be legal.
This proves the necessary part. We use lemmma 4.1 and induction on the
number of articulation vertices to prove the sufficient part.

The above theorem gives us the following O{{V|) running time algo-
rithm for recognizing embeddable ordered graphs.
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Algorithm embed-orderedgraph(G);
begin
i [F|>3|V|-6 then quil ( 'not embeddable’ )
find-biconnected-components(G),
for each articulation vertex u do
if check-illegal(u) then quit ( not embeddable’ )
for each biconnected component G do embed-biconnected(G);
end

Function check-illegal{u) can be implemented to run in 0(d) time
where d is the degree of the vertex u. One way to do this is by reducing
Lg(u) successively using certain rules. We leave this as an exercise to the
reader. Each edge in G will be involved in at most two calls to this func-
tion and hence the time spent in calls to this function is 0(|£]). Finding
articulation vertices and biconnected components can be done again in
O(/E]) time [1]. Each edge will be present in exactly one biconnected
component an hence the total time spent in calls to embed-biconnected
is again O(]E|). Hence the algorithm has running time O(|E|) = 0(|V]).
Note that in order to get the faces of the embedding the two algorithms
need lo be altered. This can be done so that faces are also obtained in the
same running time O(|V|). But we will spare the reader the details of
this task. '

S. Conclusions

The problem of embedding edge ordered graphs arose during the
implementation of ALI [4], a procedural VLSI design system currently
under implementation at Princeton. The algorithm described in this
paper ( with modifications given in [5] ) will be implemented in ALL
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