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Abstract

We construct a sequence of groups Gn, and explicit sets of generators Yn ⊂ Gn, such that
all generating sets have bounded size, and the associated Cayley graphs are all expanders.
The group G1 is the alternating group Ad, the set of even permutations on the elements
{1, 2, . . . , d}. The group Gn is the group of all even symmetries of the rooted d-regular tree of
depth n. Our results hold for any large enough d.

We also describe a finitely-generated infinite group G∞ with generating set Y∞, given
with a mapping fn from G∞ to Gn for every n, which sends Y∞ to Yn. In particular, under
the assumption described above, G∞ has property (τ) with respect to the family of subgroups
ker(fn).

The proof is elementary, using only simple combinatorics and linear algebra. The recursive
structure of the groups Gn (iterated wreath products of the alternating group Ad) allows for an
inductive proof of expansion, using the group theoretic analogue [4] of the zig-zag graph prod-
uct of [42]. The basis of the inductive proof is a recent result by Kassabov [22] on expanding
generating sets for the group Ad.

Essential use is made of the fact that our groups have the commutator property: every
element is a commutator. We prove that direct products of such groups are expanding even
with highly correlated tuples of generators. Equivalently, highly dependent random walks on
several copies of these groups converge to stationarity on all of them essentially as quickly
as independent random walks. Moreover, our explicit construction of the generating sets Yn

above uses an efficient algorithm for solving certain equations over these groups, which relies
on the work of [37] on the commutator width of perfect groups.
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1 Introduction

1.1 Expander Graphs

Expanders are graphs which are sparse but nevertheless highly connected. Expanders graphs
have been used to solve many fundamental problems in computer science, in topics including
network design (e.g. [40, 41, 1]), complexity theory ([49, 44, 48]), derandomization ([36,
18, 19]), coding theory ([45, 46]), and cryptography ([15]). Expander graphs have also found
some applications in various areas of pure mathematics, such as topology, measure theory,
game theory and group theory (e.g. [21, 30, 16, 31]).

Standard probabilistic arguments ([39]) show that almost every constant-degree (≥ 3)
graph is an expander. However, most applications demand explicit constructions. Here we
take the most stringent definition of explicitness of an infinite family of graphs, requiring that
a deterministic polynomial time algorithm can compute the neighbors of any given vertex,
from the vertex name and the index of the graph in the family. This challenge of explicit
construction led to an exciting and extensive body of research.

Most of this work was guided by the algebraic characterization of expanders, developed
in [47, 5, 2]. They showed the intimate relation of (appropriate quantitative versions of) the
combinatorial (isoperimetric) notion of expansion above, to the spectral gap in the adjacency
matrix (or, almost equivalently, the Laplacian) of the graph. This relationship is tight enough
for almost all applications (but there are some exceptions, e.g. see [50, 10]).

Using this connection, an infinite family of regular graphs is defined to be an expander
family if for all of them the second largest eigenvalue of the normalized adjacency (i.e. random
walk) matrix is bounded above by the same constant that is smaller than 1.

This algebraic definition of expanders by eigenvalues naturally led researchers to consider
algebraic constructions, where this eigenvalue can be estimated. The celebrated sequence of
papers [32, 14, 5, 3, 20, 29, 33, 35] provided such highly explicit families of constant-degree
expanders. All of these constructions are based on groups, and their analysis often appeals to
deep results in mathematics.

The algebraic mould was broken recently by [42], where a simple, combinatorial construc-
tion of constant-degree expander graphs was presented. The construction is iterative, generat-
ing the next graph in the family from two previous ones via a novel graph product, the zig-zag
product. This product was proved (using simple linear algebra) to simultaneously keep the
degree small, and retain expansion. Thus the iteration process need only be provided with an
initial, fixed size expander “seed” graph , from which all others are generated. The required
parameters of the seed graph are easily shown to hold for a random graph (which suffices for
explicitness - it is of constant size), but it is also easy to construct one explicitly.

Our main result in this paper is a similar iterative construction of expanding Cayley graphs
(which we turn to define next) from one initial “seed” Cayley graph. In our case, the seed Cay-
ley graph is based on the group Ad, the group of even permutations on the set {1, 2, . . . , d}. In
a recent breakthrough, Kassabov [22] explicitly constructed a bounded-size, expanding gener-
ating set for Ad, which yields the seed expander Cayley graph we need.

Our construction may be seen as another step in exploring this fundamental notion of ex-
pansion, and its relations to yet unexplored mathematical structures. It also further explores the
power of the zig-zag product in constructing even stronger expanders. It was already shown
[10] that it can yield expansion beyond the eigenvalue bound, and is shown here to yield Cayley
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expanders.

1.2 Expanding Cayley graphs

For a finite group H and a (symmetric) set of elements T in it, the Cayley graph C(H;T ) has
the elements of H as vertices, and edges connect a pair of vertices g, h if their “ratio” gh−1 is
in T . We remark that while most applications do not require the expanders to be “Cayley”, the
recent paper [7] seems to essentially require Cayley expanders to achieve nearly linear-sized
locally testable codes (LTCs) and probabilistically checkable proof (PCPs).

Many of the algebraic expander constructions mentioned above are Cayley graphs. In all
of these, the groups in question are linear matrix groups over finite fields, and their expan-
sion follows from celebrated results in mathematics, including Kazhdan’s work on Property T
[25], Selberg’s 3/16 theorem [43], and the resolution of the Ramanujan conjecture of Eichler,
Deligne and Igusa (starting in [12]). It should be noted that for some of the other algebraic
constructions elementary proof of expansion exist, using only a discrete Fourier transform [20].

For other natural families of groups the question was considered both by mathematicians
and computer scientists. For example, for Abelian groups it is easy to see that any set of
expanding generators has to be at least logarithmic in the size of the group. Thus they cannot
provide expanding Cayley graphs of constant degree (a more general result appears in [26]).
Lubotzky and Weiss generalized this negative result for all solvable groups of bounded derived
length [28].

Understanding which natural families of groups can be made expanding (with a fixed size
generating set) is a basic question, and little progress was made over the foundational results
above in the last 15 years. However, in the last year several breakthroughs were made by
Kassabov and Nikolov [22, 23, 24]. These results suggest that all the simple groups may
have fixed size expanding generating sets. Of particular interest to our work is the family
of symmetric groups (of all permutations). Much work has been devoted to analyzing the
expansion of this group under a variety of generating sets in the context of card shuffling (e.g.
see [11, 27]). However, in all these papers the generating sets are huge, and did not provide
a clue to the status of this problem. In a recent breakthrough, Kassabov [22] showed that the
symmetric groups indeed have explicit, fixed-size expanding generators, independent on the
group size.

The possibility that the zig-zag product and iterative construction may be used for Cayley
expanders was first revealed in [4]. They discovered that the well-known semi-direct product
on groups may be viewed (roughly speaking) as a special case of the zig-zag product of graphs.
More precisely, the zig-zag product of two Cayley graphs, with certain important restrictions
on the structure of their generating sets, is a Cayley graph of the semi-direct product of the as-
sociated groups. Thus one can generate larger Cayley expanders of small degree from smaller
ones. This observation was used to show that expansion is not a group property – in some
groups certain constant size sets will expand, while others will not.

This Cayley graph version of the zig-zag theorem raises the hope that, given a “seed” ex-
pander Cayley graph, one can obtain a sequence of expander Cayley graphs via an iterative
process using the zig-zag theorem. However, unlike the case of unstructured graphs, the re-
strictions on generators alluded to above for applying the zig-zag product on Cayley graphs,
make iterations a highly nontrivial (and illuminating) task. In [34] such a construction was
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given, which falls short of the task at hand on two counts. First, the generating sets (and
hence the degrees) of the groups in the family are not of constant size, but rather grow slowly
(roughly like log∗ of the group size). Second, these generating sets are shown to exist via a
probabilistic argument, hence the resulting family is not explicit. Still, this construction makes
no assumptions, as the seed Cayley expander for the iteration is easily seen to exist.

In this paper we fix both problems. We give a sequence of groups Gn, and explicit gener-
ating sets Yn for each Gn, such that the Cayley graphs C(Gn, Yn) are expanding. Moreover,
Yn as bounded size, independent of n. Actually, we will later on see that the generators Yn are
consistent with each other: In the natural projection of Gn+1 to Gn the set Yn+1 projects to the
set Yn.

The technique developed yields some results which do not require a seed Cayley graph at
all. We show how to obtain an explicit sequence of expanding Schreier graphs (The novelty
is in the explicitness, since by [17] every regular graph with even degree is a Schreier graph).
We then use the Schreier graph sequence to construct a sequence of expanders Xn in which
each graph Xn+1 is a lift of Xn, by noticing that in our Schreier graph sequence each graph is
actually a lift of its predecessor (lifts are defined in section 9).

1.3 Our construction

Our groups are completely different from most groups previously used in this area. Indeed,
they are very natural combinatorial objects. Let T (d, n) denote the d-regular tree of depth
n. The group of symmetries of this tree allows permuting the children of every internal node
arbitrarily. Thus every element of this group may be described by a mapping of the internal
nodes to the symmetric group Sd, describing how to permute the children of every such node.
Group product of two such elements is simply performing the first set of permutations at every
node, and then the next set. Our groups Gn are subgroups of all symmetries, allowing only
even permutations at every internal node of T (d, n). This natural restriction avoids a huge
Abelian quotient that would have rendered expansion (with a constant number of generators)
impossible. Our method of proof (sketched below) is elementary, using only linear algebra.
All other known proofs use representation theory of the groups involved, and in most cases
much deeper results as well.

There is a very natural inductive definition of the groups Gn. G1 is the alternating group Ad

of all even permutations on d elements (and is essentially the “seed group” of our construction).
Gn+1 can be obtained from d copies of Gn, and one copy of Ad acting on them simply by
permuting the copies. Formally, this is called a wreath product, denoted Gn+1 = Gn o Ad,
and is a special case of a semidirect product, giving equivalently Gn+1 = (Gn)d o Ad. Our
assumption gives a small expanding set of generators for Ad, and by induction we have such a
set for Gn.

How does induction proceed? Naturally, we would like to use the zig-zag theorem for the
semi-direct product [4, 42]. The technical requirement alluded to above is simply that we find
an expanding generating set for (Gn)d, which need not be small, but must be an orbit under
the action of Ad, given a (small) expanding generating set Yn for Gn. A natural candidate for
such an orbit is all (even) permutations of the balanced d-vector, one which has every one of
the elements of Yn occurring the same number of times (if |Yn| divides d). It is the largest
possible orbit, and the projection of a random element of the orbit to any small subset of the
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coordinates is (almost) a random independent element of Yn in each coordinate.
We now turn to study the second eigenvalue of the Cayley graph of (Gn)d under these gen-

erators. The associated linear operator acts on the space of real functions on (Gn)d. Luckily,
this space of functions is simple to describe - it is the d-fold tensor product of the same space
for Gn. What is not so lucky is the dependence between the coordinates of a balanced vector.
Indeed, had Gn been Abelian, this orbit would not even be generating (i.e. the graph would not
be connected). Here our special group structure is important. A key fact (proved by Nikolov
[37]) is that every element in Gn is a commutator. Construct a new generating set Ỹn by adding
to Yn, for each of its elements, the constituents of its representation as a commutator. We use
Nikolov’s proof to actually give a polynomial time algorithm for finding this representation.
Now take the orbit of all balanced vectors over Ỹn to be the generating set for (Gn)d.

How can this revision take care of the dependencies? A simpler setting, to which we
reduce our analysis, is the following Cayley graph. The group is simply (Gn)2, namely only
two copies of Gn. The generators are all pairs (g, g−1) for all g ∈ Ỹn. Thus, there is complete
correlation between the two coordinates. The key point is that, using the special structure of
Ỹn, with positive probability a short word in one of the two components will vanish, while in
the second it will give an original generator of Yn, thereby decoupling the dependence of the
two components. So, quite surprisingly, this Cayley graph on two copies is expanding despite
the complete correlation (it is a nontrivial exercise to even establish connectivity of this graph
– note that it would not be connected had Gn been Abelian, or if we took instead the pairs
(g, g) for any group Gn). This construction (which we feel is of independent interest) is quite
special and mysterious, and naturally the description above hides many essential details. Still,
it is the heart of the matter.

For m ≥ n there is a natural restriction map Gm → Gn - given a symmetry of the tree
with depth m consider its action on the subtree with depth n with the same root. As we shall
see, the generating set Ym is mapped to Yn under this restriction. This gives rise to an infinite
“limit group” G∞ given with a generating set Y∞ and restriction maps fn : G∞ → Gn, where
fn(Y∞) = Yn. In particular, under the assumption on Ad, the group G∞ has property (τ)
with respect to the family of subgroups ker(fn) (Lubotzky’s property (τ), a “baby” version of
Kazhdan’s property (T), is defined in section 8).

1.4 Organization of this paper

In section 2 we define expander graphs and Cayley graphs, and present some useful results. In
section 3 we define the sequence of groups we use. In section 4 we describe the expanding
generating sets, and prove the main theorem 4.1 - that they are indeed expanding - by induction.
The proof is based on a main lemma (theorem 4.6). The lemma gives an expanding generating
set for the group Gd given an expanding generating set for G (under certain conditions on
G). Finally, in section 6 we present an algorithmic version of Nikolov’s theorem, that every
element in our family of groups has a commutator representation that can be found efficiently.

We then turn to some corollaries of the main theorem. In section 7 we explicitly construct
a sequence of expanding Schreier graphs, free from the seed graph on the alternating. In
section 8 we give generators for a subgroup of the symmetry group of the infinite rooted d-
regular tree which restrict to expanding generators of the finite rooted d-regular tree with depth
n. As a corollary we show that this infinite group has Lubotzky’s Property (τ ) with respect to
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a natural infinite family of normal subgroups. Then in section 9 we combine the previous two
results to obtain a sequence of expanding graphs each of which is a lift of the previous one.

2 Preliminaries

2.1 Graphs, eigenvalues and adjacency
matrices

All graphs discussed in this paper are undirected, regular graphs. We allow multiple edges
and self loops, so graphs are best understood as symmetric nonnegative integer matrices with
a fixed row-sum, called the degree. For a graph X, we let V (X) denote its set of vertices and
E(X) its (multiset of) edges.

Let X be a k-regular graph, and M = MX its normalized adjacency matrix (divide the
adjacency matrix by the degree k to make it stochastic). We denote by λ(X) the second largest
(in absolute value) eigenvalue of M . The spectral gap of the graph is 1 − λ(X).

Let W be the vector space of real functions on the set V (X), with its standard L2 inner
product. MX defines a linear operator on W : For f ∈ W , the value of the function MX(f) ∈
W on a vertex x is the average value of f on all the neighbors of x (counted with multiplicities).

Let W|| be the one-dimensional subspace consisting of the constant functions, and let W⊥

be the orthogonal complement. Since the constant functions are eigenvectors of M corre-
sponding to the (largest) eigenvalue 1, then

λ(X) = max
w∈W⊥

‖Mw‖/‖w‖

where ‖w‖ is the L2 norm of w.

Definition 2.1. An infinite family of graphs Xn is called an expander family if λ(Xn) ≤ µ for
some µ < 1 independent of n. The family is said to be (strongly) explicitly described, if there
is a polynomial time algorithm which, on input n and the name of a vertex v in Gn (in binary),
outputs the neighbors of v in Gn.

We will use the following two simple results, which describe how taking the tensor power
of a graph, and taking the power of a graph, affect the 2nd eigenvalue λ:

Claim 2.2. Let X = (V,E) be a graph, and let MX be the normalized adjacency matrix. Let
MY = (MX)⊗d, and define Y to be the graph (on the vertex set V d) with normalized adjacency
matrix MY. Then λ(Y) = λ(X).

Observation 2.3. Let X = (V,E) be a graph, MX the normalized adjacency matrix and
MY = (MX)t. Let Y be the graph (on vertex set V ) with normalized adjacency matrix MY.
Then λ(Y) = λ(X)t.

We will use the following convexity result later: If the spectral gap (1 − λ(Y)) of a graph
Y is not too small, and Y is a large subgraph of X (on the same vertex set) then the spectral gap
of X is also not too small.
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Claim 2.4. Let Y = (V,E1) ⊂ X = (V,E2) (i.e. E1 ⊂ E2) be s and t regular graphs
respectively on the same vertex set V . Then

1 − λ(X) ≥ s

t
(1 − λ(Y))

We will later need the following result on vectors

Claim 2.5. If for some vectors w0, w1, . . . , wL, all with norm 1,

(1/L) · ‖
L∑

i=1

wi‖ ≤ 1 − ε

then

(1/L) ·
L∑

i=1

‖w0 + wi‖/2 ≤ 1 − ε/4

2.2 Groups and the wreath product

2.2.1 Cayley graphs

Let G be a finite group. We will represent groups multiplicatively, and 1 will denote the identity
element of the group. Let Y be a multi-subset of G. We will always use symmetric sets Y ,
namely the number of occurrences of x and x−1 in Y is the same for every x ∈ G. |Y | will
denote the size of the multiset (counting multiplicities).

The Cayley graph C(G,Y ) has vertex set G, and for every vertex g ∈ G and x ∈ Y there
is an edge (g, gx). The graph C(G,Y ) is undirected (as Y is symmetric) and is |Y |-regular.
For x ∈ G let Px be the permutation matrix corresponding to g → gx in G. The normalized
adjacency matrix of C(G,Y ) is

∑
x∈Y Px/|Y |. We will also use the notation Ex∈Y [Px] to

denote this average of operators.
Let W = W (G) be the vector space of functions G → R as in the previous section. We

will be interested in the expansion properties of Cayley graphs on the group Gd, the Cartesian
product of d copies of G. Note that W (Gd) = W⊗d.

Observation 2.6. Let W|| be the space of constant functions on the vertices of G, and let W⊥ be
its orthogonal complement. Let b̄ = (b1, . . . , bd) be a length-d vector in the alphabet {||,⊥},
and let Wb̄ be the vector space ⊗d

i=1Wbi
. Consider the space W⊗d, the d-th tensor power of

W . The space W⊗d inherits an inner product structure from W , where the inner product of
two pure tensors is the product of the inner products of the components of the tensors. The
orthogonal decomposition W = W|| + W⊥ induces an orthogonal decomposition

W⊗d =
∑

b̄∈{||,⊥}d

Wb̄

to 2d subspaces by the distributive law for tensor products. For any x ∈ Gd the operator Px

preserves the decomposition.
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Corollary 2.7. For any Cayley graph C(Gd, Ȳ ), the normalized adjacency operator Ex∈Ȳ [Px]
preserves the given decomposition of W ⊗d, so

λ(Gd, Ȳ ) = max
b̄6=||d

max
w∈W

b̄

‖ E
x∈Ȳ

[Px(w)]‖/‖w‖

That is, it suffices to upper bound ‖Ex∈Ȳ [Px(w)]‖ for vectors w that are purely in one of these
2d − 1 subspaces.

The following two observations describe cases where we can ignore part of the coordinates
of x ∈ Gd when trying to estimate ‖Ex∈Ȳ [Px(w)]‖.

Observation 2.8. Let b̄ = b1, . . . , bd where bi =⊥ for i ≤ r and bi = || otherwise. For

w ∈ Wb̄ = W⊗r
⊥ ⊗ W

⊗(d−r)
|| , the value of Px(w) does not depend on xr+1, . . . , xd.

Proof: w is a real function on Gd. The statement that w ∈ Wb̄ and bi = || means that w does
not depend on the i-th coordinate of its input.

Observation 2.9. Let X̄ ⊂ Gd be a set of group elements whose last d − r coordinates
constitute some fixed vector x̄ ∈ Gd−r . Then for every w ∈ W⊗d the value of

‖ E
x∈X̄

[Px(w)]‖

does not depend on x̄.

Observation 2.3 from section 2.1 translates nicely to the Cayley graph world

Observation 2.10. Let G be a group, Y ⊂ G. Define Z to be the set of all words of length k
in Y . Then λ(G,Z) = λ(G,Y )k.

We end with an observation which simplifies the proof of explicitness for families of Cay-
ley graphs.

Observation 2.11. A family of Cayley graphs C(Gn, Yn) is explicit if there are polynomial
time algorithms in log |Gn| for

• performing group multiplication in Gn

• Computing inverses in Gn.

• computing the set Yn

2.2.2 Wreath products and the zigzag product

Let A and B be finite groups. Assume that B ⊂ Sd, that is, it acts by permutations on the set
[d] = {1, . . . , d}. Define the wreath product A oB of A and B to be the group whose elements
are vectors (a1, . . . , ad, σ), where ai ∈ A for all i, and σ ∈ B. The group multiplication rule
is

(a1, . . . , ad, σ) · (ã1, . . . , ãd, τ) = (aτ(1)ã1, . . . , aτ(d)ãd, στ)

One can check that this defines a group structure on A o B. The wreath product is a special
case of a more general construction - the semi-direct product of Ad and B, where Ad is the
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Cartesian product of d copies of A. The groups Ad, B are naturally embedded in A o B, and
we will sometimes refer to elements of Ad and B as elements of A o B.

Let α ⊂ Ad, β ⊂ B be sets of generators. Suppose α has a special structure: it is a single
B-orbit. This means that for some arbitrary ā ∈ α, the set α consists of all vectors obtained
from ā by permuting its coordinates by a permutation in B. We now define a set γ in A o B
by γ = {xāy|x, y ∈ β}. One can check that γ generates A o B. The following theorem from
[4], following the zigzag theorem of [42], shows that if α, β are sufficiently good expanding
generators then so is γ.

Theorem 2.12. [4] If α is a single B-orbit then λ(A o B, γ) ≤ λ(Ad, α) + λ(B, β).

Note that |γ| = |β|2 depends only on the size of β, while α could be large (it could be as
large as |B|). Also, it is easy to compute γ given α and β, as multiplications in A o B can be
computed efficiently.

2.2.3 The commutator property

Let A be a group. For g, h ∈ A define the commutator [g, h] to be ghg−1h−1. A has the
commutator property if for every element of a ∈ A there is a solution in the variables x, y to
the equation a = [x, y] (Note that this is a stronger property than just the commutator subgroup
[A,A] being equal to A). Nikolov [37] proves

Theorem 2.13. [37] Let A be a group, and B ⊂ Sd a group of permutations. If A,B have the
commutator property then so does A o B.

We shall need an algorithmic version of this theorem. For a group A, a commutator repre-
sentation algorithm gives, for an input a ∈ A, some pair x, y ∈ A such that a = [x, y].

Theorem 2.14. Let A,B be as in theorem 2.13. Suppose we are given commutator repre-
sentation algorithms for the groups A,B. Then we obtain such an algorithm for A o B. This
algorithm calls the algorithm on B one time, and the algorithm on A at most d times, and
uses at most O(d) extra multiplication operations on A,B. (The description of the algorithm
appears in the proof of the theorem).

We prove the theorem in section 6.

3 Overview of the construction

In section 3.1 we will define our sequence of groups Gn. In section 4 we will show how to find
generating subsets Yn ⊂ Gn that give λ(Gn, Yn) < 1/1000 with bounded size |Y1|4. This will
be based on the assumption that there exists a small enough subset Y1 of the alternating group
Ad such that λ(Ad, Y1) < 1/1000.

3.1 The family of groups

Definition 3.1. The groups in our construction are defined by G1 = Ad and, inductively,
Gn+1 = Gn o Ad.
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Another way to view the group Gn is as a subgroup of the full group of symmetries of the d-
regular, depth n tree (by d-regularity here we mean that each inner vertex has d descendants).
Each element in the group of symmetries is uniquely defined by writing a permutation on
each internal node of the tree, indicating how the children of this vertex are permuted. In the
subgroup Gn all these permutations should be even. The representation of an element of Gn as
a list of even permutations is polynomial in log |Gn|. Multiplying two elements and inverting
an element can be done in time which is polynomial in the size of this representation

The following important corollary of theorem 2.14 shows that for our groups Gn there is
an efficient commutator representation algorithm.

Lemma 3.2. If d ≥ 5 then the groups Gn have the commutator property of section 2.2.3.
Moreover, Gn has a commutator representation algorithm that runs in time polynomial in
log |Gn|.

Proof: G1 = Ad, and by [38] it has the commutator property. By induction, using theo-
rem 2.13, every Gn has the commutator property. The existence of an efficient commutator
representation algorithm follows from theorem 2.14. Full details are given in section 6.

4 Main Theorem

Theorem 4.1. Suppose that for some d there exists a set of generators Y1 ⊂ Ad such that
λ(Ad, Y1) < 1/1000 and |Y1| ≤ d1/28/1040. Then there exist sets Yn ⊂ Gn such that
λ(Gn, Yn) < 1/1000 and |Yn| ≤ d1/7/1040 . Furthermore, Yn can be computed in time
polynomial in log |Gn|.

The graphs C(Gn, Yn) are the required sequence of Cayley graphs. The sets Yn can be
computed efficiently, and we saw in section 3.1 that group operations in Gn can also be com-
puted efficiently, so by observation 2.11 this is an explicit family of Cayley graphs.

The assumption of the theorem is true for very large d:

Theorem 4.2 ([22]). For every integer d ≥ 0 there exists a subset Ud of the symmetric group
Sd such that |Ud| ≤ 10107

and λ(Sd, Ud) ≤ 1/1000.

Corollary 4.3. If d ≥ 10109
Then the conditions of theorem 4.1 hold.

We will construct the expanding generators Yn ⊂ Gn inductively. The basis of the induc-
tion is the assumption in the theorem about G1 = Ad.

Let G = Gn. We are given Y ⊂ G such that λ(G,Y ) < 1/1000 and |Y | ≤ d1/7/1040.
We want to find a set Y ′ ⊂ G o Ad such that λ(G o Ad, Y

′) < 1/1000 and |Y ′| ≤ d1/7/1040.
We will use theorem 2.12. The theorem requires an expanding generating set for Ad (which
we already have), and an expanding generating set T ⊂ Gd which is a single Ad-orbit. Given
any element of such T , theorem 2.12 produces (explicitly) an expanding generating set for
G o Ad = Gn+1.

Can we find an expanding, single-orbit, generating set for Gd? Here is a simple attempt
that fails. Take T = Y d. The set Y d is expanding, as λ(Gd, Y d) = λ(G,Y ) by claim 2.2.
Unfortunately, Y d contains exponentially many Ad-orbits. Another natural set to consider in
Gd is the set of balanced vectors:
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Definition 4.4. Let G be a group, and Y ⊂ G. For d > |Y |, define Y (d) to be the vectors
in Y d in which every u ∈ Y appears exactly bd/|Y |c times, and the rest of the elements are
1 ∈ G. We call these vectors balanced vectors. Every two elements in the set Y (d) are equal
up to a permutation of the coordinates. Since d > |Y | we may assume that the permutation is
even. In other words, the set Y (d) is a single Ad-orbit.

The set Y (d) looks promising, but is it expanding? Not always. If G is Abelian Y (d)

does not even generate Gd, since every element in Y (d) has product of coordinates equal to
1 (Y is symmetric, and every element of Y appears the same number of times in Y (d)). The
groups Gn are far from being Abelian. Indeed, every element of Gn has a representation as a
commutator. It turns out that this property, along with the existence of a small generating set Y
for G (assumed by induction) enables us to find a good generating set for Gd. We will enlarge
Y somewhat to a set X ⊃ Y , and see that X (d) is expanding for Gd.

Definition 4.5. Let G be a group, and let Y ⊂ G. Suppose every element y ∈ Y can be written
as a commutator in G, namely y = aybya

−1
y b−1

y for some ay, by ∈ G. Define

Y ∗ =
⋃

y∈Y

{ay, by, a
−1
y , b−1

y , a−1
y b−1

y , byay} ∪ {1}

Y ∗ is symmetric, and |Y ∗| ≤ 7|Y |.
Theorem 4.6. Let G be a group. Suppose that every element of Y is a commutator in G. Let
c, k ∈ N be constants (to be chosen later). Define c ·Y ⊂ G to be the multi-subset where every
element of Y appears c times. Define X = (c · Y ) ∪ Y ∗, and λ = λ(G,Y ). If d ≥ k2 · |X|7
then

λ(Gd, X(d)) < 0.01 + max
{

(λ + 7/c), e−kc(1−λ)/106
}

where X(d) is the set of balanced vectors.

The proof is given in section 5. To get a feeling for the constants, note that the larger k, c
are, the better inequality we get in the theorem. k is large when X is small. c is large when X
is much larger that Y , so k gets smaller when c gets larger. Nevertheless, it is not difficult to
make both of them large enough for our purposes.

Theorem 4.6 is the required result for the inductive step - it remains to show that we can
choose c, k properly such that λ(Gd, X(d)) is small enough for theorem 2.12.

We proceed with the induction step. We are given a set Yn ⊂ Gn of size at most |Y1|4 such
that λ(Gn, Yn) < 1/1000. Apply theorem 4.6 (with c = 103, k = 105). Then the conditions of
theorem 4.6 hold, and we obtain a set X (d) ⊂ Gd such that λ(G,X (d)) < 1/50 (just substitute
our k, c in the theorem to see this). Apply theorem 2.12 to obtain a subset P ⊂ Gn+1 of size
|Y1|2, and λ(Gn+1, P ) < 1/1000+1/50. Define Yn+1 to be the set of all words of length 2 in
P . This is a set of size |Y1|4 and (by observation 2.10) λ(Gn+1, Yn+1) < (1/1000+1/50)2 <
1/1000. This completes the induction step.

5 Proof of theorem 4.6

The theorem appears in section 4. Let G,Y,X, λ be as defined in theorem 4.6. We will use
the notation W = W (G) and W (Gd),Wb̄ defined in section 2.2.1. We need to prove that for
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every w ∈ W (Gd)⊥ such that ‖w‖ = 1, at least one of the following upper bounds holds

‖ E
x∈X(d)

[Px(w)]‖ ≤ 0.01 + λ +
7

c
(1)

‖ E
x∈X(d)

[Px(w)]‖ ≤ 0.01 + e−kc(1−λ)/106
(2)

We saw in section 2.2.1 that it is enough to prove this for w ∈ W b̄ when b̄ 6= {||}d. Since X(d)

is invariant under permutation of the coordinates it is enough to prove the inequality for every
w ∈ W⊗r

⊥ ⊗ W
⊗(d−r)
|| where 1 ≤ r ≤ d (this is Wb̄ for bi =⊥ for 1 ≤ i ≤ r and bi = || for

r < i ≤ d).
We split the proof to small and large r cases. For small r we will prove inequality (1), and

for large r we will prove inequality (2).
Small r case: When r ≤ 0.1

√
d/|X|, the first r coordinates of a random element in

X(d) are very closely a random element in X r . By observation 2.8 Px(w) only depends on
the first r coordinates of x, so it is enough to bound ‖Ex∈Xr [Px(w)]‖ for w ∈ W⊗r

⊥ . By
claim 2.2 ‖Ex∈Xr [Px(w)]‖ ≤ λ(G,X)r . The worst case is when r = 1. As Y ⊂ X we can
use claim 2.4 to give an upper bound to λ(G,X), and we obtain inequality (1). This part is
relatively easy, and we will not give a more detailed proof. Notice however that the argument
for small r works for any group G, not only for our special sequence of groups, and from the
generating set X we only used the Y part - not the Y ∗ part.

Large r case: When r is large the result is no longer true for any group (for any Abelian
group there exists an f ∈ W⊗d such that Py(f) = f for all y ∈ Y (d)). We will need
the Y ∗ part of the generating set X (recall that it is only defined when every element of G
is a commutator). We will start with the analysis of a different graph - the Cayley graph
C(G × G, {(y, y−1)|y ∈ Y ∗}). We give a lower bound of (1 − λ(G,Y ))/21|Y ∗|2 on the
spectral gap of this graph in section 5.1. Afterward, in section 5.2, we will give an upper
bound on ‖Ex∈X(d) [Px(w)]‖ using the spectral gap of this graph on G×G. This part is again
true for every group G, not only our groups.

Notice that the spectral gap bound we get in the G×G case is rather weak - much smaller
than the spectral gap of the original graph C(G,Y ). When r is large enough we are able to
apply the G × G result many times in parallel, amplifying the weaker upper bound in G × G.
We will obtain the upper bound (2).

5.1 Expansion of G × G with correlated
generators

Definition 5.1. Let G be a group, and let Y ⊂ G be a subset of G. Define

Ỹ = {(y, y−1)|y ∈ Y }

Theorem 5.2. Suppose λ(G,Y ) < 1− ε for some ε, and that every element of Y is a commu-
tator in G. Then

λ(G × G, Ỹ ∗) ≤ 1 − ε

21|Y ∗|2

12



We find theorem 5.2 quite surprising. In the set Ỹ there is complete correlation between the
two coordinates, and it would seem that this correlation would prevent the graph from being
an expander. For example, if G is Abelian and Y generates G then Ỹ does not even generate
G×G, but only the subgroup {(g, g−1)|g ∈ G}. Also, for any group G the set {(y, y)|y ∈ Y }
only generates the subgroup {(g, g)|g ∈ G}. In both cases the correlation in the generating set
prevents the graph from being an expander. We manage to decouple this correlation in the case
of the special generating set Y ∗, whose existence relies on the commutator property of G.
Proof: The key observation is that we can represent the element (y, 1) for any y ∈ Y as a

word of length 3 in Ỹ ∗. We prove this in the following observation.

Observation 5.3. Let Z be the set of words of length 3 in the set Ỹ ∗. Then

C(G × G, {(Y, 1) ∪ (1, Y )}) ⊂ C(G × G,Z)

Proof: Recall that for every y ∈ Y the set Y ∗ contains the elements ay, by, a
−1
y b−1

y where
y = aybya

−1
y b−1

y . Observe that

(ay, a
−1
y ) · (by, b

−1
y ) · ((a−1

y b−1
y ), (a−1

y b−1
y )−1) = (y, 1)

This gives the required representation of (y, 1). We can obtain (1, y) similarly.
It is easy to see that if C(G,Y ) has spectral gap ε then the graph C(G × G, {(Y, 1) ∪

(1, Y )}) has spectral gap ε/2. We now have the decoupling we were looking for - the cor-
related generating set Z contains the uncorrelated one (Y, 1) ∪ (1, Y ). More precisely, apply
claim 2.4 to observation 5.3, and deduce that

Observation 5.4. C(G × G,Z) has spectral gap at least ε/7|Y ∗|2

Recall that Z consists of all words of length 3 in the Ỹ ∗. By observation 2.10, the spectral
gap of C(G×G, Ỹ ∗) is at most 3 times smaller than the spectral gap of C(G×G,Z), and the
theorem is proved.

5.2 Reduction to G × G

We upper bound the average ‖Ex∈X(d) [Px(w)]‖ in terms of λ(G × G, Ỹ ∗) from section 5.1.
For x ∈ Xd write x = (x1, x2, x̄) where x1, x2 ∈ G and x̄ ∈ Gd−2. By the triangle

inequality

Claim 5.5. For every w ∈ W⊗d

‖ E
x∈X(d)

[Px(w)]‖ ≤ E
x∈X(d)

‖(Px1 ,x2,x̄ + Px2,x1,x̄)(w)/2‖

By observation 2.9 the value of ‖(Px1 ,x2,x̄ +Px2,x1,x̄)(w)/2‖ only depends on the first two
coordinates of x. We therefore group together all the x with equal x1, x2, replacing x̄ by 1̄, a
(d − 2)-length vector of 1’s, and it is enough to bound Ex∈X(d) ‖(Px1 ,x2,1̄ + Px2,x1,1̄)(w)/2‖.
The number of times each pair x1, x2 appears in the average above is proportional to the
number of extensions of x1, x2 to a vector (x1, x2, x̄) ∈ X(d). As d is much larger than 2, the
number of such extensions is nearly equal for every pair x1, x2, and we get
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Claim 5.6. If d ≥ 100|X| then for every w ∈ W ⊗d

E
x∈X(d)

‖(Px1,x2,x̄ + Px2,x1,x̄)(w)/2‖

≤ E
y∈X2

‖(Py1,y2,1̄ + Py2,y1,1̄)(w)/2‖ + 0.01‖w‖

The 0.01 above pays for the fact that the number of extensions is only nearly equal.
The following lemma bounds the RHS of claim 5.6

Lemma 5.7. If λ(G,Y ) < 1 − ε and r ≥ 2 then for every w ∈ W ⊗r
⊥ ⊗ W⊗(d−r)

E
y∈X2

‖(Py1 ,y2,1̄ + Py2,y1,1̄)(w)/2‖

≤ (1 − cε

2 · 104|X|3 )‖w‖ def
= ∆‖w‖

We prove the lemma in section 5.2.1
Combining claim 5.6 and lemma 5.7 we obtain

‖ E
x∈X(d)

[Px(w)]‖ ≤ (∆ + 0.01)‖w‖

but ∆ is too close to 1. The problem originates from claim 5.5, where we partitioned the set
X(d) into pairs based on the value of the first 2 coordinates. This partition turns out to be too
coarse. We will use a finer partition of X (d) by looking at the first t pairs of coordinates, for
some properly chosen t ≤ r. This will amplify the bound to ∆t.

We now define this finer partition precisely. Let Ht < Sd be the subgroup (of size 2t)
generated by the transpositions (2k − 1, 2k) for 1 ≤ k ≤ t, and group together the elements
{σ(x)|σ ∈ Ht}. When t = 1 we get the grouping into pairs discussed above. The argument
leading to claim 5.6 shows

Claim 5.8. If 2t ≤ 0.1
√

d/|X| then for every w ∈ W⊗d

‖ E
x∈X(d)

[Px(w)]‖ ≤ E
y∈X2t

‖ E
σ∈Ht

[
Pσ(y,1̄)(w)

]
‖ + 0.01

The case t = 1 is claim 5.6. However, the weak upper bound ∆ we had for t = 1 amplifies
to ∆t.

Claim 5.9. Suppose that for every w ∈ W⊗2
⊥ ⊗ W⊗d−2

E
y∈X2

‖1

2
(Py1,y2,1̄ + Py2,y1,1̄)(w)‖ ≤ ∆‖w‖

Then for every w ∈ W⊗2t
⊥ ⊗ W⊗d−2t

E
y∈X2t

‖ E
σ∈Ht

[
Pσ(y,1̄)(w)

]
‖ ≤ ∆t‖w‖

The notation 1̄ denotes a vector of length d − 2 in the first inequality, and a vector of length
d − 2t in the second one.
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Proof: The proof is by induction on t. The case t = 1 is the assumption of the claim. For
general t

E
y∈X2t

‖ E
σ∈Ht

[
Pσ(y,1̄)(w)

]
‖

= E
z∈X2

y∈X2(t−1)

‖ E
σ∈Ht−1

Pσ(1,1,y,1̄)

[
Pz1,z2,1̄ + Pz2,z1,1̄(w)

]
‖

≤ ∆t−1
E

z∈X2
‖(Pz1 ,z2,1̄ + Pz2,z1,1̄)(w)‖ ≤ ∆t‖w‖

Note that in the second line above σ ∈ Ht−1 acts on the vector y - not on the first 2t − 2
coordinates. The first inequality follows from the induction hypothesis for Ht−1. The second
inequality follows from the induction hypothesis for H1.

We can now complete the proof using λ(G,Y ) < 1 − ε. Pick an integer t satisfying
0.05

√
d/|X| ≤ 2t ≤ 0.1

√
d/|X| ≤ r. Then by the claims in this section, for w ∈ W ⊗r

⊥ ⊗
W⊗d−r of norm 1,

‖ E
x∈X(d)

[Px(w)]‖ ≤ 0.01 + (1 − cε

2 · 104|X|3 )t

≤ 0.01 + exp
( −ctε

2 · 104|X|3
)
≤ 0.01 + exp

(−kcε

106

)

We plugged in 2t ≥ 0.05
√

d/|X| ≥ 0.05k|X|3 . This concludes the proof of theorem 4.6 for
large r.

5.2.1 Proof of lemma 5.7

Let τ be the spectral gap of C(G × G, {(y, y−1)|y ∈ Y ∗}). From theorem 5.2 we have for
every u ∈ W⊥ ⊗ W

‖ E
y∈Y ∗

[
Py,y−1(u)

]
‖ ≤ (1 − τ)‖u‖ (3)

In lemma 5.7 we want to upper bound

E
y∈X2

‖(Py1,y2,1̄ + Py2,y1,1̄)(w)/2‖ (4)

for every w ∈ W⊗r
⊥ ⊗ W⊗(d−r).

We will start with the case d = 2. We will bound (4) in terms of the LHS of (3). In order to
do that, we will have to deal with the fact that the norm in (3) appears outside the expectation,
while in (4) it appears inside the expectation (see claim 5.10). Also, the average in (4) is over
y ∈ X2, while in (3) the average is over y ∈ Y ∗ (see claim 5.11). After completing the proof
in the case d = 2, we turn to prove the lemma for general d (claim 5.12).

Claim 5.10. For every u ∈ W⊥ ⊗ W

E
y∈Y ∗

‖1

2
(Py,1 + P1,y)(u)‖ ≤ (1 − τ/4)‖u‖
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Proof: From claim 2.5 and (3)

E
y∈Y ∗

‖1

2
(Py,y−1 + I)(u)‖ ≤ (1 − τ/4)‖u‖

Applying the unitary operator P1,y to each element above proves the claim.

Claim 5.11. For every u ∈ W⊥ ⊗ W

E
y∈X2

‖1

2
(Py1 ,y2 + Py2,y1)(u)‖ ≤ (1 − τ

8c|X| )‖u‖

Let p be the probability that for a random y ∈ X2 we have y1 ∈ Y ∗ and y2 = 1. Then
p ≥ (1/2c) · 1/|X| (as X = c · Y ∪ Y ∗ and Y ∗ is larger than Y ). Using a convexity argument
similar to claim 2.4 we see that

E
y∈X2

‖1

2
(Py1,y2 + Py2,y1)(u)‖

≤ p · E
y∈Y ∗

‖1

2
(Py,1 + P1,y)(u) + (1 − p) · ‖u‖

≤ p · (1 − τ/4)‖u‖ + (1 − p)‖u‖
≤ (1 − pτ)‖u‖ ≤ (1 − τ

8c|X| )‖u‖

which proves claim 5.11
We have shown that for every u ∈ W⊥ ⊗ W

E
y∈X2

‖1

2
(Py1,y2 + Py2,y1)(u)‖ ≤ (1 − τ

8c|X| )‖u‖

≤ (1 − ε

21 · 8|Y ∗|2 · |X| )‖u‖ ≤ (1 − cε

2 · 104|X|3 )‖u‖

The last step follows from |Y ∗| ≤ 10|X|/c (which is true since X = cY ∪ Y ∗ and |Y ∗| ≤
10|Y |).

We have almost completed proving the lemma. We have the right upper bound, but for
u ∈ W⊗2 instead of in W⊗d.

Claim 5.12. If there exists λ > 0 such that for every u ∈ W ⊗2
⊥

E
y∈X2

‖[1
2
(Py1 ,y2 + Py2,y1)(u)]‖ ≤ λ‖u‖

then for every w ∈ W⊗2
⊥ ⊗ W⊗(d−2)

E
y∈X2

‖[1
2
(Py1,y2,1̄ + Py2,y1,1̄)(w)]‖ ≤ λ‖w‖

Proof: Write w ∈ W⊗r
⊥ ⊗ W⊗(d−r) as w =

∑
ui ⊗ vi where ui ∈ W⊗2

⊥ and vi ∈ W⊗(d−2),
such that the vi are orthogonal and ‖vi‖ = 1. We have

E
y
‖[1

2
(Py1,y2,1̄ + Py2,y1,1̄)(w)]‖2

= E
y

∑

i

‖[1
2
(Py1,y2 + Py2,y1)(ui)]‖2 ≤ λ2‖w‖2

And the result follows since E(X)2 ≤ E(X2) for any random variable X .

16



6 Proof of theorem 2.14

The theorem appears in section 2.2.3.

Remark 6.1. This section contains equations in groups. Constants in the equations will be
written in Greek letters. Variables will be written in small Latin letters. Vectors of length d are
underlined.

Let C = A oB, where A is any group and B ⊂ Sd. Given an element γ ∈ C we look for a
“commutator representation algorithm” that solves the equation γ = [c1, c2] := c1c2c1

−1c2
−1.

By assumption we have such an algorithm for A and B. The proof below extends Nikolov’s
proof in [37].

Any element γ ∈ A oB has a unique representation c = β · α with β ∈ B, α ∈ Ad, so it is
enough to solve, for every pair (β ∈ B,α ∈ Ad), the equation βα = [b1x, b2y]. Now

[b1x, b2y] = [b1, b2] · xb2b−1
1 b−1

2 yb−1
1 b−1

2 x−b−1
1 b−1

2 y−b−1
2

where xb = b−1xb. In our case xb is simply a permutation of the coordinates of x by b ∈ B ⊂
Sd.

We obtain a pair of equations

β = [b1, b2]

α = xb2b−1
1 b−1

2 yb−1
1 b−1

2 x−b−1
1 b−1

2 y−b−1
2

By assumption there is an algorithm that solves β = [b1, b2]. Fix some solution b1 =
β1, b2 = β2. It remains to solve

α = xβ2β−1
1 β−1

2 yβ−1
1 β−1

2 x−β−1
1 β−1

2 y−β−1
2

Since xβ is a permutation (depending on β) of the coordinates of x, the following lemma solves
a more general system of equations.

Lemma 6.2. For any four permutations σ1, σ2, σ3, σ4 ∈ Sd and for any α = α1, . . . , αd ∈ Ad,
the following system of d equations, one for each 1 ≤ i ≤ d:

αi = xσ1(i)yσ2(i)x
−1
σ3(i)y

−1
σ4(i)

has a solution algorithm that calls the commutator representation algorithm on A at most d
times, and does at most O(d) operations in the group A.

The rest of this section is devoted to the proof of this lemma.

Definition 6.3. We shall refer to the αi as constants and to the xi, yi, x
−1
i , y−1

i as literals.

There are d constants and 4d literals in our system. An important fact is that each literal
appears exactly once in the system.
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Let us solve first in the case that all four σi are the identity permutation. The system in this
case is:

α1 = [x1, y1]

α2 = [x2, y2]

· · ·
αd = [xd, yd]

In this case the equations are independent (no variable appears in more than one equation).
Each equation asks for a commutator representation for αi ∈ A. We solve the system of equa-
tions by calling the commutator representation algorithm for A for each equation separately.

The solution for general σi is by reduction to a system similar to the one we obtained for
the σi = 1 case. As long as there are variables that appear in more than one equation, we
will remove equations by “Gaussian elimination”, until we obtain a system of independent
equations. We will then translate each equation to a commutator representation equation like
the ones above.

As mentioned, each literal appears exactly once in the system. If xi, x
−1
i do not both appear

in the same equation, then we can eliminate xi, x
−1
i from the system by substitution (paying

O(1) multiplications in A). This reduces the number of equations in the system by 1. Repeat
the substitution operation until it is no longer possible. Notice that the property that each literal
appears exactly once is preserved along the way.

Claim 6.4. The substitution process ends with L ≤ d equations

δl = Wl ∀l ∈ {1, . . . , L}

where Wl is some word in literals and constants. The equations are now independent - every
literal appears in the same equation as its inverse, or they both do not appear in the system.

We will now reduce this system to L commutator representation problems in the group A.
The following lemma finds a “hidden commutator” in each of the words Wl:

Lemma 6.5. [37] In every Wl there exist g, h ∈ {1, 2, . . . , d} depending on l, such that

Wl = Z1xgZ2yhZ3x
−1
g Z4y

−1
h Z5

where the Zi are words in literals and constants from the word Wl (they do not contain
x±1

g , x±1
h since each literal appears at most once in the system of equations).

The proof is in [37]. Given that such a hidden commutator exists, it is easy to find one
in time polynomial in d by looking at all the literals appearing in Wl (there are at most 2d
of those). Substitute every variable appearing in the Zi by 1. This does not affect any other
equation - the equations are independent at this point. We obtain a new equation

δl = ζ1xgζ2yhζ3x
−1
g ζ4y

−1
h ζ5

This is now an equation in two variables xg, xh - all the other words are constants. This is
almost a “commutator representation” equation. Indeed, if the five ζi are all equal 1, we obtain
the equation

δl = [xg, yh]
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which is solved by calling the commutator algorithm on A. For general ζi we transform the
“hidden” commutator to a “real” commutator by changing variables. Define x̃g = ζ3xgζ4 and
ζh = yhζ−1

2 ζ−1
3 . Observe that

δl = ζ1ζ4[x̃g, ỹh]ζ3ζ2ζ5

Rewrite this equation as
(ζ1ζ4)

−1δl(ζ3ζ2ζ5)
−1 = [x̃g, ỹh]

The LHS is some constant element in A, and the equation requests a representation of this
element as a commutator. We can find a solution by calling the commutator representation
algorithm on A. The solution is in the variables x̃g, ỹh, but this is easily translated to a solution
in our original variables xg, yh.

How many operations did we use? We called the commutator representation algorithm in A
at most d times (one call for each final equation vl = Wl). We called the commutator represen-
tation algorithm on B one time. We used O(1) multiplications in B, and O(d) multiplications
in A (there were O(1) per either removing an equation or solving a final equation).

We can now deduce lemma 3.2. Define m(n) to be the cost (in bit operations) of mul-
tiplication in Gn, and define c(n) to be the cost of computing the commutator representa-
tion of an element in Gn. As m(n + 1) < (d + 1)m(n) and m(1) = O(d2) we de-
duce that m(n) < (d + 1)n+2 · O(1). From the discussion above we see that c(n + 1) <
(d +1)c(n) +m(n) ·O(d) < (d +1)c(n) + dn+3 ·O(1). This implies that c(n) < d4n ·O(1)
for large enough d. Finally, as log |Gn| > dn, lemma 3.2 follows.

7 Expanding Schreier graphs

For a finite group H , a subgroup H ′ < H , and a (symmetric) set of elements U in it, the
Schreier graph Sch(H,H ′, U) has vertex set H/H ′ , and edges (gH ′, ugH ′) for every u ∈ U ,
resulting in a |U |-regular graph. If H ′ = {1} then Sch(H, {1}, U) is simply the Cayley graph
C(H,U).

In this section we prove an analogue of theorem 4.1 for Schreier graphs. In theorem 4.1
we constructed a sequence of expanding Cayley graphs assuming the existence of a good
“seed” Cayley graph. Here we do the same for Schreier graphs. The difference here is that
the “seed” Schreier graph is known to exist by elementary arguments, and we do not rely on
the strong theorem of [22]. By [17], every 2d-regular graph is a Schreier graph, so a sequence
of expanding Schreier graphs is implicit in any sequence of (even degree regular) expander
graphs. However, it is generally hard to compute a Schreier graph representation of a given
d-regular graph. In this section we explicitly provide the Schreier graph representation of our
graphs.

There is another way to describe Schreier graphs. Let H be a group acting transitively on a
set E. Define a graph Sch(H,E,U) whose vertices are E, and whose edges are (e, ue) for all
u ∈ U and e ∈ E. Pick a vertex e0 ∈ E, and define H ′ = {h ∈ H |he0 = e0), the stabilizer
of e0. The graph we defined on E is isomorphic to Sch(H,H ′, U) by taking he0 to hH ′. The
following definition gives an example of groups acting on sets. This example will be the basis
of a construction of expander Schreier graphs. To fix notation, we redefine our basic objects:
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Definition 7.1. Let Tn,d be the rooted d-regular tree with depth n, let Sym(n, d) be its group
of symmetries, and let En be the set of leaves of Tn,d, on which Sym(n, d) acts naturally.

Expansion of a Cayley graph implies the expansion of all its Schreier graphs:

Claim 7.2. Let H be a group , let H ′ < H be a subgroup and let U ⊂ G be a subset. Then
λ(Sch(H,H ′, U)) ≤ λ(C(H,U)).

Proof: Let v : H/H ′ → C be an eigenvector of the Schreier graph. Define v̂ : H → C by
v̂(h) = v(hH ′). Then v̂ is an eigenvector of C(H,U) with the same eigenvalue as v.

In theorem 4.1 we constructed a sequence of Cayley graphs C(Gn, Yn) where Gn is a
subgroup of Sym(n, d), and showed that it is an expander family under some assumption on
the symmetric group Ad, which is true for very large d. In light of claim 7.2, the family
Sch(Gn, En, Yn) is also a sequence of expander graphs, under the same assumption. Below
we construct expanding generating sets for Gn, which are both simpler than Yn and do not
require any assumptions (and work for much smaller d).

Reminder: for two groups G,K , such that K < Sd, the wreath product G oK has elements
Gd × K and multiplication rule

(g1, . . . , gd, σ) · (g̃1, . . . , g̃d, τ) = (gτ(1)g̃1, . . . , gτ(d)g̃d, στ)

Elements of Gd are naturally embedded in G o K by setting the K coordinate to be 1. The
group K is embedded in G o K similarly by setting the Gd coordinates to be 1.

Definition 7.3. Given a group K < Sd, define a sequence of groups inductively by K1 = K
and Kn+1 = Kn o K (The groups Gn of theorem 4.1 are such groups with K = Ad). Recall
that each element in Sym(n, d) is uniquely defined by writing a permutation in Sd on each
internal node of Tn,d, indicating how the children of this vertex are permuted. The group
Kn is the subgroup of Sym(n, d) where the permutation written on every internal vertex is an
element of K . The group Kn acts on the set En (the leaves of the d-regular depth n tree) via
its embedding in Sym(n, d).

The following theorem is the Schreier graph analogue of theorem 4.1.

Theorem 7.4. If there is a generating set Q ⊂ K of size at most (d1/4/2) with λ(K, [d], Q) ≤
1/4, then there exist Qn ⊂ Kn of size |Q|4 such that λ(Kn, En, Qn) ≤ 1/4, and Qn can be
computed in time polynomial in log |En|.

The main difference from theorem 4.1 is that in the Schreier case the set Q is known to
exist for many groups K . The claim below shows the existence of such Q for K = Sd (for d
large enough).

Claim 7.5. Let d ≥ 100, and let U be 100 permutations in Sd chosen randomly uniformly.
Then λ(Sd, [d], U) ≤ 1/4 with probability larger than 1/2.

For proofs see [13] (or [9] for a weaker result which would result in a larger required d).

Corollary 7.6. For every d ≥ 4 · 1004 there is a sequence of subsets Un ⊂ Sym(n, d) of
size 1004 such that λ(Sym(n, d), En, Un) < 1/4. Furthermore, Un is computable in time
polynomial in log |En|.
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Proof of theorem 7.4: We will assume that |Q|4 divides d. The divisibility condition is not
crucial, but it simplifies the proof. We proceed by induction - the case n = 1 is the assumption
of the theorem. Assume the theorem holds for some n. We show that it holds for n + 1.

Claim 7.7. Let Q
(d)
n be the vectors in Qd

n in which every element in Qn appears exactly

d/|Qn| times (see definition 4.4). Let x = (x1, . . . , xd) be an element of Q
(d)
n . Define

U = {yxz | y, z ∈ Q} ⊂ Kn+1. Then λ(Kn+1, En+1, U) ≤ λ(Kn, En, Qn) + λ(K, [d], Q)

We prove the claim later, and now proceed with the proof of the theorem. Define Qn+1 to
be the set of words of length 2 in the set U given by claim 7.7. Then

λ(Kn+1, En+1, Qn+1) = λ(Kn+1, En+1, U)2

≤
[
λ(Kn, En, Qn) + λ(K, [d], Q))

]2 ≤ (1/4 + 1/4)2 ≤ 1/4

where the equality follows from observation 2.3, the first inequality is claim 7.7 and the second
inequality is the induction assumption. By definition |Qn+1| = |Q|4. This concludes the proof
of theorem 7.4
Proof of claim 7.7: The proof uses the zigzag theorem [42]. Here is a quick definition of the
zig-zag product:

Definition 7.8. Let X,Y be regular graphs such that the degree of X is equal the size of Y. For
every v ∈ X write the list of neighbors of v as an array v[i] for i ∈ Y (the ordering of the list
of neighbors is arbitrary, and different lists may lead to different graphs). Define a graph Z

whose vertices are pairs (v, i), with v ∈ X and i ∈ Y. The neighbors of a vertex (v, i) are the
vertices reached by making the following three steps:

• Step 1: Walk from (v, i) to (v, j) where (i, j) is an edge of Y.

• Step 2: Walk from (v, j) to (v[j], j) where v[j] is the j-th neighbor of v in the graph X.

• Step 3: Walk from (v[j], j) to (v[j], k) where (j, k) is an edge of Y.

Z has degree (degY)2. It is called the zig-zag product of X and Y, and we write Z = X©z Y.

Theorem 7.9. [42] If Z = X©z Y then λ(Z) ≤ λ(X) + λ(Y).

Define Q̃n to be the multiset of size d obtained by duplicating every element of Qn ex-
actly d/|Qn| times. Notice that the vector x is simply a list of the elements of Q̃n. Let
X = Sch(Kn, En, Q̃n), Y = Sch(K, [d], Q), and Z = Sch(Kn+1, En+1, U). We claim that
Z = X©z Y. The proof of claim 7.7 then follows from theorem 7.9 (notice that λ(X) =
λ(Kn, En, Qn)). The first requirement is that the degree of X is equal to the size of Y, and in-
deed they are both d. It remains to verify that edges of Z are the walks of length 3 of the zigzag
product. For every v ∈ X and i ∈ Y define v[i] = xi(v) (the element xi ∈ Kn acts on v ∈ En).
The array v[i] is the list of neighbors of v in X. An edge of Z connects (v, i) to yxz(v, i) (em-
bedded in Kn+1 as y = (1, 1, . . . , 1, y), z = (1, 1, . . . , 1, z) and x = (x1, x2, . . . , xd, 1)). Let
(v, i) be a vertex of Z, and let j = z(i), and k = z(j) = yz(i). Then

yxz(v, i) = yx(v, z(i)) = yx(v, j)

= y(xj(v), z(i)) = y(v[j], j) = (v[j], k).

This is exactly the definition of an edge in the zig-zag product, and we have proved claim 7.7.
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8 Generators for an infinite group with property (τ )

There are natural mappings, for k ≤ n between Sym(n, d) and Sym(k, d). The embedding
map sends an element σ ∈ Sym(k, d) to the element of Sym(n, d) which acts on the first k
levels of the tree by σ. The restriction map sends τ ∈ Sym(n, d) to its restriction to the first k
levels of the tree.

In theorem 4.1 we constructed subsets Yn ⊂ Gn < Sym(n, d) that generated Gn as ex-
panders. In this section we will prove that the sets Yn are consistent: the restriction of Yn to
Sym(k, d) is exactly Yk. This implies that there is a set Y∞ of symmetries of the infinite rooted
d-regular tree, which restricts to Yn for any n. A nice corollary is that the infinite group gener-
ated by Y∞ has property τ (defined below). In the next section we will use this consistency to
construct a sequence of expander graphs each of which is a lift of its predecessor.

Theorem 8.1. Let Yn ⊂ Gn be the groups and generating (multi)sets of theorem 4.1. Then for
every n ≥ k ≥ 2 the restriction of Yn to Sym(k, d) is equal Yk. The same holds for the sets Qn

of theorem 7.4.

Corollary 8.2. Define Y∞ to be the set of symmetries of the infinite tree whose restriction
to Sym(n, d) is Yn. The set Y∞ generates an infinite subgroup G∞ of the symmetries of the
infinite tree, and the restriction of G∞ to Sym(n, d) is Gn for all n ≥ 2. The same holds for
Qn of theorem 7.4.

The following definition of property (τ ) is from [30], page 49.

Definition 8.3. Let G be a finitely generated group, and let Y be a finite symmetric generating
set for G. Let L = {Nn}n∈N be a family of finite index normal subgroups in G. Then G has
property (τ) with respect to L if the family C(G/Nn, Y/Nn) is an expander family.

Corollary 8.4. Let Nn be the kernel of the restriction function from G∞ to Gn. Then, under
the assumption on the alternating group described in theorem 4.1, the group G∞ has property
(τ) with respect to the family {Nn}∞n=2.

Proof of theorem 8.1:
The proof will only deal with the (harder) case of Yn. Recall that elements in Sym(n, d)

are represented by writing a permutation on each internal vertex of Tn,d. Define the k-th level
of an element u ∈ Sym(n, d) to be the permutations written on the k-th level of Tn,d in this
representation of u.

The following claim is somewhat complicated to state, but its proof is an easy induction.

Claim 8.5. Let Fi,j be sequence of functions Fi,j : Sym(∞, d)q → Sd, where 1 ≤ i ≤ q
and j is an internal vertex of T∞,d. Suppose that for vertices j in the k-th level of T∞,d,
the output of Fi,j only depends on levels 1 up to (k − 1) of its inputs (in particular Fi,1 is a
constant function). Define U1 ⊂ Sym(n, d) to be the set Fi,1() for 1 ≤ i ≤ q, and inductively,
given the set Un = un

1 , un
2 , . . . , un

q in Sym(n, d) define un+1
i ∈ Sym(n + 1, d) by writing the

permutation Fi,j(u
n
1 , un

2 , . . . , un
q ) in internal vertex number j of Tn+1,d. Then the restriction

of un+1
i to Sym(n, d) is un

i .

Theorem 8.1 now follows by observing that the sets Yn are indeed constructed by the
procedure in claim 8.5 (The only exception is Y1 which was constructed differently, so the
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theorem’s statement holds only for n ≥ 2). To show this, recall briefly how we constructed
Yn+1 given the set Yn.

• Construct the set Yn
∗ defined in definition 4.5.

• Write X = c · Yn ∪ Yn
∗.

• Pick an element x ∈ X (d) ⊂ Sym(n, d)d, and embed it in Sym(n + 1, d).

• Define Z = Y1xY1 by regarding the elements of Y1 as elements in Sym(n + 1, d).

• Define Yn+1 to be the set of words of length 2 in the set Z .

We will now verify that the (k + 1)-level an element in Yn+1 is a function of levels 1 up to
k of the elements in Yn. We will also verify that the first level of elements in Yn+1 is indeed
a constant independent of n. We leave to the reader to verify that the conditions of claim 8.5
hold precisely, which we feel is rather too technical.

Observation 8.6. Let g be an element of Gn. Let g = [x, y] be the commutator representation
derived in section 6. Then level k of x and y depends only on levels 1 up to k of g.

The observation follows by following the construction of the commutator representation,
which is simply induction on the level. We conclude that for elements in Yn

∗, and therefore in
X , the k-th level depends only on levels 1 up to k of the elements in Yn.

Observation 8.7. Let g, h be elements in Sym(∞, d). Then level k of gh depends only on
levels 1 up to k of g and h.

Observation 8.8. Let x = (x1, . . . , xd) be an element of Sym(n, d)d. Embed x in Sym(n + 1, d)
as (x1, . . . , xd, 1), represented by writing a permutation on every internal vertex of Tn+1,d.
The permutation written on the root is the identity, and the permutations written on level k +1
are permutations written on level k of x1, . . . , xd.

The two observations above imply that level k+1 of elements in Z depend only on levels 1
up to k of X . Also, level 1 of elements in Z is independent of n, since it depends on level 1 of
elements in Y1 and level 1 of x which is the identity permutation. The same holds for Yn+1 as
elements there are products of elements of Z (we use observation 8.7 again). This concludes
the proof of the theorem.

9 A sequence of expanding lifts of graphs

Definition 9.1. Given a graph X, on n vertices v1, . . . , vn, a d-lift of X is a graph Y on nd
vertices wi,k where i ∈ [n], k ∈ [d]. For each edge e = (vi, vj) of X choose a permutation
σe ∈ Sd, and connect wi,k with wj,σe(k) for all k ∈ [d]. The vertices wi,k for fixed i and k ∈ [d]
are called the fiber above vi. The fibers above an edge e = (vi, vj) are connected by a perfect
matching defined by σe. There are many non-isomorphic lifts of a graph X depending on the
choice of the permutations σe. For more information on lifts see [6].

In this section we show how to obtain an explicit sequence of expander graphs, each of
which is a d-lift of its predecessor for any (large enough) d. Actually, the sequence of Schreier
graphs constructed in the previous sections do.

Here are some basic properties of lifts which are not hard to prove:
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• The degree of a vertex v is equal to the degree of all the vertices in the fiber above v, so
a lift of a regular graph is regular with the same degree.

• The definition of a lift works fine for parallel edges and loops (where the loop counts as
two edges when computing the degree of a vertex).

• Lifting is transitive: If Y is a lift of X and Z is a lift of Y then Z is a lift of X.

• If Y is a lift of X then λ(Y) ≥ λ(X).

As an example, consider the graph X0 which consists of a single vertex with q loops on it.
A lift X1 of X0 is encoded by q permutations σ1, . . . , σq ∈ Sd. The graph X1 has vertex set [d]
and edges (i, σl(i)), i ∈ [d], l ∈ [q], making it a 2q-regular graph.

Linial raised the following conjecture:

Conjecture 9.2. [Linial] For every graph X and every d there exists a d-lift Y of X such that
λ(Y) ≤ max(λ(X), O(

√
d)).

For d = 2 a slightly weaker version of the conjecture was proved in [8].
The conjecture yields a method to construct a sequence of expander graphs each of which

is a lift of its predecessor. Pick any regular graph X1 with λ(X1) = 1/2. Now choose a
sequence of graphs Xn such that λ(Xn+1) ≤ λ(Xn) and Xn+1 is a lift of Xn (we need the
degree of the initial graph to be large enough for this to work).

Theorem 9.3. Let Xn = Sch(Kn, En, Qn) be the family of graphs of theorem 7.4. Then Xn+1

is a d-lift of Xn for all n ≥ 1.

By Corollary 7.6 we obtain the required sequence of expanding lifts:

Corollary 9.4. Let K = Sd with d ≥ 4 · 1004, and let Q ⊂ Kn be the generating set given
in 7.6. Let Xn be the sequence constructed in theorem 9.3. Then λ(Xn) ≤ 1/4 for all n and
Xn+1 is a d-lift of Xn for all n ≥ 1.

The proof of theorem 9.3 is by induction. The following two claims show how to construct
a Schreier graph of a wreath product G o H which is naturally a lift of a Schreier graph of H .
These two claims will be used in the in induction step.

Claim 9.5. Let G,H be groups acting on EG, EH respectively. H is a subgroup of the sym-
metric group on EH , so the group G oH is defined, and its elements are written as (g, h) where
g = (gy)y∈EH

and h ∈ H . Then G o H acts on EG × EH by (g, h)(x, y) = (gy(x), h(y)).

Proof: We need to show that for two elements (g, h), (g̃, h̃) ∈ G o H and an element (x, y) ∈
EG × EH

(g, h)
[
(g̃, h̃)(x, y))

]
=

[
(g, h) · (g̃, h̃)

]
(x, y)

And indeed,

(g, h)
[
(g̃, h̃)(x, y))

]
= (g, h)(g̃y(x), h̃(y)) = (gh̃(y) · g̃y, h · h̃)(x, y)

=
[
(g, h) · (g̃, h̃)

]
(x, y)
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Claim 9.6. Let G,H be as in claim 9.5, and let U be a subset of G oH . Then Sch(G oH,EG ×
EH , U) is a |EG|-lift of Sch(H,EH , U). (Notice that we have identified U with its restriction
to H).

Proof: The vertices of Sch(G o H,EG × EH , U) are pairs (x, y) with x ∈ EG and y ∈ EH .
Partition these vertices to subsets Sy = {(x, y)|x ∈ EG}. We will show that Sch(G oH,EG ×
EH , U) is a |EG|-lift of Sch(H,EH , U) where the fiber above y ∈ EH is Sy. In order to prove
this, we need to show that for every edge e = (y1, y2) of Sch(H,EH , U) there corresponds a
perfect matching between Sy1 and Sy2 .

Edges in Sch(H,EH , U) are of the form (y, uy), for y ∈ EH and u ∈ U . Write u = (g, h)
in G o H , so uy = h(y). In Sch(G o H,EG × EH , U), a vertex (x, y) is connected to
u(x, y) = (gy(x), h(y)). This is a perfect matching between Sy and Sh(y) since gy is a permu-
tation of EG for y fixed.

Can we use claim 9.6 to obtain a sequence of expanding lifts? In section 8 we constructed
an expander sequence Xn = Sch(Kn, Qn, En) where each Qn is the restriction of a single set
Q∞. Since Kn+1 = Kn o K we deduce by claim 9.6 that Sch(Kn+1, Q∞, En+1) is a lift of
Sch(K,Q∞, [d]) = X1, while we wanted Xn+1 to be a lift of Xn. The following observation
comes to the rescue (notice the change of order in the wreath product).

Observation 9.7. Let Kn be the sequence of groups defined in 7.3. Consider Kn as a subset
of the permutation group on En. Then Kn+1 = K o Kn.

We can now use claim 9.6 to conclude that Sch(Kn+1, Q∞) is a d-lift of Sch(Kn, Q∞),
which proves theorem 9.3.
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