»OS

e ghfps along edges. If (v, w) is an edge
d j times, then we moved ; chips from
0, o) of G where v, was fired ip times
be the set of those vertices of G which
By the definition of & along any edge
oved to H than from H. On the edge
ber E(I)f chips at vertices of H has gone
f G (i.e., the largest distance between
v pf G that was idle during the entire
otain that any vertex w at distance 4'
crtex was fired at most di times. This
ater than the sum of degrees of the
:vg. So in a halting game, u < 2m.
g graph G. Take the complete graph
/2] to it starting at one of the vertices
e other end of the path. It is easy to
me will continue for n*/32 + O(n})

S, AND 8. WINOGRAD, Disks, ball

X 5 s and :
onthly, to appear. mals
g graphs, manuscript in preparation.
rica, 6 (1986), pp. 55-65.

© 1988 Society for Industrial and Applied Mathematics
Vol. 1, No. 3, August 1988 013

SIAM J. DisC. MATH.

THE PARALLEL COMPLEXITY
OF ELEMENT DISTINCTNESS IS Q(y/Togn)*

PRABHAKAR RAGDE{}, WILLIAM STEIGER{, ENDRE SZEMEREDIS,
AND AVI WIGDERSONY

Abstract. We consider the problem of element distinctness. Here n synchronized processors,
each given an integer input, must decide whether these integers are pairwise distinct, while commu-
nicating via an infinitely large shared memory.

If simultaneous write access to a memory cell is forbidden, then a lower bound of Q(logn) on
the number of steps easily follows (from S. Cook, C. Dwork, and R. Reischuk, STAM J. Comput., 15
(1986), pp. 87-97.) When several (different) values can be written simultaneously to any cell, then
there is an simple algorithm requiring O(1) steps.

We consider the intermediate model, in which simultaneous writes to a single cell are allowed
only if all values written are equal. We prove a lower bound of Q((logn)!/?) steps, improving the
previous lower bound of Q(logloglogn) steps (F.E. Fich, F. Meyer auf der Heide, and A. Wigderson,
Adv. in Comput., 4 (1987), pp. 1-15).

The proof uses Ramsey-theoretic and combinatorial arguments. The result implies a separation
between the powers of some variants of the PRAM model of parallel computation.

Key words. parallel computation, lower bounds, parallel random access machines
AMS(MOS) subject classification. 68Q10

1. Introduction. The parallel random access machine (PRAM) is the most
widely used theoretical model of parallel computation. In this machine, n synchronized
processors Py, Ps, ..., P, have read and write access to a shared memory {M;|i € N}.
Each cell M; of shared memory is initialized to zero. Each processor is a (possibly
infinite) state machine. One step of computation consists of two phases. In the write
phase, each processor may write an integer value to some shared memory cell. All
writes take place simultaneously. In the read phase, each processor may read some
shared memory cell. Based on what it has seen, each processor then assumes a new
state.

A PRAM may be restricted to disallow simultaneous read or write access by
several processors to the same cell. We allow concurrent reads and writes. If several
processors attempt to simultaneously write different values into the same cell, a write
conflict arises. Here, we discuss two methods of write-conflict resolution that have
appeared in the literature. In the COMMON model [K], the algorithm itself must
ensure that a write conflict never occurs; all processors simultaneously writing into
the same cell must be writing the same value. In the ARBITRARY model, the machine
will resolve the write conflict arbitrarily; one of the values being written will appear
in the cell, but it is impossible in advance to know which value. Algorithms on the
ARBITRARY model must work regardless of who wins each competition to write.

* Received by the editors January 8, 1987; accepted for publication (in revised form) February
12, 1988.

{Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 1A4.
This work was performed while the author was at the University of California, Berkeley, California
94720, and was supported by an IBM Graduate Fellowship and a Natural Sciences and Engineering
Research Council of Canada Postgraduate Scholarship.

fRutgers University, New Brunswick, New Jersey 08903.

§Hungarian Academy of Sciences, Budapest, Hungary.

qThe Hebrew University, Jerusalem, Israel. This work was done while the author was at the
Mathematical Sciences Research Institute, Berkeley, California 94720, and was supported by National
Science Foundation grant MCS-8120790

399

.

400 RAGDE, STEIGER, SZEMEREDI, AND WIGDERSON

The input to the PRAM is an n-tuple (z1,2g,...,2,), where the input variable
z, affects the initial state of P;. Thus the input variables are initially distributed one
to a processor. (This state of affairs is equivalent to storing the values in the first n
cells of memory at the start of the computation.) We will choose input variables from
N (the positive integers). We denote the set {1,2,...,k} by [k]. All logarithms are to
the base 2.

The element distinctness problem demonstrates the weakness of the COMMON
model, relative to the ARBITRARY model, when the size of shared memory is infinite.
In this problem, processor P; must halt in state “not-distinct” if there exist indices 7, j
(where ¢ # 7) such that z; = z;; otherwise, it must halt in state “distinct”. In §2, we
show how to solve this problem in O(1) steps on the ARBITRARY model, and discuss
two algorithms to solve it on the COMMON model in O(logn) steps. In §3, we state
and prove a generalization of a result by Hensel concerning the covering of a clique
by bipartite subgraphs, which is needed for the next section. Finally, in §4 we present
a lower bound of (}(y/logn) steps for solving element distinctness on the COMMON
model. The lower bound proceeds by using Ramsey theory to restrict the set of inputs
under consideration and thus simplify the actions of processors to the point where they
transfer information only by a combination of the two methods discussed in §2. Then
an adversary argument is given, in which the result from §3 and other combinatorial
theorems are utilized.

2. Upper bounds. We first show how to solve element distinctness in constant
time on the ARBITRARY model, and then give two different O(logn) algorithms for
the COMMON model. All of these algorithms appear in [FMW].

THEOREM 1. Element distinctness can be solved in O(1) steps on the ARBI-
TRARY model.

Proof. Consider the following algorithm, which uses all of the infinite memory
as a hash table. In the first step, each processor P; writes the value 7 into cell M,,.
Each processor then reads the cell into which it just wrote. If all variables are dis-
tinct, then each processor will see the value it wrote. But if two variables are equal,
then at least two processors will attempt to write into the same cell, and at least one
will see a value different from the one it wrote. If the latter occurs, P, can be in-
formed in one more step, by having any such processor write the value “not-distinct”
into Ml . O

Notice that this algorithm will work on any model that allows different values to
be simultaneously written to the same cell, and that the infinite memory is essential
to the algorithm.

Obviously, this algorithm will not work on the COMMON model. On this model,
however, shared memory can be used as a hash table in a more indirect way. Given
two nonintersecting sets of indices S; and Sy (both subsets of [n]), each P; (v € Sy)
writes 1 into cell M;,. Then each P; (5 € S3) reads cell M;,. The sets of values
{z;]7 € 81} and {z;]j € S} are distinct if and only if each processor P; (5 € S)
reads the value zero.

This method can be used to solve element distinctness in {logn] + 1 steps on the
COMMON model. At the tth step (¢ < [logn]), the set S; consists of those indices 5
for which the tth binary digit of 7 is 1, and S; consists of those indices 7 for which
the tth binary digit of 7 is zero. There is a slight technical problem because memory
is not re-initialized to zero, but this can be easily overcome by having each processor
write the value ¢ (instead of 1) at the tth step. In the last step, any processor who has
detected nondistinctness informs P; by writing the value ‘not-distinct’ into M. Since
any distinct indices ¢, j differ in at least one binary digit, the distinctness of every pair

Yﬁ

PARALLEL COMPL

(z4,z;) will be verified.

Throughout the above algori
variable that they are given at tl
not use the local computational p
to hold large values. But again, th
the values written that are impor

Another method of answerir
values of other variables. If a pro
the state of that processor), then

This idea can be used to give .
on the COMMON model, in [log:
to each processor, to serve as its
variable. In the tth step, each prc
it knows and places this encoding
only in the tth binary digit. Each
values stored there. A straightfor
of distinct variables that any pro
each processor will know the valu
desired state.

This second method illustrat
function of n variables can be co
the capacity of those cells must t
machine is used in computing en
are concurrent reads and writes;
location into which each processo

In §4 we shall see, in the cou
distinetness on the COMMON mo
two ways in which processors ca
that the complexity of element
misleading; in [FRW] a general si
algorithm for element distinctnes:

3. A combinatorial theor
that, in addition to aiding in the p
interest.

A semi-bipartition of a set
ANB =¢. For y,z € X, we say
and z € B,ory € Band z €.
are distinct.) The size of a semi-]
semi-bipartitions, we define size(

Hansel [H] provides a very
Pippenger [P] gives an interestin

THEOREM 2. Let X be a
bipartitions over X such that ev
bipartition in C. Then size(C) >

We generalize this result in
pair of elements be covered, and :
bipartitions.

The following theorem is im
admits short proofs in the styles ¢
of Hansel’s.

I, AND WIGDERSON

1225 - +Zpn), where the input variable
. variables are initially distributed one
ent to storing the values in the first n
-) We will choose input variables from
2,...,k} by [k]. All logarithms are to

trates the weakness of the COMMON
' the size of shared memory is infinite.
“not-distinct” if there exist indices J
ust halt in state “distinct”. In §2 \:ve
1 the ARBITRARY model, and diséuss
del in O(logn) steps. In §3, we state
| concerning the covering of a clique
1ext section. Finally, in §4 we present
ement distinctness on the COMMON
sey theory to restrict the set of inputs
 of processors to the point where they
e two methods discussed in §2. Then
sult from §3 and other combinatorial

olve etlement distinctness in constant
WO d-lfferent O(logn) algorithms for
ear in [FMW].

solved in O(1) steps on the ARBI-

hich uses all of the infinite memory
E writes the value 7 into cell M, .
Just wrote. If all variables are dis'-
r(_)te. But if two variables are equal,
-into the same cell, and at least one
If the latter occurs, P; can be in-
essor write the value “not-distinct”

nodel that allows different values to
hat the infinite memory is essential

e COMMON model. On this model
able in a more indirect way. Giver;
th subsets of [n]), each P; (i € §))
eads cell M,,. The sets of values
ouly if each processor P, (5 € Sa)

nctness in [logn] + 1 steps on the
e s_et S) consists of those indices 5
nsists of those indices j for which
echnical problem because memory
vercome by having each processor
e last step, any processor who has
v.a.lue ‘not-distinct’ into M. Since
digit, the distinctness of every pair

PARALLEL COMPLEXITY OF ELEMENT DISTINCTNESS 401

(zi, z;) will be verified.

Throughout the above algorithm, processors are only aware of the value of the
variable that they are given at the beginning of the algorithm. The algorithm does
not use the local computational power of processors, nor does it require memory cells
to hold large values. But again, the fact that memory is infinite is essential, as it is not
the values written that are important, but the location into which they are written.

Another method of answering the question is to allow processors to learn the
values of other variables. If a processor knows two or more variables (as reflected in
the state of that processor), then it knows if those variables are distinct.

This idea can be used to give a different algorithm for solving element distinctness
on the COMMON model, in [logn] steps. One cell of shared memory is dedicated
to each processor, to serve as its mailbox. Initially, each processor knows just one
variable. In the ¢th step, each processor F; computes an encoding of all the variables
it knows and places this encoding in the mailbox of processor F;, where 7 differs from ¢
only in the tth binary digit. Each processor then reads its own mailbox and learns the
values stored there. A straightforward analysis shows that at each step, the number
of distinct variables that any processor knows will double. Thus after [logn] steps,
each processor will know the value of all n variables, and processor Py can halt in the
desired state.

This second method illustrates the power of the PRAM model; it shows that any
function of n variables can be computed in O(logn) steps. It uses only n cells, but
the capacity of those cells must be large, and the local computational power of each
machine is used in computing encodings. Indirect access to memory is not used, nor
are concurrent reads and writes; it is the values written that are important, as the

location into which each processor writes at each step is independent of the input.

In §4 we shall see, in the course of proving an Q(/Tog n) lower bound for element
distinctness on the COMMON model, that these two methods are essentially the only
two ways in which processors can verify distinctness. The temptation to conjecture
that the complexity of element distinctness on the COMMON model is &(logn) is
misleading; in [FRW] a general simulation result is given, which has as a corollary an
algorithm for element distinctness on this model requiring O (log n/loglogn) steps.

3. A combinatorial theorem. In this section we prove a combinatorial result
that, in addition to aiding in the proof of the subsequent lower bound, is of independent
interest.

A semi-bipartition of a set X is a pair of sets {A, B}, where A,B C X, and
ANB = ¢. For y,z € X, we say the pair {y, 2} is covered by {A, B}, if either y € A
and z € B, or y € B and z € A. (We always assume that the elements of a pair
are distinct.) The size of a semi-bipartition {A, B} is |A| + |B|. For a collection C of
semi-bipartitions, we define size(C) = Y-¢ 4 pyec (1Al + |BI)-

Hansel [H] provides a very short and elegant proof of the following theorem.
Pippenger [P] gives an interesting proof using information-theoretic arguments.

THEOREM 2. Let X be a set of size n, and let C be a collection of semi-
bipartitions over X such that every pair of elements of X is covered by some semi-
bipartition in C. Then size(C) > nlogn.

We generalize this result in two ways: first, we relax the requirement that every
pair of elements be covered, and second, we generalize the notion of covering by semi-
bipartitions.

The following theorem is implied by a theorem of Fredman and Komlés [FK]; it
admits short proofs in the styles of [H] and [P]. We give a proof that is a generalization

of Hansel’s.

402 RAGDE, STEIGER, SZEMEREDI, AND WIGDERSON

THEOREM 3. Let X be a set of size n, and let E be a set of pairs of elements
Jrom X. Let a be the largest number of elements from X that can be chosen so that no
two of them are in a pair of E. If C is a collection of semi-bipartitions over X such that
every pair in E is covered by some semi-bipartition in C, then size(C) > nlog(n/a).

Proof. Let C = {{A;,B;},i =1,2,...,g9}. For z € X, let ¢, be the number of
semi-bipartitions {A;, B;} such that z € A; U B;. Then size(C) = Zze x Cz-

Let U be the set of all tuples u of length g, where u; € {A;, B;}. We say that a
tuple u € U is consistent with z if, for 1 < ¢ < g, either z € w; or z ¢ A; U B;. For
each z € X, there are 297°= tuples consistent with z. A tuple may be consistent with
more than one element of X. If a tuple u were consistent with a + 1 elements of X,
then two of those elements (say z and y) would appear in a pair of E. But since
covers all pairs in F, there must exist some semi-bipartition {4, B;} such that, say,
z € Ay, y € B;. This means that u; = A; by the consistency of v with z, and u; = B,
by the consistency of u with y, a contradiction. Hence any tuple is consistent with at
most o elements of X.

Thus a29 = a|U| > }° . x (# tuples consistent with z) = 3~ 297, and so,
a>y ex27%

(1/n) Y ex 27 > ([T,ex 27°)Y/", since the geometric mean does not exceed
the arithmetic mean. Thus (], x 2-¢:)1/7 < o/n. Taking logarithms, we have
Yzex Cz > nlog(n/a), as required. a

Next, we introduce a more general notion of covering. Let A be a set of tuples
of length ¢ with components chosen from the set X. Let B be another such set. If
AN B = ¢, we call {A, B} a tuple system of length ¢. For y,z € X, we say that the
tuple system {A, B} covers the pair (y, z) if there exists a tuple o € A, a tuple 8 € B,
and a position 7 such that o; =y, 3; = 2, and o; = 3, for all j # 7. That is, o,
differ only in position ¢, and y, z are the elements from the sets A, B in that position.
If such a pair o, 3 of tuples exists, we say they are stmilar and cover (y, 2).

If £ = 1, this reduces to covering by semi-bipartitions. A collection of tuple
systems C is a set {{Ay, B1},{A2, B2},...{Ak, Bx}}, where A;, B, are sets of tuples
of length ¢;, and 4, N B; = ¢. We define size(C) = Zf=1(|A¢| + |B)).

The following is the main result of this section.

THEOREM 4. Given a set X of size n and a set E of pairs of elements from
X, let o be the largest number of elements of X, no two of which are in a pair of
E. Suppose C is a collection of tuple systems of length at most ¢, and every pair
of E 1s covered by a tuple system in C. Then, for n sufficiently large, size(C) >
n(%logn — }log(af) — loglogn).

As £ becomes larger, this bound becomes weaker. We conjecture that the lower
bound on size is in fact nlog(n/a) regardless of the length of tuples. For our appli-
cation, it will be the case that af = O(n'/2=¢) for some positive constant ¢, and thus
we obtain a lower bound of (}{nlogn) on size(C).

Proof of Theorem 4. Suppose we are given a tuple system C that covers E in the
fashion described, and in addition, size(C) < n(%logn — 1 log(af) — loglogn). For
each tuple system {A;, B;} € C, we are going to construct semi-bipartitions that cover
most of the edges that the tuple system covered, and then apply Theorem 3 to obtain
a contradiction.

Let C’ be an initially empty collection of semi-bipartitions, and E’ an initially
empty collection of pairs of distinct elements of X. E’ will contain the pairs from E
that C’ does not cover.

Let a;,b; be the initial sizes of A;, B; respectively. We say the tuple system
{A;, B;} is sparse if there are at most (|4;||B;|)//n similar pairs in {4;, B;}. If

N .

PARALLEL COMPLE

{A;, B;} is not sparse, then there
|Bi|/v/n tuples in B;. There is sor
B; differ from « only in position z
the set that includes @ and all tup
B! be all tuples in B; that differ |
Also, AN B} = ¢.

Let A be the set of elements o
the set of elements occurring at pe
and |B| = |B}|. Furthermore, sinct
position p, AN B = ¢. Thus {A,E
{A, B} covers all pairs covered by

We remove A, from A; and B
by similarities between A; and B,
in B; — B] is similar to at most a
only in a position p’ # p, and all -
different entries in position p. Si
one tuple in B;. Thus we have ne
tuples. We add the pairs of eleme

If {A;, B;} is not yet sparse,
at least a factor of vy = 1 —(1/4/n
sparse (note that an empty tuple s
added to E' is at most logy /.y bl

When {A;, B;} becomes spax
are covered by similarities in {A;,

When this process is complet
Y. ((aibi//n) + (a; + bi)€y/nlog

%nlogn by the assumption on si:
Lend/? log? n.

As a result, we have a collec
Len3/? log? n pairs such that eve
largest set of elements of X such
By Theorem 3, we know that size
elements of D must also be pairs |
elements in D is at most |E’|. Le
E contains two elements of D. W

Turan’s theorem (B, p. 282
of pairs from S, there is a set S’
S, and |S'| > |SI*/(IS| + 2|P]).
elements in D, we know that |D’

If |D| > |E’|, then a > |D'|
a > |D|?/3|E'|, and |D| < n3/4]
since we can conclude that size(C

size(C). O

4. The lower bound. In t
distinctness problem on the CO
tween the COMMON and ARBITE
The proof combines techniques f

The following rather odd def
in the main result if overwriting
was used in [FMW].

£DI, AND WIGDERSON

ntand let E be a set of pairs of elements
. s from X that can be chosen so that no
ton of s.emz'—bz'partz'tz'ons over X such that
tition in C, then s1ze(C) > nlog(n/a).
}1.;. FoTr z G.X’ let ¢, be the number of
i- Then size(C) = > zex Ca-

é], wh'ere u; € {4y, B;}. We say that a
<9, either z € u; or 2 ¢ A; U B,. For
.w1th z. A tuple may be consistenz with
€ consistent with o + 1 elements of X
lld. appear in a pair of E. But since C
zml-blp-artition {A;, B} such that. sa
€ consistency of u with z, and w, ,= g
. Hence any tuple is consistent v:fith at1

istent wit = -
ith z) =3 29-¢ and 80,

> the i
geometric mean does not exceed

< a/n. Taking logarithms, we have

,Of covering. Let A be a set of tuples
et IA]X - Let B be another such set. If
;1gt ‘Z. Fory,z € X, we say that the
eexists a tuple a € A4, 5 tuple 3 € B
| af?- = f; for all § # 1. That is, a.ﬂ’
S rom Fhe sets A, B in that positidn
ire stmalar and cover (y, z) '
gblpartitions. A collection of tuple
k}},kwhere A;, B; are sets of tuples
| =1(14i| + | By)).
on.

d a set £ of pairs of elements from
(, no two of which are in a pair of
of length at most ¢, and every pair

Jor n sufficiently large, size(C) >

31ker. We conjecture that the lower
f e length of tuples. For our appli-
" Some positive constant €, and thus

uple system C that covers £ in the
logn ~ Flog(af) - log logn). For
nstruct semi-bipartitions that cover
nd then apply Theorem 3 to obtain

pi-bilpartitions, and E’ an initially
- E' will contain the pairs from E

;tlvely: We say the tuple system
V7 similar pairs in {A:, B;). If

PARALLEL COMPLEXITY OF ELEMENT DISTINCTNESS 403

{A;, B;} is not sparse, then there exists some a € A; which is similar to at least
|Bi|/+/n tuples in B;. There is some position p such that at least | B;|/¢y/n tuples in
B, differ from o only in position p, since o is a tuple of length at most . Let A} be
the set that includes a and all tuples in A; that differ from o only in position p, and
B! be all tuples in B; that differ from o only in position p. Then |B!| > |Bi|/¢\/n.
Also, A, N B = ¢.

Let A be the set of elements occurring at position p in tuples of A;, and let B be
the set of elements occurring at position p in tuples of Bj. We know that |A| = |Ajl,
and |B| = | B!|. Furthermore, since A; N B; = ¢ and all tuples in A}, B] differ only in
position p, AN B = ¢. Thus {A, B} is a semi-bipartition of X. We add {4, B} to c'.
{A, B} covers all pairs covered by {A{, B;}.

We remove A’ from A; and B{ from B;. We have not accounted for pairs covered
by similarities between A} and B; — B;, or between B! and A; — A;. But any tuple
in B; — B} is similar to at most one tuple in A%, for it can differ from a tuple in A]
only in a position p’ # p, and all tuples in A’ have the same entry in position p’ but
different entries in position p. Similarly, any tuple in A; — Al is similar to at most
one tuple in B.. Thus we have neglected at most |Ai| + |B;i] < a; + b; similar pairs of
tuples. We add the pairs of elements that these similar pairs of tuples cover to E'.

If {A;, B;} is not yet sparse, we repeat this process. Each time, we shrink B; by
at least a factor of v = 1—(1/£y/n). In at most log; ;. b; iterations, {A;, B;} becomes
sparse (note that an empty tuple system is sparse). The total number of pairs we have
added to E' is at most log; /. bi(a: +b;) < £y/nlogbi(a; + b;).

When {A;, B;} becomes sparse, we simply add to E’ all pairs of elements that
are covered by similarities in {A;, B;}. This adds at most a;b; //n pairs to E'.

When this process is completed, clearly size(C’) < size(C). Furthermore, |E'| £
Y ((asbi//) + (@i + bi)ty/nlogh;). Since a;bi, and Y_,;(a; + b;) are all less than
%nlogn by the assumption on size(C), it follows that for n sufficiently large, |E'| <
Ltn®/?1og? n.

As a result, we have a collection C’ of semi-bipartitions and a set E’ of at most
1n®/?1og® n pairs such that every pair in £ — E' is covered by C’. Let D be the
largest set of elements of X such that no pair in E — E' contains two elements of D.
By Theorem 3, we know that size(C’) > nlog(n/|D]). All pairs in E that contain two
elements of D must also be pairs in E’. Hence the number of pairs in E that have two
elements in D is at most |E’|. Let D’ be the largest subset of D such that no pair in
E contains two elements of D. We know that |D'| < a by the definition of o.

Turén’s theorem (B, p. 282] states that given any set S and any collection P
of pairs from S, there is a set S’ such that no pair in P contains two elements from
', and |8'] > |S|?/(|S] + 2|P|). Applying this to D and the pairs of E with both
elements in D, we know that |D’| > |D|?/(|D| + 2|E’]).

If |D| > |E'|, then o > |D'| 2 |D|2/3|D|, and so |D| < 3a. If |D| < |E'|, then
a > |D|?/3|E'|, and |D| < n®4log nvaf. In either case we have our contradiction,
since we can conclude that size(C') > n(} logn — 3 log(af) — loglog n), but size(C’) >
size(C). O

4. The lower bound. In this section, we prove a lower bound for the element
distinctness problem on the COMMON model, thus demonstrating a separation be-
tween the COMMON and ARBITRARY models when both are allowed infinite memory.
The proof combines techniques from [FMW] and [MW] with the result from §3.

The following rather odd definition is motivated by technical problems that arise
in the main result if overwriting a shared memory cell is allowed. A similar technique

was used in [FMW].

]

404 RAGDE, STEIGER, SZEMEREDI, AND WIGDERSON

DEFINITION. A write-once COMMON PRAM is a COMMON PRAM with the
following modifications: if a cell in shared mermory is written into at a particular step,
then it may not be written into at any subsequent step. Also, at step ¢, each processor
is allowed to simultaneously read ¢ cells M; . M,,,..., M, of shared memory, instead
of just one. The final restriction is that, if cell M;, defined above was written into at
all, it must have been written into at step j.

LEMMA 5. T steps of a COMMON PRAM with m cells of shared memory can
be simulated by T steps of a write-once COMMON PRAM with m? celis of shared
memory.

Proof. Let {-,-) : [m] x [m] — [m?] be any one-to-one function. At step ¢ of the
simulation, if P; in the simulated machine writes into M; and reads from M, then
P, in the write-once machine writes into M, jy, and reads M ky, Mg gy, - - s Mt iy
From the contents of these t cells, P, can determine what M}, in the simulated machine
would have contained at step ¢. O

By Lemma 5, any lower bound for element distinctness on write-once COMMON
with infinite memory is a lower bound on regular COMMON with infinite memory. We
can now state and prove the main result of this paper.

THEOREM 6. On a write-once COMMON PRAM with infinite memory, element
distinctness requires (1(/log n) steps.

We introduce some definitions to be used in the proof. A (k,s, a)-bundle on X
will be a partial order on the set X, where ks + a = | X]. Of the ks + a elements,
ks are in k disjoint antichains of size s > 1; the remaining a of the elements are in
disjoint antichains of size 1, and there is a total ordering among all antichains. An

antichain of size s will be called nontrivial. Figure 1 gives a simple example of such a
partial order.

7 I Ze
Ti0 < < <Ipg<Iy < < ZIg
T3 Tg Ts

FIG. 1. A (8,2,4) bundle on {z1,22,.. ., 210}

Let X denote the set of variables {z1,22,...,2,}. Suppose we are given an
algorithm that solves element distinctness. We will prove a lower bound of T+ 1 steps
on the running time of this algorithm, where T = Q(y/Togn).

The state of a processor P; after step t (and consequently, the cells it chooses
to write into and read from at step t + 1) can be a complicated function of the
variables in X. The idea is to concentrate on a restricted set of inputs I, which are
“indistinguishable” to the algorithm through step ¢. For inputs in I, the state of a
processor during the first ¢ steps will be a function of a “small” number of variables.
We can then apply Ramsey theory to simplify the functions describing access to shared
memory. The input set I, will be described in terms of objects I1;, C;, and S;. We will
display, for ¢ ranging from zero to T, the following:

1. An infinite set S;, where S; C N, and S, C Si—1. S; is the set of possible
values of a variable for inputs in I;. We will define S, so as to simplify all functions
describing access to shared memory.

2. A (kq, s¢,a¢)-bundle IT; over X. II, will be a refinement of I—1; that is, if z;, z;
are comparable in II;_;, then they are comparable in IT;. The bundle will satisfy the
inequalities:

ok, <322 +5t+3,

Y

PARALLEL COMPL

n 2 4 5¢-
w7 4 32t° +
Pi, will ‘describe’ inputs in I
satisfy the constraints of II;. We
that a; < 2n/3 for t < T, that i
antichains of II;.
3. A collection C; of tuple sys
and the size of tuples in C; is at n
4. For each processor P;, a st
e Vi, CV/ and V| < 3%

o All the variables in V}* are

o The state of P; after step ¢
inputs in ;.

We may now describe the set

1. £ € ST

2. % is consistent with II;;

3. There is at most one pair

4. If #; = &k, (25, 2x) is not
containment properties of Cy, 11,

Suppose there is at least one
tuple system in C;, and z;, z are
one of z;, 7y can affect the state ¢
z) does not affect the state of P
are distinct. Let ' be the input
of (z;,xk), &' is also an input _in
#' are distinct. Furthermore, sine
distinguish these inputs after ste
We now show how to construct
T = 0(yTogn). |

Before step 1 we let Ilp be t
alsoset Co=¢, So =N, Iy = (N
the required objects up to index
{ + 1, by consideration of what h

We say a function f(y1,y2,
domain of f consists of the incre:
fori < 7.

For a step t/ < t+ 1, let x
indices are chosen so that z;, <
because V;i_, is totally ordered
in I, is a function of z;,,Z4,,...
and reads from at step t’ are alss

Let wf.' (I,‘l s Zigy - ,.’E,'k) ll)e
inputs in I;. The value of w} i
if the processor does not write a
know that w! is defined on inc:
53,‘1 <.’i’,‘2 < - <i’ik.

Similarly, let rf*! be the jt
I,. The value of r**! is the inde

i3
. . t+1
inputs in I;. rl-';’- is also definec

n
eq <~ —

lemma by Meyér auf der Heide a
Erdés and Rado [ER]:

EDI, AND WIGDERSON

PRAM is a COMMON PRAM with the
mory is written into at a particular ste
l}&nt step. Also, at step ¢, each proceSS(I))r’
u]a o M, of shared memory, instead
i; defined above wag written into at

AM with m celis of
shared memory can
MMON PRAM with m? cells of shared

.).rt onfa-to—one function. At step ¢ of the
'1 es 1(1111:0 M; and reads from M, then
gi,naen hreads M(l,k)7M(2,k)’ feny M(t k)
what My in the simulated machine
t déstinctness on write-once COMMON
ar COMMON with infinit
! € memory. We
PRAM with infinite memory, element
,H_:. the—proof. A (k,s,a)-bundle on X
; a —|X| Of the ks + q elements,
1 remal.nmg a of the elements are in
) ordetrmg among all antichains. An
ire 1 gives a simple example of such a

{zlazQ, . ,210}.

-

-sZTn}. Suppose w i
1l prove a lower; boung :fr;’ il ‘lfer; oo
- ((Iogn). e
d consequently, the cells it chooses
1 be.a complicated function of the
estricted set of inputs I, which are
> ¢ For inputs in I;, the state of a
n of a “small” number of variables
unctions describing access to share(i
js of objects II,, Ct, and S,. We will

C Si—1. S, is the set of possible
e S; so as to simplify all functions

rfeﬁnement of IT; _;; that is, if z;, z,
in Il;. The bundle will satisfy th(Jz

PARALLEL COMPLEXITY OF ELEMENT DISTINCTNESS 405

ea <2 - é%+32t2+5t+4_

Pi, will ‘describe’ inputs in I;; the values of the variables in any input of Iy will
satisfy the constraints of II;. We shall choose T so that it will always be the case
that a; < 2n/3 for t < T, that is, at least a third of the variables are in nontrivial
antichains of II;.

3. A collection C; of tuple systems over X, where Ci D Cy_1, size(Ce) < m(t+ 1)2,
and the size of tuples in C; is at most 3*.

4. For each processor F;, a set Vf C X with the properties:

L, CVand V] < 35

e All the variables in V{ are comparable in Il;, that is, V} is a chain of IIy;

o The state of P; after step t will be a function of only the variables in V{t, for all
inputs in 7.

We may now describe the set of inputs I;. T € I, if and only if:

1. £ € 5%

2. % is consistent with Il;

3. There is at most one pair (7, k) such that ; = Zx;

4. If &, = &k, (z;,7k) is not covered by any tuple system in C;. Note that the
containment properties of C¢,Il;, and S; ensure that I; € I;—1.

Suppose there is at least one pair (z;,zx) such that (x;,zk) is not covered by any
tuple system in C¢, and z;, T, are in the same antichain of II;. We know that at most
one of z;, z) can affect the state of P; after step ¢, since V! is a chain in II,. Suppose
z) does not affect the state of Py after step t. Let & be an input in I; such that all Z;
are distinct. Let 2’ be the input such that & = ; for ¢ # k, but & = 9:'] By choice
of (z;,zk), 2’ is also an input in I, and by construction, not all the components of
are distinct. Furthermore, since the state of P; is not a function of =, P; cannot
distinguish these inputs after step t. Thus we obtain a lower bound of £ + 1 steps.
We now show how to construct the objects described above, up to index T, where
T = Q(yVlogn).

Before step 1 we let Il be the empty order, that is, kg = 1, sp = n, ag = 0. We
also set Cp = ¢, So =N, Ip = (N)", V¢ = {z:}. Now suppose we have constructed all
the required objects up to index ¢{. We show how to extend the construction to index
t + 1, by consideration of what happens at step t + 1 for inputs in I;.

We say a function f(y1,y2,---,9e) is defined on increasing tuples over S if the
domain of f consists of the increasing tuples over S. A tuple § is increasing if §; < §;
for ¢ < j.

For a step ¢/ < t+ 1, let 2y, Ziy,..., Ty be the variables in th_l, where the
indices are chosen so that z;, < Z;, < - < Ty in TI;. We know this is possible

i is totally ordered in II;. The state of P; just before step t', for inputs

because Vi_,
in Iy, is a function of Z;,, Tqy, - -+ Tiy- Thus the indices of the cells that P; writes into

and reads from at step t' are also a function of these variables.
Let w! (Zi,, Tigs- - > z;,) be the write indez function of P; at step t' <t+1, for

inputs in I;. The value of wf’ is the index of the cell into which P; writes, or zero
if the processor does not write at step t', for any setting of the input variables. We

! . - . . - A
know that w! is defined on increasing tuples over Sy, since for every input z 1n I,

Zi, < gy <0 < Iy, -
Similarly, let r:jl be the jth read indez function of P; at step t + 1 for inputs in

I,. The value of rf-f-l is the index of the jth cell that P; reads from at step ¢ + 1, for
inputs in I. rf“;l is also defined on increasing tuples over S;. We use the following
lemma by Meyer auf der Heide and Wigderson [MW], which is based on a theorem by

Erdés and Rado [ER]):

406 RAGDE, STEIGER, SZEMEREDI, AND WIGDERSON

LEMMA 7. Let 7 be a finite collection of functions defined on increasing tuples
over S, for S infinite. The functions in ¥ may be functions of differing numbers of
variables. Then there exists an infinite S C S such that, restricted to increasing tuples
over S, each f € 7 is one-to-one on the variables it depends on. Furthermore, two
distinct f, f' € ¥ have the property that, restricted to increasing tuples over S, they
etther have disjoint ranges, or are identical.

We apply Lemma 7 to the collection ¥, where

fz{wf.’jl5t’gt+1,15ign}u{r§jlu5z‘5n,15j5t+1}.

Let S be the infinite subset of S; with the properties mentioned in Lemma 7. For
f € ¥, when f takes on the value zero for some input, it means that processors using
[at some step choose not to write (or read) at that step for that input. We would
like to simplify the situation by ensuring that, at a particular timestep, processors
either write for all inputs or do not write for any input. We can do this by reducing
S. For each f € 7, if f is not constant when restricted to increasing tuples over
S, let {vi,v2,..., vk} be the variables on which f depends. Since f is 1-1 on those
variables, if zero is in the range of f, then there are unique values 9y, dg, ..., 05 such
that setting v; = 9, fori=1,2,... k makes f = 0. In this case, we remove the values
U1,D2,...,0% from S. Then the range of f when restricted to S does not include Zer0.
If this is done for all f € 7, then for inputs in I;,, processors will either never write
(read) or always write (read) at any given time step among the first ¢ + 1 steps.

Set S;+1 = S. If we also set II,; = I, and Ciy1 = Cy, this defines a set of
inputs ;1 such that for inputs in this set, the read index and write index functions
of all processors through step ¢t + 1 will have the properties mentioned in the lemma.
The fact that f, f’ € F either have disjoint ranges or are identical means that, when
a processor uses f as a write index function, it is communicating only with those
processors that use f as a read index function at subsequent steps. Thus we have
considerably simplified the pattern of communication in the first ¢ + 1 steps, by re-
stricting consideration to inputs in I,,;. In what follows, our goal is to define Vf+1
for all processors P;. To do this, we will add tuple systems to C;1; this only reduces
It+l’

We also set Q; = {{Vt'}} for 1 <7 < n. The set Q; will represent the variables
that P; knows about at the end of step ¢ + 1. We will add to @Q: sets of variables that
P; could learn at step t + 1, by considering the access functions of P, in F. At the
conclusion of this process, @; will be a collection of at most ¢ + 2 sets of variables.
Each set in Q; will be totally ordered in II,, and the state of P; at time ¢ + 1 will,
by construction, depend only on variables in the union of those sets. We will then
refine IT; ;; in such a way that this union is totally ordered in II, ;, thus ensuring our
conditions after step ¢t + 1 and completing the induction step.

We consider each function f € 7 in turn, and deal with processors that use this
f as an access function.

Case 1: f constant. If f is constant, then it represents the index of a single cell
that processors using f read from or write to. Let ¢’ be the unique step at which
processors write into that cell. If no such step exists, let W = ¢: otherwise, let
W= {P|w! = f}. Let R; = {Pilrf.;l = f}. R; is the set of processors that access
cell f as the jth of the ¢ + 1 cells that they read at step t + 1.

If W = ¢, then all processors in Rj, 1 <j <t+1, read zero from cell f at step
t+ 1, and so no information is transmitted. If W # ¢, the value written into cell [at
step ¢’ must be a function of variables that the processors in W “have in common”;
that is, it must depend only on variables in V = Pew Vi_1. Recall that processors

r

PARALLEL COMPLEXIT

using f always write on all inputs in I
in V, then there would be an input fo
different values into the cell indexed b;
Thus, the state of any processor
variables in V, for any input in I;,;.
and |V| < 3¢ ~1. For each reading proc
Case 2: f not constant. Let yi,
(considered as free variables, not rnem_l
index function by some processor at ti
and Wy = {Pijw! = f}, fort' <t +1.
Consider P; € Wy and P; € Rp. ”
at time ' means that w! is equal to J
in V;i_,. If the replacement variables
variables for P; using f as its hth read
hth cell the same cell that P; wrote int
W, that have the same set of replacem
set V =) Peew! V}_,, and note that |
it is important that processors in W]
have [V| < 3t'~1. We add V to Q; an
function f, remove P; from Rj. If we
any Wy will have exactly the same rer
For the remaining processors, our
a read index function at step ¢t + 1 acc
a write index function at step t + 1 o
systems to C;41. Again, consider P; ¢
replacement variables of P; for y1,ys2,
variables of P;. At most two variable
positions 1 < a < b < £ such that 1,
either z,, # zj, or z;, # zj. It fol
f is one-to-one ensures that f (4, .-
different cell from the one into which
On the other hand, suppose there
some input Z, P; reads the same cell .
the PRAM to be unable to answer aft
P; and P; access different cells, we m
If this is done, then P; € R, will read
gain no additional information as a re
Let Ay be the set of all tuples (z;
f of some processor P; in some Wy (i
(zj,,---,Zj,) that are the replacemer
Rn (h<t+1). {Af, By} forms a tug
no processor in W; has the same set ¢
Furthermore, the pairs of variables tl
covered by this tuple system. Adding
of I;41) that no reader using f as ar
written into by any writer using a di
replacement variables than the reader
in the case of one function f € ¥.
After this has been done for all
t + 1 read index functions at time ¢ +

DI, AND WIGDERSON

f functions defined on increasing tuples
ay be functions of differing numbers of
;uch tl.zat, restricted to increasing tuples
qbles tt depends on. Furthermore I;wo
icted to increasing tuples over 5‘,,they

here

t+1 .
i HSi<ni< <ty

qperties mentioned in Lemma 7. For
mput, it means that processors .usin
t that step for that input. We woulg
‘ a1.; a particular timestep, processors
1\ 1np1}t. We can do this by reducin
1 restricted to increasing tuples ovef
1 f depends. Since f is 1-1 on those
- are unique valyes U1,0g,. .., such
0. II.I this case, we remove the values
restricted to S does not include zero
+1; Processors will either never write.
tep among the first ¢ + | steps.

ind _Ct+1 = (4, this defines a set of
ead index and write index functions
properties mentioned in the lemma
zs' or are identical means that when.
1S communicating only with’ those
it.subsequent steps. Thus we have
ition in the first ¢ + 1 steps, by re-

t follows, our goal is to deﬁr’le :

> systems to C,, ;; this only redutctz;

e §et ®: will represent the variables
will add to Q; sets of variables that
ccess functions of F;in 7. At the
of at most ¢ + 2 sets of variables.
thf} state of P; at time ¢ + 1 will,
union of those sets. We will then
or(.iered in Iy, thus ensuring our
Iction step.

deal with processors that use this

epre;'sents the index of a single cell
)st.t be the unique step at which
;x1;ts, let W = ¢ otherwise, let
 the set of processors that access
step t + 1.

+ 1, read zero from cell [at step
&, the v?.lue written into cell f at
cessors in W “have in common”:
.ew V¢ _1- Recall that processors

-

PARALLEL COMPLEXITY OF ELEMENT DISTINCTNESS 407

using f always write on all inputs in I;4; if the value depended on some variable not
in V, then there would be an input for which two processors in W attempt to write
different values into the cell indexed by f, a violation of the COMMON model.

Thus, the state of any processor P; € R; at time ¢ + 1 may be affected by
variables in V, for any input in I;4;. The variables in V are totally ordered in II;,
and |V| < 3*'~!. For each reading processor P; € R;, 1< 7 <n, we add V to Q;.

Case 2: f not constant. Let y1,y2,...,ye be the variables that f depends on
(considered as free variables, not members of X). We note that if f is used as a write
index function by some processor at time t', then £ < 3t'~1 Let R; = {P,-lrf.:;l = f},
and Wy = {P;jw! = f}, for t/ <t+1.

Consider P, € Wy and P; € Rp. To say that P; uses f as a write index function
at time t' means that wf is equal to f with y1,¥2,...,ye replaced by some variables
in V}_,. If the replacement variables for P, are exactly the same as the replacement
variables for P; using f as its hth read function, then P; at step t + 1 will read as its
hth cell the same cell that P, wrote into at time #. Let W/ be the set of processors in
Wy that have the same set of replacement variables for f as P;. Asin case 1, we may
set V=) PeeW! V/}_,, and note that the value written is a function of V. As before,

it is important that processors in WJ’- always write on all inputs in I;;. We also

have |V| < 3t'-1 We add V to Q, and, having dealt with what P; could learn using
function f, remove P; from Rp. If we do this for all such P;, P;, then no processor in
any W, will have exactly the same replacement variables as any processor in any Rp.

For the remaining processors, our goal is to ensure that no processor using [as
a read index function at step t + 1 accesses the same cell as any processor using f as
a write index function at step t + 1 or earlier. In order to ensure this, we add tuple
systems to Cyy1. Again, consider P; € Wy and Pj € Rp. Let 74, Ziys .- -1 T4y be the
replacement variables of F; for y1,y2,...,%e. and z;,,%j,,...,%; be the replacement
variables of P;. At most two variables are equal for any input in I;;;. If there are
positions 1 < a < b < £ such that i, # Ja and 7, # Jb, then for every input in I,
either z,, # x;, or z;, # ;. It follows that, for every input in Iy, the fact that
[is one-to-one ensures that f(zi,,...,T;,) # f(zj,-...z5), and so P; will read a
different cell from the one into which P; wrote.

On the other hand, suppose there is only one position a such that 1g # Ju. If, for
some input &, P; reads the same cell as P;, it “knows” that z,, = &;,. We would like
the PRAM to be unable to answer after ¢ + 1 steps, for inputs in I;+1. To ensure that
P; and P; access different cells, we must ensure that z;, # z;, for all inputs in J¢41.
If this is done, then P; € Ry, will read the value zero for all inputs in I;41, and it will
gain no additional information as a result of that read.

Let A be the set of all tuples (z;,,...,zi,) that are the replacement variables for
f of some processor P; in some Wy (t' <t + 1). Similarly, By is the set of all tuples
(z4y,...,25,) that are the replacement variables for f of some processor P; in some
Ru (h < t+1). {Ag, By} forms a tuple system, since our actions above ensured that
no processor in W/ has the same set of replacement variables as any processor in Rp.
Furthermore, the pairs of variables that we require to be distinct are precisely those
covered by this tuple system. Adding {Ay, By} to C;+y will ensure (by the definition
of I,) that no reader using f as a read index function at time ¢ + 1 will read a cell
written into by any writer using a different write index function or a different set of
replacement variables than the reader. This concludes the description of what is done
in the case of one function f € 7.

After this has been done for all f, C;;, has been defined. Each processor has
t + 1 read index functions at time ¢ + 1, and hence can contribute at most ¢ + 1 tuples

N

408 RAGDE, STEIGER, SZEMEREDI, AND WIGDERSON

to some set By as described above. Each processor also has at most ¢ + 1 write index
functions, at steps 1,2...,¢t+ 1, and so can contribute at most t+1 tuples to sets A
above.

It follows that 3~ 7 |By| < n(t + 1) and > jerlAs| n(t+1). Thus

size(Civ1) < size(Cy) + Z(IA,‘I + |Byl)
feF

SE+1)*n+2t+1)n < (t+ 2)%n as required.

At most one set V is added to Q; for each read index function that P; uses at
time t+1, so |Q;| < t+2. Furthermore, a set V € Q; added as a result of a read index
function that reads a cell written into at step #' is of size at most 3*'~1. Tt follows that
Q: contains at most one set of size 3t =1 for ¢/ < t + 1, and at most two sets of size
3! (one is V!, and the other may be added as a result of reading a cell written at step
t+1). Thus, if we set Vy = Upeq, V. then [Vi, | <2-30 4+ 3, _,, 3¢ ~1 < 3t+1
as required.

We must still ensure that Vzl+ 1 is ordered in II;4;. Each V € Q; is ordered in 11,
so each antichain in II; contains at most ¢ + 2 elements that appear in sets V € Q.
Let R be the set of pairs (zj, zx) such that z;, z; are in the same antichain of II, but
in different sets of some @;. By counting, we can show that |R| < n32*t1 If we refine
My 41 so that every pair (z;,zx) € R is comparable in Il,;, then vith = Uveg,V
will be totally ordered in I, , as required.

LEMMA 8. There exists I,y ; a refinement of II; such that all pairs in R are
comparable in 11,1, and further, I, satisfies the required conditions on ke, a:. .
{ Proof. Each pair in R consists of two variables in the same nontrivial antichain
of II;. At most k;/3'*? antichains contain more than 33t+3n/k, pairs in R, because
|R| < n3%*1. For each such antichain, choose an arbitrary total order for its elements,
! in effect converting the nontrivial antichain to s, trivial antichains. This increases Qi1
by at most kys:/3'+2 < n/3t+2,

No remaining nontrivial antichain contains more than 33:+3p, /k: pairs in R. From
each nontrivial antichain, take the s,/3!*2 elements that are in the most pairs in
R, choose an arbitrary total order for them, and make them all larger than every
element of the antichain. As a result, any element in any nontrivial antichain is in less
than 3%%6n/k,s, pairs of R. If this were not true for some antichain, then counting
occurrences of deleted elements in pairs would lead to a tota) of 33t+4n /k, occurrences,
a contradiction since each pair contains two elements. The deletions increase at+1 by
at most kys, /312 < n/3t+2,

The following theorem by Hajnal and Szemerédi [HS] is useful at this point.

THEOREM 9. Let R C X? be a set of pairs such that no element of X occurs in
A or more pairs in R. Then there is a number s such that X can be partitioned into
A classes of size s or s+ 1, such that no pair in R contains two elements in the same
class.

Then, by Theorem 9, we can partition each nontrivial antichain into 34+6p [k, s,
classes such that no pair in R contains two elements from the same class, and each
class is of size s or s + 1. We remove one element from each classes of size s + 1,
choose an arbitrary total order for the removed elements, and make each larger than
everything in their former antichain. Within each antichain, we choose an arbitrary
total order for the classes, thus converting each antichain into 34460 /k,s, smaller
nontrivial antichains, plus at most one new trivial antichain for each class. Thus

4t+6

ki1 < ke [

n . 2n
] < 3%+7k, since a; < —
t St 3

T J

PARALLEL COMPLEX
< 32(t +1)

We can thus define an approprit
a;+1 by one element for each new cl.

n
att1 Sat+2(§{+—2) ‘
n n 2
< 3 gt+2 +3

This concludes the description
continue this construction to index T

Let us choose e sufficiently sm:
that the following conditions hold:

(T +

Condition (10) ensures that a,
that the construction be possible t
that Theorem 4 is applicable to the
II7. To apply Theorem 4, we must
that no two are in the same nontriv
antichains) and we must know an v
theorem, any tuple system that cc
must be of size at least n(5 log(n/3)
least (1/12)nlog(n/3). But by conc
least one pair of variables in some a
ensuring a lower bound of T + 1 st
of Theorem 6. O

We conclude by mentioning sc
power of PRAM models with the s
define a bounded version of the el
{z;} are chosen from [m] for some
memory cells can solve this version
algorithm of Theorem 1. It is also
solve bounded element distinctness
exactly the same fashion as given h
theorem from [ER2] to prove a fini
for m larger than a very rapidly g
size of the set S mentioned in Lem
recurrence involving generalized Ra:
n sufficiently large, there exists m =
between the COMMON and ARBITR
true for the 2(logloglogn) separat

was only required to grow as fast a

..
=D1, AND WIGDERSON

Cessor also has at most ¢ + 1 write index
ntribute at most ¢ + 1 tuples to sets 4,

D rerlAg] <n(t + 1). Thus
+1Byl)

n < (t+2)%n as required.

fh read index function that P; uses at
' '€ in fidded as a result of a read index
is o ~1
s o size at most 3* ~1 It follows that
+ 1, and.at most two sets of size
.!{zsult of reacthng a cell written at step
el S2-80 437, 3001 < 3o

nll,;;. Fach vV e Q; is ordered in 11,
elemel'lts that appear in sets |/ € Q-7
Tj are in the same antichain of 11, bult
n show that |R| < n32+1 If we refine
rable in I1,, ;, then Vit = UVeQ v

nt of Iy such that all pairs in R are
the rrzquired conditions on ki1, aiq
bles in the same nontrivial ant’ich;ir;
g thz?n 33*+3n/k, pairs in R, because
L a.rb.ltrary total order for its elements
trivial antichains. This increases a; 1,

nore than 3%+3n /k, pairs in R. From
nents that are in the most pairs in
rlq make them all larger than every
t in any nontrivial antichain is in less
1e for some antichain, then counting
d to a total of 33+4n /k, occurrences

ents. The deletions increase Ot 41 by’

rédi [HS] is useful at this point

such that no element of X occu‘rs n
such that X can be partitioned into
2 contains two elements in the same

ontrivial antichain into 3446y /kys
ents from the same class, and eatcli
nt from each classes of size s+ 1
emer‘lts, and make each larger than’
- antichain, we choose an arbitrary
antichain into 3446y /k, s, smaller
antichain for each class, Thus

since a; < 23—”

e

A___ e e

PARALLEL COMPLEXITY OF ELEMENT DISTINCTNESS 409
2
< 32(t + D?+5(+1)+3 44 required.

We can thus define an appropriate IT; ;1. In the last step, we may have increased
a;4+1 by one element for each new class, and so in total,

n
as41 < ap +2 (-——3t+2) + ket
2
< g — # +32(t +1)2+5(t+1)+4 as required.

This concludes the description of the construction of objects of index ¢ + 1. We
continue this construction to index T = ¢y/Tog n, for € a suitably chosen small constant.
Let us choose ¢ sufficiently small (¢ = 1/4 will do), and n sufficiently large, so

that the following conditions hold:

n > 32T +6T+8 (10)
T< %%% (11)
r< SO (12)
(T+1)? < Ilimg(g). (13)

Condition (10) ensures that a; < 2n/3 for t < T, which is required in order
that the construction be possible up to index T. Conditions (11) and (12) ensure
that Theorem 4 is applicable to the tuple system Cr and the nontrivial antichains of
[Ir. To apply Theorem 4, we must know how many elements of X we can select so
that no two are in the same nontrivial antichain (this is kr, the number of nontrivial
antichains) and we must know an upper bound on tuple length (this is 3T). By the
theorem, any tuple system that covers all pairs in all nontrivial antichains of Ilz
must be of size at least n(4 log(n/3)— 3 log((n/3)1/3/log?(n/3)) —loglog(n/3)), or at
least (1/12)nlog(n/3). But by condition (13), size(Ct) < (1/12)nlog(n/3). Thus at
least one pair of variables in some antichain of Il remains uncovered by Cr, thereby
ensuring a lower bound of T + 1 steps as discussed above. This concludes the proof
of Theorem 6. O

We conclude by mentioning some implications of this proof for separating the
power of PRAM models with the same (finite) amount of shared memory. We can
define a bounded version of the element distinctness problem, where the variables
{z;} are chosen from [m] for some m € N. An ARBITRARY PRAM with m shared
memory cells can solve this version of element distinctness in O(1) steps, by using the
algorithm of Theorem 1. It is also possible to prove a bound of (}(y/logn) steps to
solve bounded element distinctness on a COMMON PRAM with m memory cells in
exactly the same fashion as given here, by using the finite version of the Erdds-Rado
theorem from [ER2] to prove a finite version of Lemma 7. However, this only works
for m larger than a very rapidly growing function of n, since a lower bound on the
size of the set S mentioned in Lemma 7 is required, and this bound is expressed by a
recurrence involving generalized Ramsey numbers. We can conclude, however, that for
n sufficiently large, there exists m = m(n) such that there is an 1(v/log n) separation
between the COMMON and ARBITRARY PRAMs with m memory cells. This also held
true for the ((logloglogn) separation given in [FMW], except that in that proof m

o1

was only required to grow as fast as 22"

gy

A s 2

410 RAGDE, STEIGER, SZEMEREDI, AND WIGDERSON

REFERENCES

[B] C. BERGE. Graphs and Hypergraphs. North-Holland, Amsterdam, 1973.
[CDR] 8. CoOK, C. DWORK, AND R. REISCHUK. Upper and lower bounds for parallel random
access machines without simultaneous writes, SIAM J. Comput., 15 (1986), pp. 87-97.
(ER] P. ERDOS AND R. RADO. A combinatorial theorem, J. London Math. Soc., 25 (1950),
pp. 376-382.
[ER2] , Combinatorial theorems on classifications of subsets of a given set, Proc. London
Math. Soc., 3 (1952), pp. 417-439.
[FK] M.L. FREDMAN AND J. KOMLOS. On the size of separating systems and families of perfect
hash functions, SIAM. J. Algebraic Discrete Methods, 5 (1984), pp. 61-68.
(FMW] F.E. FICH, F. MEYER AUF DER HEIDE, AND A. WIGDERSON. Lower bounds for parallel
random access machines with unbounded shared memory, Adv. in Comput., 4 (1987), pp. 1-15.
[FRW] F.E.FICH, P. RAGDE, AND A. WIGDERSON. Simulations Among Concurrent-Write PRAMs,
Algorithmica, 3 (1988), pp. 43-51.
[H] G. HANSEL. Nombre minimal de contacts de fermeture nécessaires Dbour réaliser une fonction
booléenne symmeétrique de n variables, Comptes Rendus Acad. Sci. Paris, 258 (1964), pp. 6037-
6040.
[HS] A. HAINAL AND E. SZEMEREDI. Proofofa conjecture of P. Erd8s, Combin. Theory Appl.,
2 (1970), pp. 601-623.
[K] L. KUCERA. Parallel computation and conflicts in memory access, Inform. Process. Lett., 14
(1982), pp. 93-96.
[MW] F. MEYER AUF DER HEIDE AND A. WIGDERSON. The complexity of parallel sorting,
Proc. 26th Annual IEEE Symposium on Foundations of Computer Science, pp. 532-540.
[P] N. PIPPENGER. An information-theoretic method in combinatorial theory, J. Combin. The-
ory, ser. A, 23 (1977), pp. 99-104.

s

St e

A

THE SOCIETY FOR INDU

W N =

Join SIA
10 bene

A free subscription to
of the applied mathe

A free subscription to
devoted to expositort

Discounts on other S

SIAM. Members may

special discounts.
¢ SIAM Journal or
¢ SIAM Journal or
¢ SIAM Journal or
¢ SIAM Journal or
¢ SIAM Journal or
* SIAM Journal or
¢ SIAM Journal or
® SIAM Journal or
® Theory of Probal

Discounts on SIAM b
Regional Conference
Eligibility to join SIAN
Theory, Optimization
and Linear Algebra.

Discounts on registrat
meetings.

Eligibility to participat

Opportunities to estal
tacts in all areas of ap
applied mathematics.

Access to the most cu
and users of applied 1

Active participation in
matics.

For furth
SIAM, Suite]
Philadel

(

