HOW TO SHARE MEMORY IN A DISTRIBUTED SYSTEM

(A preliminary version)

Eli Upfalt

Stanford University
Stanford, CA 94305

Avi Wigderson *

University of California
Berkeley, CA 94720.

ABSTRACT

We study the power of shared-memory in
modcts of paraliel computation. We describe a novel
distributed data structure that eliminates the need for
shared memory without significantly increasing the
run time of the parallcl computation. More
specifically we show how a complete network of pro-
cessors can deterministicly simulate onc PRAM step
in O(log n(loglog n)?) time, when both models use n
processors, and the size of the PRAM’s shared
memory iS polynomial in n. (The best previously
known upper bound was the irivial O(n)). We also
establish that this upper bounds is ncarly optimal.
We prove that an on-line simulation of 7 PRAM
steps by a complete network of processors requires

wur 10-‘(’i—) time.

Eglog n

A simple consequence of the upper bound is
that an Ultracomputer {(the only currenty feasible
general purpose parallel machine), can simulate one
step of a PRAM (the most convenient parallel model
to program), in O((log n loglog n)?) steps.

T Parnt of this work was done while the first author was visit-
ing U.C. Berkeley. Research supported by a Weizmann Post-
Doctoral fellowship. and in part by DARPA Grant N00039-83-C-

1036.

+ Current address: IBM Rescarch Center, IBM K55/281,
5600 Cotule rd. San Jose Ca 95193. Research supported by DAR-
PA Grant N00039-82-C-0235.

0272-5428/84/0000/0171$01.00 © 1984 IEEE

171

1. INTRODUCTION

The cooperation of n processors to solve a
problem is useful only if the following two goals can
be achieved:

1. Efficient parallelization of the computation
involved.

2. Efficient conununication of partal results
between processors.

Models of parallel computation that allow pro-
cessors to randomly access a large shared memory
{(c.g. PRAM) idealize comniunication and let us focus
on the computation. [ndeed, they arc convenient to
program and most parallel algorithms in the literature
usc them.

Unfortunately, no realization of such models
secms feasible in {oresceable technologies. The only
current feasible model is a distributed system - a set of
processors (RAMs) connected by some communica-
tion network. As there is no shared memory, data
items arc stored in the processors’ local memaries,
and information can be cxchanged between proces-
sors only by messages. A processor can send or
reccive only one data item per unit time.

Let n be the number of processors in the sys-
tem and s the number of data items. At every logi-
cal (c.g. PRAM) step of the computation, cach pro-
cessor can specify one data item it wishes to access
(read or updatc). The execution time of the logical

step is at least the number of machine steps required
to satisfy all these requests in parallel.

To illustrate the problem, assume m>n2. A
nah e distribution of data items in local memories
that uses no hashing or duplication will result in
some local memory having at least n data items.
Then, a perverse program can in cvery step force all
processors to access these particular data items. This
will cause an (n) communication bottleneck, even if
the communication network is complele. This means
that using n processors may not have an advantage
over using just one, even when computiation is parallel-
izable! ‘

We therefore sce that it is a fundamental prob-
Jem is to find a scheme to organize the data in the
processors’ memories such that information about any
subset of n data items can be retricved and updated
in parallel as fast as possible.

This problem, called in severalereferences ‘the
granularity problem of parallel memories’, is dis-
cussed 1n numerous papers. The survey paper by
Kuck [Ku} mentions 14 of them, all solving only part
of the problem as they tailor data organization to par-
ticular families of programs. For a gencral purpose
parallel machine, such as the NYU-Ultracomputer
(Gottlieb et al. [GGK]), the PDDI machine (Vishkin
[Vi]), and others, onc would clearly like a general
purpose organization scheme, that will be the basis of
an automatic (compiler-like) efficient simulation of
any program written for a shared memory model by a
distnbuted model.

If the number of data items, m, is roughly the
number of processors, n, then the fast parallel sorting
algorithms, [AKS], and [Le], solve the problem.
However, we argue that in most applications this is
not the case. For example, in distributed databases,
typically thousands of processors will perform tran-
sactions on billions of data items. Also, in parallel
computation, appetite increases with eating; the more
processors we can have in a paralicl computers, the
larger the problems we want to solve.

In a probabilistic sensc, the problem is solved

172

even for m»n. Mclhorn and Vishkin [MV] propose
distribufing the data itcms using universal hashing.
This guarantecs that onc parallel request for n data

items will be satisficd in cxpected time ()(-lol—gol%).

Upfal [U] presents a randomized distributed data
structure that guarantces cxccution of any sequence
of T parallel requests in O(7 log n) steps with pro-
bability tending to 1 as n tends to 00,

By contrast, if m>n, no deterministic upper
bound better than the trivial O(n) in known.
Melhorn and Vishkin [MV], who provide an exten-
sive study of this problem, suggest kecping scveral
copics of each data itern. In their scheme, if all
requests are for ‘read’ instructions, the ‘easiest’ copy
will be read, and all requests will be satisfied in time

1

. 1-3
O(kn *) where m = n*. When update instruc-
tions are present, they cannot guarantee time better
than O(n), as all copies of a data item have to be

updated.

In this paper we present a data organization
scheme that guarantecs a worst case upper bound of
O(log n(loglog n)?), for any m polynomial in .
Our scheme also keeps several copies of cach data
item. The major novel idea is that not all of these
copies have to be updated - it suffices that a majority
of them are. This idea allows the 'read’ and 'update’
operations to be handled completcly symmetrically,
and still allows processors to access only the ‘easiest’
majority of copies.

Our scheme is derived from the structure of a
concentrator-like bipartite graph [Pi]. It is a long
standing open problem 10 construct such graphs
explicitly. However, a random graph from a given
family will have the right properties with probability
L. As in the casc of expanders and superconcentra-
tors (c.g. [Pi]) this is not a serious drawback, as the
randomization is done only once - when constructing
the systcm.

Onc immediate application of the upper
bound is to the simulation of ideal parallcl computers
by fcasible ones. Since a bounded degree network

v

e W

< 3 w»w WP

[¢’]

uQ

-
[74]

~

can simulate a complcte network in O (log 1) steps
(IAKS]. [l.e]). a typical simulation result which is
dertved from our upper bound is the following: Any
n-processors PR AM program that mns in' T steps can
be simulated by a bounded degree network of n pro-
cessurs (Uliracorputer [Sc)) that runs in deterministic
time O(T(log n)Y(loglog n)?) steps.

The scheme we propose has very strong fault-
tolerance properties, which are very desirable in dis-
tributed systems. It can sustain up to O(log a) mali-
ciously chosen faults and up to (1~ ¢&)n random ones
without any information or efficiency loss.

Finally we derive lower bounds for the
efficiency of memory organizations schemes. We
consider schemes that allow many copies of each data
item, as long as each memory cell contains one copy
of onc data item. The redundancy of such a scheme
1s the average number of copics per data item.

Our lower bound gives a trade-off between the
efficiency of a scheme and its redundancy. If the
redundancy is bounded, we get an Q(n€) lower
bound on the effictency. This result partially explains
why previous attempts, that considered only bounded
redundancy failed [MV], and why our scheme uses
O(log n) copies per data item.

We also derive an Q(_lgg_n_) unconditional
loglog #

lower bound on the efficicncy - almost maiching our
0O(log n(loglog n) upper bound. This lower bound
is the first result that separates models with shared
memory from the feasible models of parallel compu-
tation that forbid it.

2. DEFINITIONS

To simplify the presentation, we shall concen-
trate on simulation of the weakest shared memory
model - the EREW (Exclusive-Read Exclusive-Write)
PRAM, by the sirongest distributed system - a model
equivalent to a complete network of processors. In
the final version we shall fill in the details for a simu-
lation of a the strongest PRAM model (the CRCW
PRAM) by a bounded degree network of processors

173

(an Ultracomputer).

An EREW PRAM consists of n processors
Py ..., P, (RAMs) which opecrate synchronously
on a sct U of m shared variables (or data items). In
a single PRAM step, a processor may perform some
internal computation or access (rcad or update) one
data item. Fach data item is accessed by at most one
processor at cach step.

An MPC (Module Parallel Computer) [MV]
consists of » synchronous processors, Py, ..., P,,
and n memory modules, My, .. ., M,. Every module
is a collection of memory cells, each of which can

store a valuc of one data item.

In each MPC step, a processor may perform
some internal computation, or request an access to a
memory cell in one of the memory modules. From
the set of processors trying to access a specific
module, exactly one will (arbitrarily) be granted per-
mission. Only this processor can consequently access
(rcad or update) exactly one ccll in this module.

The task of the MPC is to execute a PRAM
program. This program is a sequence of instructions
I,, t=1,....T. Each instruction is a vector of n
sub-instructions, specifying the task of each of the »
processors in this instruction. The sub-instruction of
the processor P; can be either to execute some local
computation, or to access (read or update) a data
item (shared variable) w,€U. In the casc of an
update, a new value v; is also assigned.

For the simulation. cach data item « €U may
have scveral ‘physical addresses’ or copies in several
memory modules of the MPC, not all of which are
necessarily updated. Let I'(u) be the set of modules
containing a copy of u. We sometimes refer to T(u)
also as the set of copics of u.

The cssence of the simulation is captured by
an organization scheme S. It consists of an assign-
ment of sets I'(u) to every u €U, together with a pro-
tocol for cxecution of read/update instructions (c.g.
how many copics to access, in what order, etc.). Both
the assignment and the protocol may be time

dependent.

‘The efficiency of a given scheme S is the
worst case number of parallel MPC steps required to
exccute one PRAM instruction (according to the pro-
tocol). Note that the worst casc is taken over all pos-
sible #7-subsets of the set of data items U, and over
all possible access patterns (rcad/write).

The notion of an updated copy of a data item
u CU is very intuitive. At any step during the simu-
lation, a copy y(u)ET(«) is updated if it contains the
value the data item u would have at this step if the
program were executed by a PRAM.

Let the numbcer of updated copies of u (at
some step) be T'(u).

A scheme s consistent if at every step, for
every u €U, |Tuw)|>1

We define the redundancy r(§) of § (at this
S IT(w)]

u€yU
U1
of copies of a data item in the scheme at this step.

step), to be r(S) = , the average number

3. UPPER BOUNDS
Our main results are given below.

THEOREM 3.1: If m is polynomial in n then
there exists a consistent scheme whose efficiency is
O{loz n(loglog n)?).

Theorem 3.1 is a special case of:

THEOREM 3.2: There is a constant by > 1,
st for every b>bgy and ¢ satisfying b¢ > m>, there
exists a consisient scheme with efficiency
O(ble (og ¢) + log n log c)).

In our scheme, cvery item u € U will have
exactly 2¢ — 1 copies, i.e. |T'(w)| =2¢ —1. Each copy
of a data item is of the form <value, time-stamp>.
We will show later how to locate the copies of each
data item,

The protocol for accessing data item u at the

% instruction is as follows:

l!

174

1. To update u, access any ¢ copies in I'(n),
update their values and sct their time-stamp to /.

2. To read u, access any ¢ copics in T(u), and
read the valuc of the copy with the latest time-stamp.

This protocol completely synmunctrizes the
roles of read and update instructions, and gives a new
application to the majority rule used in [Th] for con-
currency control of distributed databases.

LEMMA 3.1: Assume that before the execu-
tion of the first instruction all copies of each u € U
contain identical values and are time-stamped 0.
Then the following invariant is maintained afier the
execution of each instruction:

Every u € U has at least ¢ copies that agree
in value, and are time-stamped with the index of the
last instruction in which a processor updated u.

The proof follows simply from the fact that
every two c¢-subsets of I'(«) have a non-empty inter-
section, and therefore the protocol for read access,
together with the invariant above, guarantee that a
‘correct’ value will be read.

COROLLARY 3.1: The scheme is consistent.

Let u; be the data item requested by P,
1<i<n, at this step. Recall that ¢ copies in I'(y;)
have to be accessed in order to read or update u;.
Denote the ;% copy in [(x) by y,;(u). During the
simulation of this instruction, we will say that y;(«;)
is alive if this copy was not accessed yet. Also, say
that u; is alive if at least ¢ copics in T'(y;) are still
alive. Notice that a request for u; is satisfied when y;
is no Jonger alive. At this point the protocol for

accessing u; can terminate.

We are ready now to describe the algorithm.
We start with an informal description.

Assumc that the task of P; is either to read y;
or to update its value to v;. Processors will help each
other to access these data items according to the pro-

tocol. It turns out to be cfficient if at most

n
2c~1
data items arc processed at a time. Thercfore, we

shall partition the set of processors into & = 5c_”:T
groups, cach of size 2¢ — 1. There will be 2¢ phases
to the algorithm. In cach of the phascs. cach group
will work, in parallel, to satisfy the request or one of
its members. This will be done as follows: The
current distinguished member, say P;, will broadcast
its request (access u;, and the new value v; in case of
a write request) to the other members of its group.
Each of them will repeatedly try to access a fixed dis-
tinct copy of u;. After cach step, the processors in
this group will check whether «; is still alive, and at
the first time it is not alive (i.e. at least ¢ of its copies
were accessed), this group will stop working on 1;. If
the rcquest was for a rcad, the copy with the latest
time stamp will be computed and sent to ;.

Each of the first 2¢ — 1 phases will have a time
limit, that may stop the processing of the k& data
items while some are still alive. However, we will

show that at most 7—k—— from the k items processed

in each phase will remain alive. Hence, after 2¢ —1
phases at most k items will remain. These will be
distributed, using sorting, one to each group. The
last phase, that has no timc limit, will handle them
till all are processed.

For the formal presentation of the algorithm,
let Py_iac-u+ie i=1 ..., 2¢ —1 denote the pro-
cessors in group /, I=1,..., k, szn_l—. The
structure of the j* copy of the data items u is, as
before, <value;(u) tine — stamp;{u)>

Phase (i,time_limit):
begin
o= processor_no |

2c—1
fi=(- 1X2¢ - 1)
P, . broadcast its request
A
(read(us ;) or update(us vy 4:)

0Py Prize-y;
live(us .): = true;
count: =0;

while live(us4;) and count < tine_limit do
count : = count+1;
Py ; trics to access y;(us .);
iljp'crmission granted then
if rcad request then

read Cvalue;(uy ;). time_stamp;(us ;)
else (update request)
<value (uy). time_stamp(ug ;Y 1= Svppind?
if less than ¢ copies of uy,; are still alive’ then
fiveluy)1 = false;
cnd while
if a rcad request then
find and send to £y 4; the value with the
fatest time_stamp;
cend Phase /;

The algorithm:
begin
for i=1 to 2c—1 do
run Phase(i log,4c);
f for a fixed n (o be calculated later),
there are at most &k live request at this
point of the algorithm]
sort the &’ live requests and route them to
the first processors in the k' first groups,
one to cach processor;
run Phase(1,log, n);
end algorithm.

Consider now one iteration of the while loop
in an execution of a phase in the algorithm. The
number of requests sent to cach module during the
execution of this iteration is equal to the number of
live copies of live data item this module contains.
The module may receive all the requests together and
therefore process only one of them, thus we can only
guarantee that the number of copies processed in
each iteration of the while loop is equal to the
number of memory modules containing live copies of
data items that were alive before this iteration.

Let ACU denote the set of live data items at
the start of a given iteration. Let the set T'(w)CT{w)
denote the set of live copies of u€U at this time.
Since u is alive, |T'(u}| > ¢. The number of live
copies at the start of this iteration is given by

> {T(w)}. The number of memory modules con-
uely

taining live copies of live data items, and thus a lower
bound for the number of copies processed during this
iteration is given by |T'(A)| = || ['(w)].

u€d

Woe first show that a good organization scheme
can guarantee that |T'(A)] is not too small.

LEMMA 32: For every 624, if

175

m < (———)2 then there is a way to distribute the

2e)*

2¢ =1 cupies of caclt of the m shared data items

among the n modules s.t. before the start of each

iteration of the “while’ loop |T'(A)| > JL;—-LQC —1).

PROOF: It is convenient to model the
arrangement of the copies among the memory models
in terms of a bipatite graph G(U,N.E), where U
represents the set of i shared data items, N the set
of n memory modules, and I'(w), the set of neighbors
of a vertex u€U represents the set of memory
modules storing a copy of the data item v. We use a
probabilistic construction in order to prove the
existence of a good memory allocation.

Let G, ,. be the probabilistic space of all
bipartite graphs G(U,N E) s.L
[U] = m, |[N| = n and the degree of each vertex
u€U is 2c¢ —1. Give all graphs in the space cqual
probability.

Say that a graph G(UN.E)€ G, is
‘good’ if for all possible choices of the sets
{T') : T'(w)CT(u), lF(u)lZc, «€U} and for all

ACU, 4] < the

2c T incquality

[T'(4)| > E(Zc—l)lA l
captures the property that for any set 4 of live data

items, no matter which of their copies are still alive,
the set of all the copies of data items in 4 are distri-

buted %(zc “D)[A|

holds. This condition

among at least Mmemory

modules.
Pr{ GE€G,, .. is not ‘good’} <

22

gcn 1 ﬂ(zc 1)
~(2c-1)

il

<
- 2

o(%)‘ for m < ()¢, and b >4

b
Q2e)!
In what follows we assumec that the algorithm
1s applicd to a memory organization that possesscs
the properues proven in Lemma 3.2,

LEMMA 3.3: If the number of live items at
the beginning of a phase is w (<k), then afier the

first s iterations of the while loop at most 2(1 — —};)‘w
live copies remain,

PROOE: At the beginning of a phase there
are w live items, and all their copics arc alive, so

there is a total of (2¢ — 1)w live copics. By lemma
3.2, after s iterations, the number of live copies

< 1=y Qc~Dw.
[T'(u)| > ¢ for each live item, these can be the live
%)s 2¢ IW SIl(l—-—};)’w

remaining is Since

copies of at most (1—

items.
COROLLARY 3.2: Letq = (1 — %)‘1.

1. After the first log,(4c —2) iterations of the while

live items remain

loop in a phase, at most
P P 2c—1

alive (esiablishes the fact that the last phase has to
process no more than k requests).

2. Afier logy, 2k < log,, n iterations in a phase, no
live items remain (establishes the correciness of the
last phase).

To complete the analysis, observe that each
group necds during each phase to perform the fol-
lowing opcrations: broadcast, maximum (for finding
the latest time stamp) and summation (testing
whether ; is still alive). Also, beforc the last phase,
all the requests that are still alive are sorted.

LEMMA 3.4. Any subset of p processors of
the MPC, using only p of the memory modules, can
perfornt maximum, summation, and sorting of p ele-
ments, and can broadcast one message in O(log p)
sieps.

PROOF: The only non-trivial case is the sort-
ing and this can be done using Leighton’s sorting
algorithm [Le].

THEOREM 3.2: if

£

)2, then there exists a memory organiza-

For every b > 4,

m < (Ge)

tion scheme with efficiency

O(be(log ¢) + bllog n)log ¢)).

PROQF: In each itcration of the while loop
cach processor performs up o onc access to a
memory module, and each group of 2¢ — 1 processors
computes the summation and the maximum of up to
2¢ —1 clements. Thus, cach iteration takes Of{log ¢)
steps. The first 2¢ — 1 phases perform log, ¢ itera-
tion cach, therefore together they require

0 (e —log c)
log

patallel steps.

The sorting before the last phase takes
Ollog n) steps, and the last phase consists of
Oflogan) while iterations, hence requires
O((logyn)log c)) steps. As

log 7 = log (1—%)‘1 = 0(%) the total number of
steps is O(bc(log ¢)* + b(log n)log c))
We conclude this section with some remarks:

1. Fault tolerance: A variant of our scheme,
in which cvery processor tries to access (2—e)c
copies rather than ¢, guarantees that even if up (o
(1-2¢e)c of the copies of each data item are des-
troyed by an adversary, no information or efficiency
loss will occur.

2. Explicit construction: The problem of
explicit construction of a good graph in Grone
remains open. This problem is intimately related to
the long standing open problem of explicit construc-
tion of (m,n)-concentrators (e.g. [DDPW]), when
mdn.

4. LOWER BOUNDS

The fast performance of the organization
scheine presented above depends on having at least
Oflog n) updatcd copics of each data item, distri-
buted among the modules. A natural question to ask
here is whether this redundancy in representing the
data items in the memory is essential. In this section
we give a positive answer to this question. We prove

a lower bound rclating the efficiency of any

177

organization scheme to the redundancy in it Using
this trade-ail we derive a lower bound for any un-line
simutation of ideal models for parallel computation
with shared memory by feasible models that forbid it

We assumne without loss of generality that cach
processor of the MPC has only a constant number, d,
of registers for internal computation. (This is no res-
triction as #; can use M, as its local memory). In
what follows we cunsider only schemes that allow a
memory cell or an internal register to contain one
value of one data item (no encoding or compression
are allowed).

THEOQREM 4.1: The efficiency of any organi-

zation scheine with m datu items, n memory modules
1
and redundancy r is Q((%)2’).

PROOF: [et S be a scheme with m data
items, n modules, and redundancy r. If the
efficiency of the scheme S is less than some numnber
h then there is no sct of # data items such that all
their updated copies arc concentrated in a set of
h~'n modules. Otherwise, it would have taken at
least h steps to read these data items, since only one
data item can be read per step at each module.

Recall that r is the average number of
updated copics of a data items in the scheme. There-

n . .
fore, there are at least 7 data items with no more

than 2r copies. Atmost dn out of these items appear
in the internal registers of processors.

hfln sets of A~ modules, and

each sct can store all the copics of no more than
n—1 data items. -[f a data item has at most 2r copies
then all s arc included in at least

n —2r
htn —2r
toal number of data items with at most 2r copies
that are stored by the scheme, we get

There are [

copics

seis of A~'n modules. Counting the

lh—”l (II —“1)
- M
— > = — dn
no— 2r 2
=ty = 2r
which implies & = Q(m))

Using the result of thcorem 4.1 we can now
derive a lower bound for the on-line simulation of a
PRAM program by the MPC model.

In an on-linc simulation, the MPC is required
to finish executing the ¢ PRAM instruction before
recading the ¢+1". Of course it can perform other
operations as well during the exccution of the (%
instruction, but these can not depend on future
instructions.

We shall assume, w.l.o.g., that the initial value
of all data items (and all MPC memory cclls) are
7ero. Since we have m data items and # processors,
it makes sensc to consider PRAM programs of length

m . .
Q(—). otherwise some items werc redundant.
n

THEOREM 4.2: Any on-line simulation of T
steps of a PRAM with n processors and m shared
variables on an MPC with n processors and n

memory modules requires QT M) parallel
loglog n
MPC steps.

PROOF: We will construct a PRAM program
of length 7 as follows: The first % instructions will

assign new values to all the data items. Subsequent
istructions will alternate between a hard read and a
hard write instructions.

Consider the redundancy r, of the scheme
after the execution of the (" instruction. A hard read
instruction will essentially implement theorem 4.1 - it
will assign processors to read n items that all of their
updated copies arc condensed among a small number
of modules. A hard write instruction will assign new
valucs to the n items with the highest number of
updated copies. Clcarly there are always n data
items with at lcast r, updated copies {(as m>n)

178

For simplicity consider cach pair of a hard
read followed by a hard write as onec PRAM instruc-
tion. lLet s, be the number of MPC steps used while

For the first + = 2%

exccuting the " instruction.
n

T

instructions, at most 3 s, memory locations were
(=1

accessed, and hence

< (1)
= m(glst-

Recall that », is the redundancy when we start

alternating rcads and writcs.
1

theorcm 4.1, at least 12"“1 = B,-, of the 5, MPC
steps were used by each processor to exccute the hard
read instruction. Hence, at most (s, — 8,_1)n cells
were accessed for wnte instructions. Also, the value
of n data items, with >r, _; updated copics each, was
changed, thus, we have

let 1>7 =2 By
n

n<rn-o+ (s

n
-8B, y=r _)—
ﬂzl tl)m,
fore = r+1,...,7T.

Summing all these inequalities we get

T
2 n< 2 -1+ — 2 (s =Bi1—1-0).
t=7+1 t=7+1 m—r41

Using simple manipulation we get:

m
PR E 52 —fr + E Bi—1+7-1),

t=71+1 t=7+1
and using (1),
T T T m T
251:251+ Z SIZ—rT+ E SIZ
t=1 r=1 t=7+1 n t=T1+1

m T-1 T-1
—rr+ SB+r)> 3 B+
n (=71 t=T

T
Where 3 s, 1s the total simulation time.
=1

Let 7= —— zr, bc the average

(7 -2y i=r

, , m .

redundimey in the last 7 —— steps. Notice that
h
1

" is a convex function in r,

Blr) = (m
Henee by Jcns;n‘s incquality [RV,211-216],

1 1

m)zr, > (T~ m) m)z,‘

for r>0.

7-1 T-1
Thi= 200
Hence,

T 1-

> 5 2 (T= 20N +(”’)2) =

t=1

m

lo
(T -) ——2—

m’

loglo g—

For m > n'*€ and T > (1+e)%, the simu-

log n)
loglog n ™

lation time is (7

5. CONCLUSIONS

We describe a novel scheme for organizing
data in a distuibuted system, that admits highly
efficient retrieval and update of information in paral-
lel.

This paper concentrates on applications to syn-
chronized models of parallel computation, and
specifically to the question of the relative power of
deterministic models with and without shared
memory. Quite surprisingly, we show that these two
families of models are necarly equivalent in power,
and therefore we justify the use of shared memory
models in the design of parallel algorithms.

There are other applications of our scheme
that we did not pursue in this paper. One application
is 16 probabilistic simulation. An interesting open
problem, which we are considering, is whether our
scheme can improve the probabilistic results in MV]
or [U].

Another application we did not pursue here is
to asynchronous systems. Although a similar scheme

179

was suggested in this context [Th), we believe that the
potential of this idea was not fully exploited there,
and we plar to continue research in this dircction.
However, we believe that the new notion of con-
sistency suggested by our scheme can have a major
impact on the theory and design of such systems, in
particular for distributed database systems. We

intend to continue research in this direction.

Acknowledgments:

We thank Dick Karp for helpful discussions,
and Edna Wigdersn, Oded Goldreich, and David
Shmoys for their comments on earlier version of this

paper.

REFERENCES
[AKS] M. Ajtai, J. Komlos and E. Szemeredi.

An Of(log n) sorting network. Proc. of
the Fifteenth ACM STOC, 1983. 1-9.

B. Awerbuch, A. Tsracli and Y. Shiloach.
Efficient simulation of PRAM by Ultra-
computer. Preprint, Technion, Haifa,
Israel. 1983,

D. Dolev, C. Dwork, N. Pippenger, and
A. Wigderson. Superconcentrators, gen-
eralizers and gencralized connectors with
limited depth. Proc. of the Fifieenth
ACM STOC, 1983. 42-51.

O. Gabber and Z. Galil. Explicit con-
struction of linear-sized superconcentra-
tors. J. Comp. and Sys. Sci. 22, 1981.
407-420.

A. Gotdieb, R. Grishman, C.P. Kruskal,
K.P. McAuliffe, L. Rudolph, and M. Shir.
The NYU Ultracomputer - designing a
MIMI) shared memory paralle! machine.
LT Trans. on Comp. C-32, 2, 1983.
175-189.

D.J. Kuck. A survey of parallel machines
- organization and programming. Com-
puter Surveys, Vol 9, No. 1, 1977. 29-59.

T. Leighton. Tight bounds on the com-
plexity of parallel sotting. Proc of the
Sixteenth ACM STOC, 1984. 71-80.

[AIS]

[DDPW)

(GG]

[GGK]

(Ku]

[Le]

MV]

(Pi]

[RV]

[Sc]

[Th]

(U]

K. Methorn and U Vishkin. Randomized
and deterministic simulation of PRAMs
by parallel machines with restricted
granularity of paralict memorics. Ninth
Workshop on Graph Theoretic Concepts
in - Computer Science, FFachbereich
Mathematic, Universitat Osnabruck, Junc
1983.

N. Pippenger. Superconcentrators.
SIAM J. on Computing, 6, 2, 1977. 298-
304,

A.W. Roberts and .. Varberg., Convex
Analysis. Academic Press, New York,
London 1973.

J. T. Schwartz. Ultracomputers. ACM
TOPLAS 2 (1980) 484-521.

R.H. Thomas. A majority conscnsus
approach to concurrency control for mul-
tiple copy database. ACAM Tran. on Data-
base Systems. 4 (1979) 180-209.

U. Vishkin. A parallcl-design
distributed-implementation general-
purposc computer. Preprint, Courant
Institute, New York University. 1983.
To appear in J. TCS.

E. Upfal. A probabilistic rclation
between desirable and feasible models of

parallel computation. Proc. of Sixteenth
ACM STOC 1984, 258-265.

150

