THE COMPLEXITY OF PARALLEL SORTING
Friedhelm Meyer auf der Heide

Avi Wigderson

IBM Research Laboratory, San Jose!

Abstract :

We consider PRAM’s with arbitrary computa-
tional power for individual processors, infinitely
large shared memory and "priority" write-
conflict resolution.

The main result is that sorting n integers with

N processors requires Q(Vlogn) steps in this
strong model.

We also show that computing any symmetric
polynomial (e.g. the sum or product) of n inte-
gers requires exactly logyn steps, for any finite
number of processors.

I Introduction

In the last few years we have witnessed a multi-
tude of upper bounds for parallel sorting on
various models. These results culminated in the
remarkable O(nlogn) sorting network of Ajtai,
Komlos and Szemeredi [4KS), and its beautiful
adaptation to bounded degree n-node networks
by Leighton [L).

Surprisingly, there are essentizlly no lower
bound results for sorting. The reason seems to
be that for many parallel models such bounds
follow either from simple considerations or from
parallel lower bounds on simpler functions. Here
are a few examples. :

1. Comparison trees and algebraic computa-
tion trees. The Q(nlogn) sequential lower
bound for sorting (Paul and Simon [PS])
implies an Q(logn) lower bound on the par-

alle] versions of these trees with n proces-
SOTS.

2. Bounded degree n-node networks. An
Q(logn) lower bound follows from diameter
considerations.

3. Polynomial size, unbounded fan-in circuits.

The Q(vlogn) on depth for computing the
parity function, due tc Ajtai from [A4], yields
a similar bound for sorting.

4. Exclusive-write PRAM. The Q(logn) lower
bound for computing the Or function, due
to Cook, Dwork and Reischuk from [CDR]
implies a similar bound for sorting.

In all the parallel models mentioned above, there
is a restriction on either the computational pow-
er of the individual processors, or on the nature
of communication between them. Here we pose
no such restrictions - we consider a concurrent-
write PRAM, in which n processors of arbitrary
computational power communicate via an infi-
nite shared memory. Moreover, we use the
strongest convention of resolving write conflicts
-the processor with the largest index succeeds.

The only non-trivial lower bound on this model
appears in [FMRW]. Tt is a (tight) Q(loglogn)
bound on finding the maximum of n integers.
As is almost traditional with lower bounds for
models in which the computation and communi-
cation behavior depend on the input in a compli-
cated way, Ramsey theory is used to "clear the
smoke" and find some structure. Such an argu-

ment showed that, for finding the maximum, a

! The first author is now at Johann Wolfgang Goethe Universitat, Fb Informatik, 6000 Frankfurt a.M., West-Germany.
The second author is now at the Mathematical Sciences Research Institute, 1000 Centenial Dr., Berkeley, CA 94720.

0272-5428/85/0000/0532$01.00 © 1985 IEEE

532

parallel comparison tree is essentially (i.e. for a
large input set) as good as a PRAM. Then Val-
iant’s Q(loglogn) lower bound from [}] on such
trees is applied.

The problem with the Ramsey theoretic argu-
ment in [FAMRW¥]is that input variables are fixed
to constants at a doubly exponential rate as the
computation proceeds, and hence it can never
yield a lower bound bigger than Q(loglogn).

We prove an Q(\/@) on sorting n integers. We
use a new Ramsey theoretic argument in which
variables are not fixed, but instead some infor-
mation about their ordering is given to the algo-
rithm as the computation proceeds. With this
argument we show that essentially zlla processor
can do in a step is to merge two ordered sets
(chains) of variables. It is natural now to define
a parailel (m,n)-merge tree, in which at every
node n pairs of chains of size m each are merged.
(Note that for m = 1 this tree is simply Valiant’s
parallel comparison tree.)

We prove a general lower bound, parameterized
by m, for such trees. Then we combine it with
the dependency of m on the time of the PRAM

computation to obtain our Q(Vlogn) lower
bound. We believe that our lower bound on

merge trees, and hence the lower bound on
PRAM’s can be improved to Q(logn).

As mentioned, our Ramsey theoretic argument
gives information about the ordering of input
variables to the algorithm. For sorting, we had
to take care to give as little information of this
type as possible. For symmetric functions, how-
ever, applying this argument becomes much sim-
pler, since we can assume that the input variables
are sorted to begin with. Using this idea, com-
bined with known techniques to making the
"degree” of the computation finite (albeit the
infinite address space), we get a simple proof of
the following result. The computation of any
symmetric polynomial of # integers (e.g. the sum
or the product) requires exactly logan steps.

533

This result was independently obtained (at least
for addition) by Israeli and Moran in [JM]. It
unifies and generalizes similar bounds on models
that restrict either the computational power of
processors (Meyer auf der Heide and Reischuk
[MR]) or the interprocessor communication
(Parberry [P]).

II. Formal Definitions and Statements of Results

The two important models in this paper are the
PRAM and the parallel merge tree. We start with
the (standard) definition of the PRAM.

A (PRIORITY) PRAM M consists of n proces-
sors {(RAM’'s) Py,P,,...P,, and infinitely many
shared memory cells (which we abbreviate
‘cells’), indexed by the integers N. We say that
M computes a function f:N" - N7 in T steps, if
initially P, has the value g, of the ith input vari-
able in its local memory, all cells are initialized
to '0’, and after T steps the first m cells contain
the m values of f(ay,aa,...,a,)-

Every step of the computation consists of two
phases, synchronously performed by all proces-
sors. In the write phase, each processor writes
some value into some cell. In the read phase,
each processor reads some cell to its local memo-
ry. (These addresses and this write value depend
on the processor’'s local memory, but we place
no restriction on the complexity of computing
them.) If a cell is written into by several proces-
sors at one step, its contents will be the value
written by the highest index processor among
them.

For the definition of the merge tree, we need
some notation for partial orders.

Let Vbe a set of elements {x; x2,....x,}. A directed
acyclic graph Q = (V,E) defines a partial order
<p in the natural way. é = (V,E) is the
transitive closure of Q. A set U< ¥is a chain (or
a total order) in Q if the elements of U belong

to a directed path in Q. A set U is an aniichain
in 0 if Uis an independent set in Q.

Let U, U, € Vand Q) = (U1,.E1), 02 = (U,,EL) be
partial orders. Q; and Q, are consisient if there
is no pair ab eV such that (a,b) € E; and
(ba) € E,. A family of partial orders on subsets
of ¥V, 0,,0a,....0 18 consistent ii every pair is

consistent. The unicn of two consistent orders
0, and Qyis Q1 U 0 = (V.Ey U E,). Similarly we
k

define LJxQ"

We say that _Q' = (V,E') is an extension of
O = (V,E) iff EcE' If Q'is a total order, we
say that it is a linear extension of Q.

Let C;,C; € V be two chains in Q = (V,E). A
merge of C; and C, in @ is any total order
0 = (CUG, E"), consistent with Q.

Now we are ready to define the model. An
(m.n) —merge tree (for sorting) is a rooted tree
with labels on the nodes and on the edges. The
label of an internal node v is a partial order ¢
on V, together with n pairs of chains in Q,
(C1,Ca), i = 1.2,...,n, satislying | Cyl <mforall
i=172,.,n j=12. Every branch e out of vis
labeled with a different consistent family of
merges C; of Cy and Cp, i=12,.,n If uis the
child of v connected by e, then the partial order

inuyis QU U1 C,. The root is labeled with tue

empty partial order on V.

The cost of an (m,n)-merge tree H, denoted c(H)
is the length of a longest root-leaf path in H.
H sorts n numbers, if each leaf is labeled with
a total order. The cost of sorting on (m,n)-merge
trees is c(m,n), the minimum cost c(#) of an
{m,n)-merge tree H which sorts n numbers.

The main result of this paper is the following.

Main Theorem : Any PRAM needs Q(v'log n) steps
to sort n integers.

534

The main theorem follows directly from the
theorems 1 and 2 below.

Theorem 1 : Let M be a PRAM sorting n integers

in T steps. Then there is a (2T,n)-merge tree
which sorts n numbers in T steps.

1
Theorem 2 : c(m,n) = Q(—————Ogn .
log(mlogn)

As a corollary to the proof method of theorem
1 wec get a general tight bound for a family of
symmetric functions. For SeN et
Si= {{ay,...a,) € S"V a # a; for i #j}. A func-
tion f:N" = N is strongly non-constans, if for each
infinite S © N, frestricted to S+ is non-constant,

Theorem 3 : A PRAM needs exactly logyn steps
to compute a symmetric, strongly non-constant
function.

Example : Every non-constant, symmetric poly-
nomial on n variables (e.g. the sum or the prod-
uct) is a symmetric, strongly non-constant func-
tion.

III. Simulating PRAM’s by Merge Trees

Theorem 1 : Let M be a PRAM sorting n integers

in T steps. Then there is a (2T,n)—merge tree
which sorts n elements in T steps.

We simulate M by a computation tree. We want
to maintain at each node v of this tree in depth
t the following property :

Let I be the set of inputs arriving at v. Then,
for inputs from 1, each processor P, only knows
variables with indices from some set X; ¢ [n] at
time t. ([n] = {1,2,...,n})

The exact meaning of this is that for inputs from
I, the configuration of P; after t steps (considered
as a function in 1) only depends on the variables

with indices from X,. In the sequel we shall refer
to them as the variables from X, for short.

Clearly, because of its arbitrary computational
power, P, can now sort the variables it knows
in one step and can proceed dependent on their
order. We shall see that this is essentially the
only property of the input which can ‘nfluence
the behavior of P, if we restrict the input set
suitably. Namely, if the orderings of the sets of
variables the processors know are fixed, the next
"communication pattern’ is fixed, too, in the
following sense.

Fer each ie[n], P, reads the value that was written
by some fixed processor P, at sorae fixed timz
5.

Thus it is fixed which new variables P, gets to
know in this step, namely just those which P,
knew before. As they also were already sorted
before, the behavior of P, in the next step only
depends on the outcome of the merging of the

two ordered sets of variables it now knows. Thus
M behaves like a merge tree.

In the sequel we only consider inputs which
consist of distinct numbers. Recall that for a set
S <N Si={(a,...a)eS" | a; # a; for i # j}. For
ie[n] let X; c [n] and =, be a total order on X.

Let X = (X[,..X,), 7 = Ul 7. We always assume

that the #;’s are consistent. Then, following the
above intuition, the set of inputs arriving at a
node of the merge tree should be of the form
I(X,7,8) = {(ay,...a,)eS% | a, < g, for all pg such
that p <, 4}.

The following lemma is the heart of the proof
of the theorem.

Main Lemma I : Suppose that at time t, for inputs
from I = I(X,#,S), P; only knows variables from
X;. Then there are j,...je[rn] and an infinite
S’ .8, such that after step t, for inputs from

I' = I(X,7.5"), P; only knows variables from
XUX,.

Before we prove this lemma we first conclude
theorem 1 from it. For this purpose we define
inductively a (2t,n)—merge tree H of depth t. We
shall show that finally, when H has depth T, it
sorts n numbers. For the inductive construction
to work, we keep extra information at the nodss,

The set of inputs at the root is Ni=
I}, 0D, (@,...0),N), where @ denotes the
trivial order on one element. At this time P, only
knows x,. So the assumption in the lemma holds
for t=0.

Now let te[7] and assume that we have con-

structed a (2t,n)-merge tree of depth t for inputs
from §%, such that the set of inputs arriving at
a node v in depth t is of the form I = I(X,=,5),
and for inputs from I, P, only knows variables
from X, at time t. Furthermore we maintain that
although X and = depend on v, § is the same
set for all nodes in depth t.

For each node v in depth t successively perform
the construction below.

Let [= I(X,n,5) be the set of inputs arriving at
v,and S', j,...j, be as in the main lemma I. Now
we define a son v’ of v for each consistent tuple
of mergings 7 = U1 w; of the sets in
X = (X'1,...X",) with X', = X, UX,. Then the set
of inputs arriving at v' is I'=W'+.5). As
I' € I(X,%,5"), we know by main lemma I that,
for inputs from I’, P, only knows variables from
X', at time t+1. Now for the already defined
sets of inputs arriving at nodes replace S by §’.
Finally, after having performed this construction

for all nodes in depth t, we get a (2t+1,n)-merge
tree of depth t+1.

Now suppose that we have constructed H up
to depth T. We finally have to verify that H sorts

n numbers, i.e. to prove that for each set of
inputs J = I(X,#,S) arriving at a leaf of H the
order on [n] induced by = is total. Suppose it
is not. Then, as for inputs from I each P; only
knows variables from X; at time T, M can not
distinguish between the different possible total
orders and would compute the wrong output for
some inputs. Thus H is a merge tree as deman-ed
in the theorem.

Before we prove main lemma I, we introduce
some notation and useful Ramsey theoretic re-
sults.

For an infinite set § « N and a total order { on
[n] let Sp=1{(a,..a.)eS" | @ <a;if i<gj}.
Such a set is called to be of fixed order type.
If Q is the natural order on [n], we write S

for $5.

We apply the following "canonical” Ramsey
theorem due to Erdos and Rado from [ER] (see
also [GRS)).

Theorem [ER] (Erdos-Rado Theorem) Let
f:8% = N. Then there is Sc S, s infinite, such
that [’ = f] 55 is 1-1 on the variables it depends
on. Precisely, there is a Jc[n] such that
f(ay,...a,) # [(by,...,b,) if and only if a # b, for

some ieJ. In particular, if f has a finite range,
f’ is constant.

Lemma I : Let f:S7 - N and g:S% = N be 1-1
functions. Then there is 5 c S, 5 infinite, such

that, restricted to .S n<, fand g either have disjoint
ranges, or they a.e identical. Precisely, either

ASHNgS2) =0 or n=r' and fzr=sglzn

Proof : Assume w.l.o.g. that n > n’. Add dummy
variables such that also g is defined on SZ,
but only depends on the first n’ variables. We
first consider the 2-coloring ¢ on St with
cl@) = 1 if f(@) = ga), and c(@) = 0 otherwise.

536

By the Erdos-Rado Theorem there is S ¢ §, §

infinite, such that ¢ is constant on 51 Ifc=1,
then f] .» = gl -» and weare done. lf ¢ = 0, then
Se Se '

let G e the directed graph on S, with
(3,b)eE(G) if f(a@) =g(b). G has no self-loops

because ¢ = 0 on 51. G has indegree 1, because
f is 1-1. Therefore it is easy to see that the
underlying undirected graph is 3-colorable. Col-
or it with 3 colors. By the Erdos-Rado Theorem

there is an infinite S ©§ such that Sl is

monocromatic. Thus, f(§2) ﬂg(§n<) = 0. qed.

Proof of main lemma I : Let I = I(X,%,S) be such
that P, only knows variables from X; at time t.
Consider what P; has done until time t. At each
time d ¢ [1], it wrote some value v¢ to some cell
w?. Furthermore P, read cell ; at time t. These
values are functions of the input set N”. But, as
P, only knows variables from X, they only de-
pend on the variables from X.. Our goal now is
to restrict the input set I to a set I' in such a
way that, for inputs from I', P, reads what some
P; wrote at some time d, only if r, and wf are

the "same functions', and are applied to the
"same arguments''.

We refer to the functions w? and r, as address
functions. The clean form of such a function f
is derived by fixing all variables { does not
depend on to arbitrary constants. Thus a clean
form of a function always depends on all its
variables. Let f’ be the clean form of some
address function f. If { was used by P, (ie. is
r, or w? for some d), then it only depends on
some (not necessary all) variables from X, As
they are totally ordered according to =, ' is
defined on a set of fixed order type. Thus we
may apply the Erdos-Rado Theorem successive-
ly to the clean forms of all address functions.

The result is an infinite set § <© § such that, on

7=1In E”, all address functions are 1-1 on the
variables they depend on.

From now on we assume that the domain of

all address functions is /. Note that the clean
form of the address functions can now depend
on fewer variables than before we applied the
Erdos-Rado Theorem.

We know that the clean form of an address
function is defined on a set of fixed order type.
The function derived from it by reordering these

variables such that it is defined on S n< is called
the standard form of f.

As we now know that the standard forms of
address functions are 1-1 functions and are de-

fined on S", we may apply lemma 1 successively
to all pairs of them. As a result we get an infinite

set S © S with the following property (*). As-
sume from now on that the domain of all address

functions is I’ = 7 ns’".

(") Two address functions either have disjoint ranges
or have the same standard form.

Now let f and g be two address functions. Recall
that they are defined on r.

Lemma 2 : f and g are either identical or
f(a@) # g(@) for all gel'.

Proof :Suppose f(a) = g{a) for some ael’. Then,
by (*), they have the same standard form h.
Thus they are identical if they depend on the
same variables. Assume that f and g depend on
different sets of variables. Let @’ and @’ be the
subvectors of the above a of those variables f
and g depend on, increasingly ordered. These
vectors are different, because they contain val-
ues of different variables, and the g;'s are distinct.
On the other hand, we know that @'y = fla),
B(@") = g(@). But as h is 1-1, k(@) # h@",
which contradicts the supposition we started
with. q.ed.

Now consider what P, reads in step t. If », was

never used for writing (i.e. r; # wf for all j and
d), then we know by lemma 2 that P, reads O.
Otherwise, because of the PRIORITY write con-
flict resolution and lemma 2, P, reads vl the
value P, wrote at time d, where (d,j) is lexico-
graphically maximal such that wf = r;. Thus, as
v}i only depends on variables from X, after this
step P; only knows variables from X UX; for
inputs from I’, which proves the lemma. g.ed.

IV. A Lower Bound for Sorting on Merge Trees

In this section we complete the proof of our main
theorem by showing the demanded lower bound
on (m,n)-merge trees.

1
Theorem 2 : c(m,n) = Q(—-i)L .
log(mlogn)

Proof of theorem 2: 1t is sufficient to prove that
1
c(mn) = Q(—22

) for m > 9logn. Let H be any
logm

(m,n)-merge tree which sorts n numbers. We
shall inductively exhibit a long path from the
root in H. Intuitively, the argument is as follows.
Suppose that we constructed the last node in the
path, v, s.t. the partial order in v has many linear
extensions. We shall look for a child u of v with
the same property. To do that, we must show
that there is a way of merging the n pairs of
chains given at v, s.t. as few as possible transitive
implications are added to the partial order.

To this end, we shall define a "nice" class of
partial orders, in which we can get a handle on
the quantities mentioned above. We will show
that for each node in the path we construct, its
partial order has an extension which is a partial
order in the nice class.

We now describe the "'nice” partial orders. Let
n=~ki+a for positive integers kJa. A
(k,l.a) —graph is obtained as follows. Take a
chain on k + a vertices. Then choose some k of

the vertices, and replace each by / copies of itself
{each having the same in and out neighbors).

A (k,la)-partial order is a partial order_Q s.t. Q—
is isomorphic to the transitive closure G of some
(k,la) graph G.

Let Q = (V,E) be a (k,l,a)-partial order. It has
k antichains, each of size /. Call them §1,5,,...,5;.
Clearly, to "sort" Q, it is necessary and sufficient
to sort all the S/s. Consider a merge operation
on Q. It involves two chains, C; and G,
(1 G 1,1 G| € m). Clearly, we may assume that

k
C,,C, € U S (as the rank of the elements outside
=1

those antichains is known). Moreover, by tie
structure of @, |C;NS] <1 for all j=1,2 and
i =1.2,..,k. Hence, merging C; and C, reduces
to performing at most m comparisons, at most
one in each S,

Now we are ready for the main lemma of this
section.

Main Lemma II : Let v be a node in H whose
partial order @, is contained in a (k,/,a)-partial

order, with a < —2'£ (hence kI > g). Then there is

a child u of v whose partial order Q, is contained

in an (k' ,d’) partial order, with ¥’ < km* and
ad<a+ % +hkm®,

Before we prove main lemma II, let us see how
it implies theorem 2. Clearly, the empty partial
order at the root of H is a (1,n,0) partial order.

. . logn
Apply the lemma ¢ times with 7 =

Slogm ~
reach a node whose partial order is contained
in a (kJa)-partial order with k < m* and

a< % +m“. (Note that since m > 9logn, and

because of the choice of 1, the assumption in the
lemma holds at every step). But for this choice

of t, k < %, a< %, and therefore / > 2. So this

partial order cannot be a total order, and this

538

node at depth r cannot be a leaf. Hence,

() = 0287,

logm

Before we preoceed to prove lemma 2, we need
the following technical lemma,

Lemma 3 : Let G = (V,E) be an undirected graph,
and b a positive number. Then one can remove

a set VeV of vertices, with
21V 2|E|b

V'] < !—bl—+ ——:—V~I|-, s.t. the remaining

graph on ¥~ V' can be colored with 2I§:b

colors, with each color class of the same size.

This lemma is based on the following result, due
to Hanjal & Szemeredi from [HS).

Theorem [HS] : Any graph G = (V,E) with maxi-
mum degree A can be colored with A +1 colors

.17l | V|
s.t. each color class has size or —— 4+ 1.
+1 A+ 1
21V

vertices of

Proof of lemma 3: Remove the

highest degree from G. Then the maximum de-

. 2|E|b
gree 1s at most

—1. Apply the previous

theorem, and then remove one vertex from each
21Elb

of the larger color classes (at most), to

make them all of equal size.

Proof of main lemma II : Assume w.l.o.g that Q,
is a (k,a)-partial order, and let §},5;,....S, be
its antichains of size /. Consider the n pairs of
chains, (G,,C,),i = 1,2,...,n, that are merged at
v. Each such pair gives rise to at most m compari-
sons. So we have a total of nm comparisons,
distributed among the Sj's. By averaging, at most
k

2
' nm .
o of the §,'s have more than = comparisons,

For each such §, arbitrarily choose a total order,
(hence resolving all comparisons within it). We

of @, which is a
with k<%

obtain an extension

(ky,l,a)-partial order, and

k n
afa+—1<a+ —.
m m

2
So each of the remaining Sj's has at most n_r:___
comparisons. Think of these comparisons as edg-
es in an undirected graph with vertex set §,. Now
we use lemma 3 on each of those graphs. From

2
2 nm m

k

each §; remove < gn—i + vertices as in the

lemma, make them all (say) bigger than the rest
of §,, and arbitrarily totally order them. This
resolves all comparisons involving these vertices.
The result is an extension Q, of @y, which is a
(ka,J\ap) partial order, with 4k, =k £k and

3
as < ay +k(%1+ 21’7)

3n

m

4

<a; + %1'—1- +a4km® <a+ +km .

Finally, the remaining graph on each §; can be

2rzm3

colored with < 54m3 5m4, each color

class of equal size. Totally order the color classes
arbitrarily, thus resolving the remaining compar-
isons in each §,. The result is a (k',l',a') partial

order Q', with k&’ < km® and @’ <a+ %’1 +hkm?®.

Since we resolved all comparisons in a consistent
way, there must be a child u of v s.t. Q' is an
extension of Q,,.

V. A general lower bourd for a family of symmetric
Junctions

In this section we prove theorem 3. Recall that
for ScN we defined

S% = {(a1,...a,) € S"| a # a; for i #j}. A func-
tion fiN" = N is strongly non-constant, if for each
infinite § © N, frestricted to S« is non-constant.

539

Theorem 3 : A PRAM M with any finite number
p of processors needs exactly logsn steps to com-
pute a symmetric, strongly non-constant func-
tion.

Proof : The upper bound is obvious because of
the computational power of the processors : in
logan steps one processor can get to know all
variables and then compute the function in one
step.

In order to show the lower bound, we shall again
apply the Erdos-Rado Theorem to find an infi-
nite S < Nsuch that M is oblivious to inputs from
S%.

We first describe what we mean by oblivious.
Let X € N" be an input for M. Then it is well
defined which processor writes to or reads from
which memory cell at a given time, if M is started
with X. Thus ~ve can define the following commu-
nication pattern for X :

For each te[7], ie[p], P, reads at time t what
P, has written at time d, where delr] and je[p]
depend only on i and t.

M is oblivious to inputs from I < N”, if the com-
munication patterns of all inputs from [are the
same.

The following lemma is often proved in similar
forms inylit‘erature, e.g. in [MR,CDR].

Lemma 4 :Let [© N7 such that fi] - N depends
on all its variables. If the PRAM M computing
£ is oblivious to inputs from I, then M needs at
least logyn steps to compute f.

Lenma § : If M computes [:N" - N then there
is an infinite § < N, such that M is oblivious to
inputs from SZ.

The lower bound in theorem 3 now follows
directly from the above lemmas and the defini-
tion of strongly non-constant functions. As we

only deal with symmetric functions, if such a

function is non-constant on $* then it is so even

on S%.

Proof of lemma § : We restrict f to inputs from
NZ. As the number of processors and the number
of steps M executes are finite, there are only
finitely many different communication patterns.
Thus, by the Erdos-Rado Theorem, we find an
infinite S © N such that all inputs from S have
the same communication pattern, i.e. M is oblivi-
ous for inputs from S2. g.ed.

V1, Conclsions

We do not believe that our Q(vlogn) lower
bound for sorting on PRAM’s is tight. We believe
the right bound is @(logn).

To prove this bound via our definition of a merge
tree is hopeless for the following reason. It would
require a result like c{n,n) = Q(logn) for some
fixed £>0. But as Mike Saks showed us,
c(n,n) = O(loglogm)!

Note, however, that our merge tree is stronger
than what the simulation in theorem 1 produces.
There, sets that are merged in depth r can have
size at most 2. We conjecture that for these
trees, and hence for PRAMs, an 2(logn) bound
holds.

References

[4] M. Ajtai : E}- Fcrmulae on finite structures,

Annals of Pure and Applied Logic 24 (1983) pp.
1-48

[AKS] M. Ajtai, J. Komlos, E. Szemeredi : Sorting
in clog n parallel steps, Combinatorica 3, {1983),
pp. 1-19.

540

[CDR] S. Cook, C. Dwork, R. Reischuk : Upper
and lower time bounds for parallel random ac-
cess machines without simultaneous writes, pre-
print, 1983.

[ER] P. Erdos, R. Rado: A Combinatorial Theo-
rem, J. London Math Society 25 (1950), pp.
249-255,

[FMRW] F.Fich, F. Meyer auf der Heide, P. Ragde,
A. Wigderson : One, two, three...infinity: Lower
bounds for parallel computation, to appear; 16th
ACM STOC, Providence, 1985,

[GRS] R. L. Graham, B. L. Rothschild J H.
Spencer: Ramsey Theory, Wiley and Sons, 1980.

[HSY A. Hanjal, E. Szemeredi : Proof of a Conjec-
ture of P. Erdos, Combinatorial Theory and its
Applications 2, (1970), North Holland, pp.
601-623.

[IM] A. Israeli, S. Moran : Private Communica-
tion.

[L] T Leighton : Tight bounds on the complexity
of parallel sorting, 16th ACM STOC, Washing-
ton D. C. (1984), pp. 71-80.

[MR] F. Meyer auf der Heide, R. Reischuk : On
the limits to speed up parallel machines by large
hardware and unbounded communication, 25th
IEEE FOCS, Miami (1984), pp. 56-64.

[P] I Parberry : A complexity theory of parallel
computation, Phil. D. Thesis, Warwick 1984.

{PS] W. J. Paul, J. Simon : Decision trees and
random access machines, Symposium ueber
Logik und Algorithmik, Zuerich 1980, pp.
331-339.

[¥] L. Valiant : Parallelism in comparison prob-
lems, SIAM J. on Comp. 4(3) (1975), pp.
348-355

