
Undirected Connectivity in O(log1.5 n) Space∗

Noam Nisan Endre Szemeredi Avi Wigderson
CS Department Department of Mathematics CS Department

Hebrew University Rutgers University Hebrew University
Jerusalem, Israel New Brunswick, N.J Jerusalem, Israel

and
Princeton University

Princeton, N.J.

Abstract

We present a deterministic algorithm for the con-
nectivity problem on undirected graphs that runs in
O(log1.5 n) space. Thus, the recursive doubling tech-
nique of Savich which requires Θ(log2 n) space is not
optimal for this problem.

1 Introduction

The st-connectivity problem is one of the most ba-
sic graph problems, and has received much attention.
Given a directed graph G and two vertices in it s and
t, the problem is to determine whether there exists a
directed path from s to t in G. Several linear time al-
gorithms are known for this problem; they all require
linear space. The best space complexity known for
this problem is O(log2 n), which is achieved by Sav-
itch’s algorithm [Sav70]. It is a long standing open
problem to find a smaller space algorithm for connec-
tivity. As connectivity is complete for the complexity
class NL, such an algorithm would imply improved
deterministic simulation of nondeterministic space. It
has thus been conjectured that such algorithms can-
not be found and that Savitch’s algorithm is indeed
optimal.

A special case of the connectivity problem which
is of special interest is “undirected connectivity”,
i.e. the case where G is undirected. For this
case a randomized Logspace algorithm was given in
[AKL*79] (with a zero-error version in [BCD*89]). No
deterministic algorithm that improved upon Savitch’s
space requirement was known, although improved
time-space tradeoffs were given in [BR91, Nis91]. It
∗The first and last authors were partially supported by the

Wolfson Research Awards

has also been a long standing open problem to improve
upon Savitch’s algorithm even for undirected graphs.

In this paper we present such an algorithm. Our al-
gorithm solves the connectivity problem on undirected
graphs and uses only O(log1.5 n) space. The algorithm
uses the universal sequences obtained from the pseu-
dorandom generators of [Nis90], as well as pair-wise
independent sampling. It is also possible to give a
variant of our algorithm that does not rely on any
pseudorandom generators and still beats Savitch’s al-
gorithm by requiring only O(log2 n/ log log n) space.

An immediate application is a EREW parallel
algorithm for undirected connectivity that runs in
O(log1.5 n) time and uses a polynomial number of pro-
cessors. The same time bound was achieved in [JM91]
in the weaker CREW model using only a linear num-
ber of processors. Recently, [KNP92] show how a vari-
ant of our algorithm can be implemented on an EREW
PRAM using a linear number of processors.

2 The Algorithm

2.1 Top Level

The input to our algorithm is an undirected graph
G over N vertices. It outputs whether or not vertex 1
is connected to vertex 2 in the graph.

The main procedure we will use is procedure
shrink. This procedure accepts as input a graph G
over n vertices and a parameter n′. Its output can take
two forms. It may either output an answer whether
vertex 1 is connected to vertex 2 in G or else it may
output a graph G′ over n′ vertices with the property
that vertex 1 is connected to vertex 2 in G′ if and only
if vertex 1 is connected to vertex 2 in G. Procedure
shrink requires O(log n+ (log(n/n′))2) space.

Let us now see how we solve the connectivity prob-
lem on a graph G with N vertices using procedure
shrink. We can view procedure shrink as answering
queries of the form (u, v) ∈ E(G′)?, where its in-
put is given by queries of the form (u, v) ∈ E(G)?.
We will thus use procedure shrink recursively. For
i = 0...

√
logN define ni = 2i

√
logN . The i’th recur-

sion level of procedure shrink will work on a graph
Gi over ni vertices, and its output will be the graph
Gi−1 over ni−1 vertices. It will answer queries of the
(i − 1)’st recursion level regarding Gi−1 by running
procedure shrink on the graph Gi (using queries which
are, in turn, answered by the i + 1’st recursion level
etc.). The base of the recursion is the

√
logN ’th level

where we have the original graph G.
Notice that (1) G0 is trivial so the first recursion

level tells us whether vertex 1 is connected to ver-
tex 2; (2) The recursion depth is only

√
logN ; (3)

Each recursion level requires O(logN) space (since
log(ni/ni−1) =

√
logN).

2.2 Procedure Shrink: Overview

Procedure shrink accepts a graph G over n vertices,
and must output a graph G′ which is smaller than G
by a factor of f = n/n′ and still captures the connec-
tivity of G. The Outline of the algorithm is as follows:

1. For each vertex v we find a set N(v) of vertices
that are connected to v in G. This set is of size
polynomial in f . (Unless v’s connected compo-
nent is smaller than that – these cases are imme-
diately discarded).

2. A subset R of the vertices of G is chosen. R is of
size n′ = n/f and it satisfies the condition that
for every vertex v it intersects N(v). R will be
the vertex set of G′.

3. For each vertex v we choose a representative ver-
tex rep(v) ∈ R ∩N(v). The edges of G′ are now
all the edges of the form (rep(u), rep(v)) where
(u, v) is an edge of G.

The first stage is implemented by walking in G,
starting form v, along a universal sequence for graphs
of size poly(f). We use the universal sequences
of Nisan [Nis90] which can be generated in space
O(log2 f).

The second stage is implemented by using pair-wise
independence, where each vertex decides at random to
be in R with probability O(1/f). This takes care of
intersecting almost all N(v)’s, and we have to add

only a small number of extra vertices from the unsat-
isfied N(v)’s. Again by trying all possibilities from the
pair-wise independent space this stage is done deter-
ministically.

Remark: as is usual when working in sub-linear
space we cannot store any of the intermediate results
(such as N(v) or R) in our limited working storage.
One should thus view this outline as describing proce-
dures, each one implemented using calls to the previ-
ous one.

2.3 Details of Procedure Shrink

2.3.1 Computing N(v)

N(v) is computed by walking along a universal se-
quence. We will use universal sequences for 3-regular
graphs as defined in [AKL*79].

Definition 1 A 3-regular graph G is called labeled if
the three edges adjacent to each vertex are numbered
by some permutation of 1, 2, 3. For a vertex v in G
and a string σ ∈ {1, 2, 3}∗, a walk on G starting from
v and following the directions of σ is naturally defined.

We say that σ is an m-universal traversal sequence
if for every connected 3-regular m-vertex graph G, ev-
ery labeling of it and every vertex v, the walk on G
starting from v following σ visits all vertices of G.

In [AKL*79] it is shown that polynomial length uni-
versal sequences exist. The best explicit construction
known is due to [Nis90]:

Theorem 1 For every m there exists an m-universal
sequence σ of length mO(logm). Each entry σi of these
sequences can be computed in O(log2m) space.

Let σ ∈ {1, 2, 3}∗. We wish to walk on a non-
regular graph G according to σ. To do this we imagine
each vertex of degree d > 3 as composed of d pseudo-
vertices connected to each other by a cycle. Each of
these pseudo-vertices has degree 3: two edges being
part of the cycle, and one edge going outward, being
one of the edges of the original vertex. We can now
naturally use σ to perform a walk on the 3-regular
graph composed of these pseudo-vertices.

Remark: One can easily extend the definition and
constructions of universal sequences to non-regular
graphs. If this is done then this slight complication
of “converting” a non-regular graph to a 3-regular one
can be eliminated.

Fix m = 64f4, and let σ ∈ {1, 2, 3}∗ be an m-
universal sequence. For every vertex v we will walk on
G, starting from v, according to σ. Define N(v) to be

the set of vertices encountered in this walk, as well as
their immediate neighbours.

For the computation of each step of the walk we
need only remember the current pseudo-vertex and
generate one entry from the sequence. Thus each step
and hence enumerating N(v) can be done in space
O(log n+ log2 f).

It is clear that N(v) is a subset of the connected
component of v. We will show that N(v) is also rather
large, unless it equals to the whole connected compon-
net of v (denoted Comp(v)).

Lemma 1 If σ is an m-universal sequence, then ei-
ther N(v) = Comp(v) or |N(v)| ≥

√
m.

Using our choice of m we get that for every vertex
v, |N(v)| ≥ 36f2.

2.3.2 Representatives

We first choose a subset L of the vertices to be possi-
ble representatives. L will be chosen from a pairwise
independent distribution, as to satisfy a certain condi-
tion given below. Vertices 1 and 2 will then be added
to it. L will be represented succintly using O(log n)
bits by its index in the probability space. Once L is
chosen we define repL(v) for every vertex v as follows:

1. If N(v) = Comp(v) then repL(v) = 0. (No rep-
resentative needed if component is too small.)

2. Else, if N(v) ∩ L = ∅ then repL(v) = v.

3. Else (the “usual” case), repL(v) is the smallest
labeled vertex in N(v) ∩ L.

The final set of representatives will be RL =
{repL(v)} where v ranges over all vertices of G. I.e.
RL will contain some vertices from L as well as those
vertices v that have no L-member in N(v) even though
N(v) 6= Comp(v).

The condition that L must satisfy is that |RL| ≤
n′ = n/f . The fact that such a set can be found in a
pairwise independent distribution space is ensured by
the following lemma.

Lemma 2 If L is chosen at random such that every
vertex is in L with probability 1/(6f) and the choices
are pair-wise independent, then Pr[|RL| ≤ n′] > 0.

Let us briefly discuss the algorithmic aspects. Let
us first see that repL(v) can be computed form v and L
in space O(log n+log2 f). Cases 2 and 3 are easy as we
need only enumerate the vertices of N(v). Checking
whether N(v) = Comp(v) is done by going over all

vertices u ∈ N(v); for each u we check that for all its
neighbours w it is also true that w ∈ N(v).

Choosing L is done as follows. We use a space
of polynomial (in n) size satisfying the conditions of
the lemma, and such that computing for a vertex v
whether v ∈ L is easy given the O(log n) bits which
are the index of L in the space. (Such spaces are well
known, e.g., take a field Fq of size poly(n); each L
is defined by two elements a, b ∈ Fq; and v ∈ La,b if
av+b ∈ {1...q/(6f)}.) We go over all possibilities of L
in the space (in a fixed order). For each we construct
RL, and check whether its size is small enough. If so
we stick with this (first encountered) L.

2.3.3 The Algorithm

1. If N(1) = Comp(1) or N(2) = Comp(2) Then

(a) If 2 ∈ N(1) Then Output(“Connected”) and
Halt.

(b) Else Output(“Not Connected”) and Halt.

2. Choose L as described in the previous subsection.

3. If repL(2) = 1 Then Output(“Connected”) and
Halt.

4. The vertex set of G′ is RL.

5. An edge (u, v) is an edge of G′ if there exists an
edge (u′, v′) of G such that repL(u′) = u and
repL(v′) = v.

Remark: Formally one should rename the vertices of
RL to have the names 1...n′. This is easily done by
renaming v to be its rank in RL.

It is clear that in those cases that this algorithm ac-
tually gives an answer it is correct. Correctness when
a graph G′ is produced is ensured by:

Lemma 3 If the previous algorithm outputs a graph
G′ then Vertex 1 is connected to vertex 2 in G if and
only if vertex 1 is connected to vertex 2 in G′.

3 Proofs of correctness

3.1 Proof of lemma 1

Assume that N(v) does not satisfy the lemma. Let
N ′(v) be the subset of vertices actually visited by the
walk. (N(v), by definition, includes also the neigh-
bours of vertices in N ′(v)).

As N(v) is contained in Comp(v), but is not equal
to all of it, there must be a vertex u ∈ Comp(v)−N(v)

which is adjacent to a vertex w ∈ N(v). It is clear
that w 6∈ N ′(v). Now consider the induced graph
on N(v), and consider the graph of pseudo-vertices
composing the vertices of this graph. This is a con-
nected 3-regular graph. Its size is at most m since
|N(v)| ≤

√
m and each vertex is composed of at most√

m pseudo-vertices. However, a walk from v accord-
ing to σ on this graph will behave exactly as the walk
from v performed in G, and thus will not visit w. This
contradicts σ being a universal sequence for 3-regular
m-vertex graphs.

3.2 Proof of lemma 2

RL is composed of two types of vertices: those in L
and those vertices v such that satisfy both N(v)∩L =
∅ and |N(v)| ≥ 36f2. Call the second set of vertices
B. We will show that (w.h.p.) these two subsets are
small.
Claim 1: With probability of at least 2/3, |L| ≤ n′/2.
Claim 2: With probability of at lest 2/3, |B| ≤ n′/2.

It follows that with probability of at least 1/3 the
size of both sets combined is at most n′.
Proof of Claim 1: The expected size of L is
n/(6f) = n′/6. Using the Markov inequality, the
probability that |L| is at least 3 times its expected
value is at most 1/3.
Proof of Claim 2: Fix a vertex v such that |N(v)| ≥
36f2. We assume w.l.o.g. that actually |N(v)| =
36f2. We will first show that

PrL[v ∈ B] = PrL[N(v) ∩ L = ∅] ≤ 1/(6f)

For each vertex u ∈ N(v) we define a random variable
Xu which is 1 if u ∈ L and 0 otherwise. The variables
Xu are pairwise independent. We also define a random
variable X =

∑
u∈N(v)Xu. We have that v ∈ B iff

X = 0. We bound the probability that X = 0 using
the Chebyshev inequality. The expected value of X is
E(X) = |N(v)|/(6f) = 6f . The variance of X may be
computed as if the Xu’s were truly independent, and
is V ar(X) = |N(v)| ·1/(6f) · (1−1/(6f)) ≤ 6f . Using
the Chebyshev inequality,

Pr[X = 0] ≤ Pr[|X − E(X)| ≥ 6f] ≤

≤ (6f)−2V ar(X) ≤ 1/(6f)

It follows that the expected size of B is at most
n/(6f) = n′/6. Finally, using the Markov inequal-
ity, the probability that |B| is more than 3 times its
expected value is at most 1/3.

3.3 Proof of lemma 3

First note that rep(1) = 1 and rep(2) = 2 since we
always put vertices 1 and 2 in L and we always take the
smallest numbered vertex in N(v)∩L as rep(v). (The
algorithm has specifically ruled out the possibilities
that rep(1) = 0 or rep(2) = 0 or rep(2) = 1.)

Assume that vertex 1 is connected to vertex 2 in G′.
Notice that if u is a neighbour of v in G′ then there
is a path from u to v in G. The reason is that there
exists an edge (u′, v′) in G such that rep(u′) = u and
rep(v′) = v. Since, inG, u′ is connected to u = rep(u′)
and v′ is connected to v = rep(v′), we get that u is
connected to v in G. It follows that if vertex 1 is
connected to vertex 2 in G′ they are also connected in
G.

Conversely, assume that 1 is connected to 2 in G
say thru the path v1, v2, ..., vk. In this case we claim
that 1 will be connected to 2 in G′ thru the path
rep(v1), rep(v2), ..., rep(vk). Indeed, notice that if v
and u are neighbours in G then either rep(u) = rep(v),
or else rep(u) is a neighbour of rep(v) in G′.

4 Variants and Remarks

Small modifications of this algorithm, as well as
using some of its ideas can give several other results.
In particulr the following remarks should be made.

• It is possible to obatin an O(log2 n/ log log n) al-
gorithm for connectivity without using any pseu-
dorandom generators. This gives an elementary
algorithm beating Savitch’s bound. By taking,
starting from a vertex v, all possible walks spec-
ified by O(log n) bits, one can ensure seeing at
least log n/ log log n vertices. This is so since it is
sufficient to keep track of which outgoing edge was
taken from each encountered vertex in the DFS,
and untill a vertex of degree higher than logn
is encountered (in which case we can stop), only
log log n bits are needed per vertex. Doing this
enables one to get sets N(v) of size log n/ log log n
(instead of size 2

√
logn using universal sequences).

Procedure shrink can then be used to shrink the
graph by a factor of (logn)Θ(1), getting a recur-
sion depth of only log n/ log log n.

• It has been suggested by [KNP92] and by [ST92]
that the usage of pair-wise independence can be
eliminated. The following mechanism can be used
to choose the set of representatives R instead: a
vertex v is in R if N(v) does not intersect N(w)

for all vertices w of lower rank (in a fixed or-
dering). As the chosen v’s have pairwise disjoint
N(v)’s, we have |R| ≤ n/f as long as |N(v)| ≥ f
for every vertex v. Choosing a representative
rep(v) for every vertex v is now slightly more com-
plicated as is is not always true that R intersects
N(v). However, the following simple loop easily
finds a representative rep(v) ∈ R:

1. u← v

2. while u 6∈ R do

– u ← min(w) such that N(u) ∩N(w) 6=
∅.

3. rep(v)← u

• For various specific families of graphs one can get
an O(log n) space algorithm. For example, let
t(n) be the largest size of a graph for which we
can test connectivity in O(log n) space (we have
t(n) ≥ exp((logn)2/3)). It is possible to test con-
nectivity on graphs of minimum degree n/t(n) in
Logspace. Simply we let N(v) be the neighbour
set of v, and one application of procedure shrink
can reduce the graph size to t(n).

• One can find neighbour sets N(v) of size nε quite
easily using BFS or DFS. This allows procedure
shrink to shrink the graph by a factor of nε and
achieve only a constant recursion depth. This
yields a polynomial-time O(nε)-space algorithm
for connectivity. In fact this algorithm resembles
that of [BR91].

• It is well known (see e.g. [KR90]) that
LOGSPACE can be simulated by an EREW
PRAM running in logarithmic time and polyno-
mial number of processors. Thus it is not difficult
to convert our algorithm to a parallel one that
requires O(log3/2 n) time on an EREW PRAM,
and uses a polynomial number of processors. This
matches the time bound of the recent algorithm
of [JM91], which works on the stronger CREW
PRAM. We note, however, that they need only
a linear number of processors, while in our algo-
rithm the polynomial is quite hugh. In [KNP92]
a linear-procesor variant of our EREW algorithm
is obtained.

• All the algorithms above can be easily converted
so as to produce the connected components of the
input graph, as well as a path between every con-
nected pair of vertices.

• Any improved construction of universal sequences
may be plugged into our algorithm to obatin an
improved algorithm for connectivity. In fact our
algorithm may be seen to convert a wide variaty
of algorithms for connectivity (e.g. some JAG
algorithms [CR80]) to faster ones. This is done
by using such an algorithm to find the sets N(v).

References

[AKL*79] R. Aleliunas, R.M. Karp, R.J. Lipton,
L. Lovasz, and C. Rackoff. Random walks,
universal sequences and the complexity of
maze problems. In 20th Annual Symposium
on Foundations of Computer Science, San
Juan, Puerto Rico, 1979.

[BR91] G. Barnes, and W.L. Ruzzo. Determinis-
tic algorithms for undirected s − t connec-
tivity using polynomial time and sublinear
space. In Proceedings of the 23st Annual
ACM Symposium on Theory of Computing,
1991.

[BCD*89] A. Borodin, S.A. Cook, P.W. Dymond,
W.L. Ruzzo, and M. Tompa. Two appli-
cations of inductive counting for comple-
mentation problems. SIAM J. Comput.,
18(3):559–578, 1989.

[BNS90] L. Babai, N. Nisan, and M. Szegedy. Mul-
tiparty Protocols and Logspace-hard pseu-
dorandom sequences. In Proceedings of the
22nd Annual ACM Symposium on Theory
of Computing, 1990.

[CR80] S. Cook and C. Rackoff. Space Lower
Bounds for Maze Threadability on Re-
stricted Machines. In SIAM J. Comput.,
9(3): 636–652, 1980.

[JM91] D.B. Johnson, and P. Metaxas. Connected
Components in O(log3/2 |V |) parallel time
for the CREW PRAM. Proceedings of the
32nd Annual Symposium on Foundations of
Computer Science, San Juan, Puerto Rico,
1991.

[KNP92] D. Karger, N. Nisan, and M. Parnas. Fast
Connected Components Algorithms for the
EREW PRAM. To appear in SPAA, 1992.

[KR90] R. M. Karp and V. Ramachandran. Parallel
Algorithms for Shared-Memory Machines.

In Handbook of Theoretical Computer Sci-
ence, Vol A, J. van Leeuwen Ed., 869–932,
1990.

[Nis90] N. Nisan. Pseudorandom generators for
space-bounded computation. In Proceed-
ings of the 22st Annual ACM Symposium
on Theory of Computing, 1990.

[Nis91] N. Nisan. RL ⊆ SC. Proceedings of the
24th Annual ACM Symposium on Theory
of Computing, 1992.

[ST92] R. K. Sinha and M. Tompa. Private com-
munication.

[Sav70] W.J. Savitch. Relationships between non-
deterministic and deterministic space com-
plexities. J. Comp. and Syst. Sci., 4(2):177-
192, 1970.

