PROBABILISTIC BOOLEAN DECISION TREES
AND THE COMPLEXITY OF EVALUATING GAME TREES

Michael Saks
Bell Communications Research
Morristown, New Jersey
and
Department of Mathematics
Rutgers University
New Brunswick, New Jersey

Abstract

The Boolean Decision tree model is perhaps
the simplest model that computes Boolean func-
tions; it charges only for reading an input variable.
We study the power of randomness (vs. both deter-
minism and non-determinism) in this model, and
prove separation results between the three complex-
ity measures.

These results are obtained via general and
efficient methods for computing upper and lower
bounds on the probabilistic complexity of evaluat-
ing Boolean formulae in which every variable
appears exactly once (AND/OR tree with distinct
leaves). These bounds are shown to be exactly tight
for interesting families of such tree functions.

We then apply our results to the complexity
of evaluating game trees, which is a central problem
in Al. These trees are similar to Boolean tree func-
tions, except that input variables (leaves} may take
values from a large set (of valuations to game posi-
tions) and the AND/OR nodes are replaced by
MIN/MAX nodes. Here the cost is the number of
positions {leaves) probed by the algorithm.

The best known algorithm for this problem is
the alpha-beta pruning method. As a deterministic
algorithm, it will in the worst case have to examine
all positions. Many papers studied the expected
behavior of alpha-beta pruning (on uniform trees)
under the unreasonable assumption that position
values are drawn independently from some distribu-
tion. We analyze a randomized variant of alpha-
beta pruning, show that it is considerably faster
than the deterministic one in worst case, and prove
it optimal for uniform trees.

0272-5428/86/0000/0029$01.00 © 1986 IEEE

[

Avi Wigderson

Mathematical Sciences Research Institute

Berkeley, California
and

Department of Computer Science

Hebrew University
Givat Ram, Jerusalem, Israel

I. Introduction

In order to begin to understand the power and
limitations of randomization in algorithms we
investigate a simple model for the computation of
Boolean functions that has been well studied in the
deterministic case: Boolean decision trees. In this
model, a basic step consists of reading (probing) the
value of one of the input variables of the function,
and the algorithm branches according to the
observed value. The complexity of an algorithm is
simply the number of variables that it evaluates in
order to compute f on a worst case input; all other
computation is free. The determinisiic complezity
D(f) of a function f(z,,...,z,) is the minimum com-
plexity of any deterministic decision tree algorithm
that computes . Clearly D(f) is at most n, the
number of variables.

In a randomized Boolean decision tree algo-
rithm the algorithm is allowed to flip coins, and the
choice of variable to evaluate at each stage may
depend on these flips. The algorithm must always
compute f correctly; we do not allow errors. The
cost of such an algorithm on any fixed input is the
expected number of variables that the algorithm
reads while computing f on that input. The com-
plexity of the algorithm is the maximum (expected)
cost over all inputs. The randomized complezity
R (f) of the function f is the minimum complexity
of any randomized algorithm that computes f.
(This model resembles ones considered in [MT}, [M],
[S], but the problems addressed and techniques used
are different.)

The deterministic Boolean decision tree model
has been studied extensively in a number of con-
texts. One such is that of graph properties. Let P
be a property that holds for some subset of graphs
on v vertices and does not depend on the vertex

names (e.g. connectivity). We wish to determine
whether a given (loop free) digraph G with v ver-
tices and unknown edge set has property P by
sequentially probing the entries of the adjacency
matrix. P can be viewed as a Boolean function of
the n = v(v—1) nondiagonal entries of the adja-
cency matrix, and so the algorithms we are consid-
ering are precisely Boolean decision tree algorithms.
The key result in this area is the following theorem
of Rivest and Vuillemin [RV] (see also B, Chapt. 8],
[KK]), which settled a conjecture of Aanderaa and
Rosenberg [R]:

Theorem 1.1. The deterministic complexity of
any monotone nontrivial property on graphs of v
vertices is 6(v%) = O(n).

Here a property is nontrivial if at least one
but not all graphs have it and monotone if it is
preserved under the addition of edges. (In fact, it
has been shown [KSS| that if » is a prime power
then for such properties P, D(P) = n; whether this
holds for general v is open).

It is natural to ask what happens to graph
property complexity when we introduce randomiza-
tion. For example, it is easy to show that the pro-
perty "every vertex has an incoming arc” has deter-
ministic complexity n = v(v—1). On the other
hand, the randomized algorithm that considers each
vertex one at a time in random order and scans the
edges into that vertex in random order until it finds
some edge into that vertex {or finds that vertex has
no edges) has expected cost at most v(v+1)/2 on
any graph. Thus randomization can save a con-
stant factor of the cost. What is not known is
whether randomization can ever save more than
this:

Conjecture 1.2 (Karp [K]). The randomized
complexity of any monotone nontrivial property on
graphs of v vertices is 8(v%) = 6(n).

At the moment this conjecture is wide open.

Returning to the case of general Boolean func-
tions, the obvious question is: does randomization
ever save more than a constant factor in the com-
plexity of a Boolean function” The following two
examples show that it does.

Example 1.1. Let U(k) denote the uniform binary
tree of height 4. Consider the function F*, with
variable set corresponding to the n = 2% leaves,

30

that is computed by interpreting U{A) as a circuit
with internal nodes representing NAND gates. (Up
to complementation of the inputs this is equivalent
to interpreting alternating levels of internal nodes
as A and V.) It is easy to see that D(F*) = n.
Consider the randomized evaluation algorithm A4,
defined recursively: choose a child of the root at
random and evaluate its subtree recursively using
Ap_,. If it evaluates to 0, then F* = 1, otherwise
recursively evaluate the other child of the root.
Observe that if F* is 1 then with probability at
least 1/2 we only evaluate one child of the root.
Denoting by «y(h) (resp. ¢;(4)) the maximum com-
plexity of A, on inputs that evaluate to 0 {resp. 1)
we obtain the recurrence

aolh) < 20y (h~1)

n (k) < aglhm1) © oy (ho1)/2
Thus

R(F*) =0

This example was given by Snir [S] who gave an

I .
O[n 03‘3] upper bound and proved a linear lower
bound in a deterministic model that is more power-
ful than ours.

Example 1.2 (due to Ravi Boppana). Let U,(%) be
the uniform rooted ternary tree of height b and let
G* be the function with variable set corresponding
to the n = 3* leaves, computed by inductively
assigning to each internal node the majority of the
values of its children. It is easy to show
D(G*) = n. Now consider the evaluation algorithm
B, that is recursively defined as follows: choose
two children of the root at random and evaluate
them recursively using B, _,. If they agree in value
then G* has that value, otherwise recursively evalu-
ate the remaining child. This leads to a recurrence

(S 2 >R & W Bk o IR Y

Ll U e DR o B 5 T o e o - I = T

(722 s TN - I - S S . B S

which yields

These two examples show that randomization
can yield a substantial cost savings in the complex-
ity of some functions and leaves open the question:

how much smaller than D(f) can R(f) be?

To begin a discussion of lower bounds on
R(f), we introduce the notion of the nondeter-
ministic complexity N{f) of a Boolean function f.
This is simply the number of variables that it may
be necessary to evaluate to prove the value of /. [t
is easy to see that N(f) is the maximum size of a
clause occurring in either the DNF or CNF of f.
Clearly we have
For function

Proposition 1.3. any Boolean

[y R(f) = N(f)

Now, an elegant argument {observed by Blum
and others) sharply limits the gap between non-
determinism and determinism in this model:

For function

Theorem 1.4. Boolean

[D(f)< N(F)

any

It follows that R(f) > VD(f).

The functions F? in example 1.1 have non-
deterministic complexity 2%/2 = Vi (for h even)
and thus demonstrate that Theorem 1.4 is tight.
For the functions G* in example 1.2, the nondeter-
ministic complexity is 2*. In both cases the com-
plexity achieved by the proposed randomized algo-
rithms falls somewhere between the nondeterminis-
tic and deterministic complexity. However, this
does not exclude the possibility that there are other
randomized algorithms for these functions that
achieve or nearly achieve the lower bound given by
the nondeterministic complexity.

This brings us to the question: are the algo-
rithms presented in examples 1.1 and 1.2 optimal?
The following argument suggests that they are not.
These algorithms have the property that whenever
they begin to probe nodes in the subtree of a node
they finish evaluating that node before examining
any leaves not in its subtree. Such an algorithm
fails to take advantage of the possibility of random

sampling: it might be beneficial to sample a few

3

nodes in different subtrees to decide which to evalu-
ate first. [t turns out that sampling of this type can
be used to produce a better algorithm for evaluat-
ing G*. On the other hand, a consequence of the
main result of this paper is

Theorem 1.5. Algorithm A, is optimal for com-
puting F* and thus

_;__:]h - G[D(Fh)Jss...}_

In the body of this paper, we investigate the
randomized complexity of tree functions: functions
that can be represented by an arbitrary tree with
the variables corresponding to leaves and the inte-
rior nodes to A and \/ gates. Our main contribution
is to develop techniques for proving upper and
lower bounds (Theorems 2.5 and 2.7) on the ran-
domized complexity of any tree function. We show
that for certain special classes of trees (functions),
including uniform trees, these bounds agree, imply-
ing Theorem 1.5.

Actually, that the
R(f)=1 [(D(f)jss“‘)] holds for all Boolean func-

tions, i.e., that the greatest savings in complexity is
achieved for F*.

we believe bound

Conjecture 1.8. For any Boolean function f

Finally, our results have application to the

1+\ 33
logy |——

D(f)

R(f)=0

analysis of algorithms for game tree search. Pro-
grams for two person games like chess typically
select a player’s next move by first constructing a
tree whose nodes represent the set of possible posi-
tions that can be reached in the next few moves
{nodes at depth ¢ in the tree represent positions
reached after { moves). Some heuristic is then used
to estimate the value of the positions represented by
each leaf. Values of the internal nodes in the tree
are computed as follows: If the node represents a
position where it is the player’s turn then its value
is the maximum of the values of its children (MAX
node), otherwise it is the minimum of the values of
its children (MIN node). The problem, given such a
game tree, is to determine which child of the root

has the maximum value; this will be the player’s
next move. This is essentlally equivalent to finding
the value of the root. Note that in the case that the
leaf values are from {0,1}, the MAX nodes are OR
gates, the MIN nodes are AND gates and evaluating
the tree is evaluating its tree function.

The best known heuristic for evaluating game
trees is the (a,3) pruning procedure (see [KM]),
which has been studied in detail ([P1],[P2},[R],[T)).
To analyze the complexity of this or any procedure,
Under
worst case input, any deterministic algorithm will

we need a model for the possible input.

require evaluation of all leaves. Hence researchers
have looked at a model that assumes the leaf values
are independent and identically distributed, and
analyzed the expected behavior of various algo-
rithms. However, this assumption is unrealistic;
typically values assigned to game positions are
highly correlated.

We suggest that a more realistic approach is
to look at randomized algorithms under worst case
input. Our bounds for Boolean functions together
with a randomized variant of an algorithm of Pearl
[P2] are used to obtain tight upper and lower
bounds on the randomized complexity of evaluating
uniform game trees of arbitrary degree.

The remainder of this paper consists of four
sections. Sec-
tions III and IV present our general upper and lower
bounds. Section V presents some tight complexity
results implied by these bounds. Only the main
proofs are given in this preliminary report.

Section II formalizes some notation.

II. Notation and Preliminaries

Recall that D(f), R(f) and N(f) are the
deterministic, randomized and nondeterministic
complexities of the Boolean function f. We sum-
marize the discussion in section 1 with:

Proposition 2.1. For any Boolean function f,

D(f)>R(f)> N(f) > VD(f)

It will be useful to consider complexity meas-
ures subject to restrictions on the input. Let L be a
subset of {0,1}". The complexity of an algorithm
(in the deterministic, randomized or nondeterminis-
tic model) relative to L is its worst case cost over
inputs in L. The complexity of f relative to L is

32

the minimum complexity of any algorithm with
respect to L. We define Do(f) {resp. D,(f)) to be
the deterministic complexity of f when the input z
of f is restricted so that f(z) =0 (resp. f(z) = 1).

Ro(f), Ri(f), Nolf) and Ny(f) similarly
defined. (Note that restricting to inputs such that
f(z) =0 does not make the complexity equal 0
because our model requires that a successful algo-
rithm "discover” for itself that f{z) =0.) The fol-
lowing is obvious.

are

Proposition 2.2. For any function f
max{Do(f), D1(f)} < D(f)
max{Ro(f), Bi(f)} < R(f)

- max{Ny(f), Ni(f)} < N(f)

It is important to note that these inequalities
{in the first two cases) may be strict. This is
because the best algorithm for computing f when
f =0 need not be the best for computing f when
/ = 1. On the other hand, if these two algorithms
are the same, then equality will hold.

We are interested in the class of functions
that can be represented by formulae over AND, OR
and NOT in which each variable appears exactly
once. We will represent such functions by rooted
trees with interior nodes labelled by AND or OR
and leaves labelled by distinct variables (possibly
complemented). More precisely an F-tree T is a
rooted tree with node set NODES(T) consisting of
interior nodes, INT(T), and leaves, LEAVES(T),
together with a partition of INT(T) into two sets
AND(T) and OR({T). We associate to each F-tree
T the Boolean function f; on variables
{z,|v ¢ LEAVES(T)} obtained by interpreting each
interior node v as an AND or an OR depending on
the set to which it belongs. fr is called the tree
function associated with 7. The value of an inte-
rior node v, which is a function of the leaf values, is
denoted z,; thus f; = z, where 7 is the root. We
will often say "T evaluates to 1" when we mean
fr= 1"

Tree functions are necessarily monotone, but
it is easy to see that this causes no loss of generality
since any nonmonotone function in this class is
obtained from some tree function by complementing
some input variables.

If T and T' are F-trees we say T'is a subtree
of T if T'is obtained by assigning values to some
of the variables of T and simplifying. If v is any
node, the subtree rooted at v (in the standard sense)
is a subtree under this definition.

An F-tree is alternating if the AND and OR
gates are assigned to alternate levels of interior ver-
tices. Note that every function
represented by an alternating F-tree. Note also
that the function F* from example 1.1 is equivalent
(up to complementation of input) to the alternating
uniform F-tree of height A.

tree can be

By a simple adversary argument we can show
that the deterministic complexity of any tree func-
tion is equal to the number of variables:

For

Proposition 2.3. F-tree

T,D(fr) = |LEAVES(T)|.

In what follows, most of our results are stated
for binary trees. This usually entails no loss of gen-

any

erality since every function tree can easily be con-
verted to an equivalent binary one. For binary
trees, the children of a node v are designated L{v)

and R(v). The left and right subtree of a tree T
are T; and T,.

The following function of four variables
agybg,a, b, will play an important role in our
results.

aga,+bgb +a by
w(aoyboyalybx) = .
a+hy
III. Directional Algorithms and Upper

Bounds

To obtain an upper bound on R(f7) we will
analyze a class of randomized algorithms called
directional algorithms that generalize the algorithm
in example 1.1. Let T,,...,T; be the subtrees rooted
at the children of the root. A randomized direc-
ttonal algorithm A for T is specified by a set of ran-
domized directional algorithms A,,..,4; for
Ti.-»T, and a probability distribution on the set
of permutations of 1,..,k. A
selecting a permutation ¢ of 1,...,k according to this

is performed by

distribution and evaluating T,,...,T; in o order
using A ,...,A;, until the value at T is known.

Let d(T) denote the minimum
number of variables evaluated on worst case input
over all directional algorithms and dy(7) (resp.
d,{T)) be the analogous quantity when the input is

expected

33

restricted so that fr = 0 (resp. 1). While we have
noted that the randomized algorithm that achieves
Ry(f 1) may not be the same one achieving R ,(f),
when we restrict to directional algorithms we obtain

Lemma 3.1. There is a single directional algo-
rithm that attains do(7) and d,(T) and hence
d(T) = max{do(T),d,(T)}.

We will prove the

Theorem 3.2. Let T be a binary F-tree with root
r. The cost of the optimal directional algorithm
satisfies the recurrence

d\(T) = d\(T,) + d\(Tr)

dG(T) = max dO(TL)7 dO(TR)!

¥(do(Ty),do(Tr)di(T1),d1(Tg))

if r ¢ AND(T), and
do(T) = do(T,) + do(Tr)

dI(T) = max dl(TL).' dl(TR)v

d\(Ty) d1(Tr)do(Ty) do(Tr))

if r ¢ OR(T), with the initial conditions
do(T)=4d\(T)=11if |[T|=1.

Proof. Assume GATE(r) = AND (the other case
is similar). A randomized directional algorithm on
a binary F-tree T is specified by directional algo-
rithms for T, and Ty together with the probability
py that the left branch is evaluated first. Whenever
T evaluates to 1, both branches evaluate to 1 and

must be evaluated by the algorithm, hence

d\(T) = d\(T,) + di(Tz)

If T evaluates to 0 then at least one branch
evaluates to 0, and, in worst case the other evalu-
ates to 1. If T, evaluates to O then the expected
cost is do(T,) + (1—py)dy(Tg). Otherwise, Ty is O
(and T, is 1) and the expected cost is
do(Tg) + prd\(T,). Hence

*
-

T

»

A

do{Ty) + (l—pb)dl(TR)’}
do(T) =

0 grr;;ng 1 max do{Tr) + pd4(Ty)
The value of p; achieving this minimum is:
0if do(Tg) 2 dO(TL)""dl(TR)!
Lif do(Ty) 2 do(Tr)+d(T,), and

do(TL)-do(TR)“"dL(TR)
dy(Tg)+d (T,)

otherwise,

which when substituted above gives the expression
for dy(T) given in the theorem. O

This theorem provides a general linear time
procedure for upper bounding the randomized com-
plexity of fp.

The algorithm presented in example 1.1 is the
optimal directional algorithm for the uniform alter-
nating F-tree. Theorem 1.5 asserts that this is
optimal, which will follow from the lower bound of
the next section. It should be pointed out however
that not all tree functions have an optimal algo-
rithm that is directional.

IV. Reluctant Input Distributions and Lower
Bounds

To prove a lower bound on R{f;) we have to
work harder. Yao [Y] has observed that a lower
bound on the randomized complexity of a computa-
tion in this (or any) model can be obtained by
choosing a specific probability distribution on the
possible inputs and lower bounding the expected
cost of every deterministic algorithm when run
against that input distribution. More precisely, his
result says:

Lemma 4.1. R(f) is equal to the maximum over
all probability distributions on inputs of the
minimum expected cost of any deterministic algo-
rithm.

To prove a lower bound on R(f7), we will use
lemma 4.1. A natural distribution on inputs to
choose is the distribution that sets each input z, to

1 independently with some probability p. Pearl [P2]

5

. — 1 L.
showed that if p # ——2 , then a deterministic

directional algorithm runs in expected time
0(V2*) = 0(Vn) which is the nondeterministic

34

/T
lower bound. If p = —N—-%—-L then this algorithm

1+ Vs

2

takes 0

A
] = 0(n®*). Tarsi [T] showed

that the directional algorithm is optimal against
this adversary.

However, the f{ollowing argument suggests
that there may be stronger adversaries. If the
adversary is opposed by a directional algorithm
then any time the algorithm evaluates a node whose
children both have value 0, only one of the children
will be evaluated. Against such an algorithm, it
would be better to restrict the adversary to inputs
which do not have a node both of whose children

evaluate to 0. We call these reluctant inputs.

We will analyze adversary distributions that
give nonzero probability only to reluctant inputs;
we call such distribution a reluctant distribution.
Using this idea we obtain the following lower
bound.

Define the functions £p(T),¢,{T) inductively
by

WT)=¢(T)=11|T| =1
otherwise,

0(T) = €{T) + (1(Tg)
fo(T) = min bo(T,) + £,(Tr), Lol Tr) + 6(TL),

V(% T)b T), 6(TL), 6(T))}

if r ¢ AND(T), and
G(T) = &(TL) + 6(Tr)

UT) =min 6 (Ty) + £(Tr), &4(Te) + &(TL),

V6T)yl (TR)sbo(T)60(TR))

if r ¢« OR(T).
We prove

Theorem 4.8. For any F-tree T, Ry(fr) > 4(T)
and Ry(f7) > 4(T)

Proof. Our notion of complexity of Boolean func-
tions assumes unit cost to read a variable. We will
need to generalize this to the case where the cost of
evaluating a leaf is a function of the leaf and its
value. A leaf cost function pair on T is a pair cg,c,
of nonnegative real valued functions defined on
LEAVES(T) such that ¢;(v) represents the cost of
evaluating v when z, = ¢. The randomized com-
plexity of fr relative to these leaf costs,
Ro(fricoser)y Rilfricosc,) and R(fricocy), are the
natural generalizations of Ry(f;), R,(fr) and

R(fr).

The main step in our lower bound is the fol-
lowing lemma, that shows that the randomized
complexity of a tree T with leaf costs ¢ can be
lower bounded by that of a smaller tree.

Lemma 4.4. Let T be a binary F-tree and cy,¢,
be leaf cost functions on T. Let v be a node whose
children y and z are leaves. Let T' be the F-tree
obtained by deleting y and z from 7 and define
leaf costs for T' by:

(2}
o~
=
@
-
Il
8

in{ ¥{eq(y)reo(z),e1(y)ea(2)),
coly) + eilz),co(z) + ci(y)}
if v e AND(T),
c'o(v) = coly) + col2)
¢'i{v) = min{¥(c\(y),c1(z),co(v)ieo(2)),
c1(y) + colz),e1(2) + coly)}

if v ¢ OR(T). Then for:i = 0,1,

Ri(fricoer) > Ri(frhic'ye’y).

Theorem 4.3 follows from lemma 4.4 by
applying this shrinking procedure inductively on a
tree T with unit leaf costs, and shrinking to a single
node. The leaf costs associated to that node will be
£,(T) and #y(T), and the theorem follows.

Proof of Lemma 4.4. Assume v ¢ AND(T) (the
other case is similar). Let S’ denote the input dis-
tribution for T' that maximizes the minimum cost
of any deterministic algorithm. Then by lemma
4.1, the best deterministic algorithm costs
R(f7',cqc,) when opposed by S'. Let p be the pro-

35

bability that z, = 0 under S'. Define the adversary
strategy S for T as [ollows: Choose an input for T’
using §'. If z, =1 thenset z, =z, =1. Ifz, =0

then set z, =0 and z, =1 with probability
c
____1__(1/_)___ and z, = 0 and z, = 1 with probabil-
cl(y)+cl((2))
ez
ity — L Then p,, the probability that
ci(y)+ei(z)
. cy(y) cy(z)
z, =0,i1s p ——————— and p, = p ———————+ .

cy(y)+ey(z) er(y)+ei(z)
The conclusion of the lemma follows from the
following;:

Claim: For any deterministic algorithm A that
evaluates T there is an algorithm A’ for T’ such
that the cost of A when opposed by § is at least the
cost of A’ when opposed by §'.

We will suppose that T is a minimum coun-
terexample to the claim and derive a contradiction.
Let A be the optimal deterministic algorithm for T
when opposed by § and let w be the leaf for which
z, is queried first. Let A, (resp. A,) denote the
branch of A followed if the initial query yields
z, =0 (resp. z, =1). We distinguish two cases;
the second case is the nontrivial one.

Casei. w # y or z. Let T, (resp. T,) be the sub-
trees of T given by setting z, = 0 (resp. z, = 1).
Let Sy (resp. S,) be the input distribution for T,
(resp. T,) defined by conditioning § on z, =0
(resp. z, = 1). Define T'y, T';, S'y, S'; similarly in
terms of T' and §';. By the minimality of T the
claim holds for T and T, hence: there exist A,
(resp. A'}} such that the cost of A, (resp. A,) when
opposed by S, (resp. §,) is at least the cost of A/,
(resp. A',) when opposed by §'; (resp. §';). Now
define the algorithm A'to be: evaluate z, and then
do A'y (resp. A')) if z, =0 (resp. z, =1). It is
easy to see that the cost of A/ opposed by §' on T'
is at most the cost of A opposed by § on T con-
tradicting that T is a counterexample.

Caselii. w = yorw =z. Assume w = y (without
loss of generality). The idea is to define two algo-
rithms A, (which evaluates z, immediately) and
Aluter (which defers evaluation of z,) for evaluating
T' and show that one of them does at least as well
against S’ as A does against §. (This is similar to
the proof technique of Tarsi [T].)

3
< 3R

Let K (resp. K|) denote the expected cost of
Ay (resp. A,) on T given z, =0 (resp. z, = 1),
excluding the cost of evaluating z,.
Now we define
A ow: evaluate z,. If z, = 0 then do A4, If
z, = 1 then do A, branching according to

1
z, = | when necessary.

Alater: Do A on T' replacing evaluation of
z, by evaluation of z,.

Let ry (resp. r,} denote the probability that
A evaluates z, against S' when z, = 0 (resp.
z, =1). Note that by the definitions of § and A
this is the same as the conditional probability that
A evaluates z, given z

, =1 and z, =0 (resp.

z, =1land z, = 1)
The expected cost of running A against S is
(4.1) cost(4)= Py(co(y) + Ko)
+ {1=py)c(y) = K1) ~ parocolz) + (1=p)rici(z).
The first term is the contribution to the cost

y = 0. The second is the cost if z, = 1,
excluding the cost of evaluating z,. The third and

of the case z

fourth come from the cost of evaluating z, if z, =0
and z, = 1.

Similarly, the expected costs of running A,
and A, against § on T are:

(4.2) cost(Ae) = (1-p)(c'(v) + Ky)
+ (p)c'o(v) + Ko)
(4.3) cost(Appw) = K; + (1=p)ric’y(v)

+ (p)roc'o(v)

To show that one of these is less than cost(4)
it is enough that

(44) pyco'St(Anow) + pzco'st(Alater)
S (pp+pZ)COSt(A)

Substituting in (4.1), {4.2) and (4.3) into (4.4)
and using the definitions of p, p, and c¢')(v), (4.4)
can be reduced to

([R

ei(y)+eql2)

c1(y)eoly)+ei(2)=c'o(v))

36

+ ries(z)(eofz)=clofv)) | 2 0.

Now 0 < ry < 1, so by convexity we need only
check that {4.5) holds for 7y = L and ry = 0. When
ro = 1 we need)
coly)er(y) + eily)ei(2) + colz)e(2)

ei(y) + eu(z)

= Weoly), colz), c1(y), c(2))

clolv) <

and when r; = 0 we need
co(r) < eoly) + eulz2)

Had z, been the first query of A instead of z,
then the analogous derivation would require also

c'o(v) < colz) + ci(y)-

The definition of ¢'y{v) was chosen to satisly
these inequalities. O

V. Tight Bounds

Note the similarity between the recurrences
for £4,£, and dg,d,. We would like to get conditions
under which the two recurrences coincide. It is use-
ful to define the functions ay(7) and a,(T) by the
recurrence:

a(T) = ay(Ty) + ay(Tg)

ao(T) = ¥(ao(T,)sao(Tr)ray(TL)sai(T))
if v e AND(T) and

ai(T) = ao[TL) + ao(Tg)
ao{T) = ¥(ay(Ty),a1{Tr)iao(T), a0(Tr))

if v « OR(T), with the initial condition
ao(T) = a)(T) = 1if |T| = 1.

The recurrence for ag,a, dominates the one
for £y,£, and is dominated by the recurrence for
dgyd;. We can now state the following useful cri-
terion for the lower and upper bounds to match,
which is easily proved by induction on the depth of
T.

Lemma 5.1. Let T be an F'-tree and suppose that
for each node v ¢ AND(T)
ao(L(v)) + ay(R(v)) > ag(R(v))

and

ao(R(v)) + a\(L(v)) 2 ao(L{v)),
and for each v ¢ OR(T)
ay(L(v)) + ao(R(v)) = ay(R (v))

and

a1(B(v)) + ao(L(v)) = ay(L(v)) .

Then
6;(T)=¢6(T)=d(T) = R{fr)
for ¢ = 0,1.

We can show that the conditions of this
lemma hold for nearly balanced trees. A binary F-
tree T 15 nearly balanced if

(i) The left and right subtrees of T, are each
subtrees in T .

(i) The left and right subtrees of 7, are each
subtrees in Tp.

Examples of alternating F-trees that are
nearly balanced are uniform trees, trees where every
leaf 1s at height A or h—1, Fibonacci trees, and
binomial trees.

Theorem 5.2. If T is nearly balanced then
R{fr)=a(T)=¥T)=d(T)

that is, the optimal algorithm for T is directional,
and the optimal adversary distribution for T is
reluctant.

We also can show that the upper and lower
bounds match for the class of skew F-trees. The
skew F-tree S§™ is the alternating tree defined
inductively: S% is a single vertex and S has left
subtree a single vertex and right subtree $°~!, and

the root of §" is an AND if n is odd and OR if n
is even. Observe D(f)=n and N(f)= |—n_;-_11 .

Using lemma 5.1 we can show

Theorem 5.3.
evaluating 5" equals -21 + 6{log n).

The randomized complexity of

37

The bounds on r{T) given by Theorems 3.2
and 4.3 be extended to the nonbinary case, but the
expressions in the recurrence are rather unpleasant
and we omit them. For uniform trees of arbitrary
degree and height, we obtain an exact complexity
result.

Theorem 5.4. The randomized complexity of
evaluating an alternating uniform F-tree U of
height h and degree d

6 |((d-1+Vd2+1ad +1)/4)" |

Note that when d =2
Theorem 1.5.

equals

this specializes to

Finally, let us discuss what our results imply
for game tree evaluation. Since game trees are
min-max trees with arbitrary values at the leaves
any lower bound for the randomized complexity of
tree functions carries
theorems 4.3 and 5.4 provide such lower bounds.

over to game trees, so

To get an upper bound (within a constant fac-
tor) we use a randomized variant of an algorithm of
Pearl [P2], that converts an algorithm for comput-
ing tree functions to one for evaluating game trees.
For uniform trees, we can prove that the cost of
this algorithm is at most a2 constant times the cost
of the directional algorithm for the corresponding
tree function and hence we get
Theorem 5.5. The randomized complexity of
evaluating a uniform game tree of height A and

degree d is O(((d~1+\V - 14d+1)/4) |

Proof. Denote by g(d,h) the minimum expected
cost of evaluating a game tree of degree d and
height A and by 6{d,4) the randomized complexity
of evaluating the (alternating) Boolean tree function
on the same tree with AND assigned to MIN nodes
and OR to MAX nodes. Consider the following
algorithm for evaluating uniform game trees:
choose a child of the root at random and evaluate it
recursively. Call its value ¢. For each other child
of the root test whether its value is greater than ¢
by interpreting each leaf value as a boolean variable
that is equal to 1 if its value is greater than ¢,
optional and applying the (directional) algorithm.
Now (recursively) evaluate those nodes that have

been found to have value higher than t. (The

expected number is ——2—-—1—) Hence

g(d,h) < ii—ztl- g(d,h—1) + (d=1)b(d,h—1) .

[S] M. Suir, Lower bounds for probabilistic linear
decision trees, Theoreiical Computer Science 38
(1985), 69-82.

[T] M. Tarsi, Optimal search on some game trees,

We claim that there is a positive constant K such JACM 3 (1983), 389-396.
that [Y] A. Yao, Probabilistic computations: towards a
(d,h) <K b(d,h). unified measure of complexity, Proc. 18th

Annual Symposium on Foundations of Computer
Science, 1977, 222-227.

The existence of such a constant is a routine
computation using the inequality
5—2*—1- <(d=1+VPii4d+1/4) = lim b(d,h)!/?

d—x

References

[BVEBL| M. R. Best, P. van Emde Boas and H. W Lens-
tra, Jr., A sharpened version of the Aanderaa-
Rosenberg Conjecture, Report ZW 30,74,
Mathematische Centrum Amsterdam, 1974.

[KSS] J. Kahn, M. Saks and D. Sturtevant, A topologi-
cal approach to evasiveness, Combinatorica 4
(1984), 297-306

[KK] D. J. Kleitman and K. J. Kwiatkowski, Further
results on the Aanderaa-Rosenberg conjecture,
J. Combinatorial Theory (B} 28 (1980), 85-95.

(KM| D. E. Knuth and R. W. Moore, An analysis of
alpha-beta pruning, Artifictal Intelligence 6
(1975), 293-326.

[MT] U. Manber and M. Tompa, The complexity of
problems on probabilistic nondeterministic and
alternating decision trees, JACM 32 (1985),
740-732.

[M] F. Meyer auf der Heide, Nondeterministic versus
probabilistic linear search algorithms, Proc.
26th Annual Symposium on Foundations of
Computer Science, 1985, 65-73.

[P1] J. Pearl, Asymptotic properties of minimax trees
and game-searching procedures, Artificial Intel-
ligence 14 (1980), 113-126.

[P2] J. Pearl, The solution for the branching factor of
the alpha beta pruning algorithm and its
optimality, Comm. ACM 25 (1982), 559-564.

[RV] R. Rivest and S. Viullemin, On recognizing
graph properties from adjacency matrices,
Theor. Comp. Scr. 3(1978), 371-384.

[R] 1. Roizen, On the average number of terminal
nodes examined by alpha-beta, UCLA Cognitive
Systems Laboratory Technical Report, 1981.

[Ro] A. L. Rosenberg, On the time required to recog-
nize properties of graphs: A Problem, SIGACT
News 5 #4 (1973), 15-16.

R}

