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Abstract

We prove that every momnotone circuit
which teste sft-connectivity of an undirected
graph on n nodes has depth Q(log?n). This
implies a superpolynomial (n®°8%)) lower
bound on the size of any monotone formula
for st-connectivity.

*part of this work was done while the au-
thors were visiting UC Berkeley supported by
an NSF grant DCR-8612563. The second au-
thor also wishes to acknowledge support from
the Alon Fellowship.

The proof draws intuition from a new char-
acterization of circuit depth in terms of com-
munication complexity. It uses counting argu-
ments and Extremal Set Theory.

Within the same framework, we also give a
very simple and intuitive proof of a depth ana-
logue of a theorem of Krapchenko concerning
formula size lower bounds.

1 Introduction

The circuit complexity of Boolean functions
has been studied for 40 years, but its main
probleiz remains unsolved: we have no exam-
ple of a simple function (say in NP) that re-
quires super linear circuil size or super loga-
rithmic (bounded fan-in) circuit depth. The
reason is, perhaps, that although the circuit
model is elegantly simple, our understanding
of the way it computes is, at the most, vague.

In the last years, however, advance has been
surprisingly fast. On the one hand, results of
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Andreev [An] and Razborov [Ra], improved by
Alon and Boppana [AB], give exponential size
Jower bounds for monotone circuits. On the
other hand, results of, by now a long list of au-
thors (e.g. [Aj],[FSSL{Y1],[H]), give exponen-
tial size lower bounds for constant depth cir-
cuits. More than the results themselves, per-
haps the main contribution of the mentioned
papers has been the development of some gen-
eral techniques for proving lower bounds, such
as random restrictions and circuit approxima-
tion. These techniques, however, turn out to
be hard to apply to other problems so that
new ideas have been sought.

In this paper we show the equivalence be-
tween circuit depth and the communication
complexity of a certain related problem b We
believe that the later model is much more ap-
pealing for both showing and understanding
upper bounds, as well as for proving lower
bounds. This characterization is reminiscent
of, but somehow more explicit and inbuitive
than, the well known relationship between cir-
cuits and alternating machines [Ru]. This
characterization allows us to view computa-
tion top-down (from output to input) and
apply such techniques as random restrictions
in that direction (rather than the coramon
bottom-up approach). We argue the rele-
vance of this model by presenting a very sim-
ple proof of a depth analogue of a theorem of
Krapchenko, and by proving the first super-
logarithmic (in the size of the circnit) depth
lower bound for monotene circuits.

'Though the mentioned results of Andreev
and Razborov give exponential (in logn)
depth lower bounds for monotone circuits
computing certain functions, the depth lower
bound is always logarithmic in the size bound.

fyWe were told that Yannakakis indepen-
dently discovered this equivalence which is im-
plicit in [KPPY].

That is, the techniques apply to size rather
than to depth. We present a technique which
captures, in a strong way, the essence of circuit
depth. We give here a tight Q(log2 n) depth
bound for st-connectivity ¥, a fanction which
has O(n®logn) size, O(log’ n) depth mono-
tone circuits. As a consequence, we get non-
polynomial (n®(1°87)) size lower bounds for
monotone formulas computing si-connectivity
and hence separate the monotone analogues of
NCt and ACL.

While our proof bears no obvicus similar-
ity to the methods of Razborov and Andreev,
we point out the important role that (differ-
ent) nontrivial results from extremal set the-
ory play in both cases.

It is interesting to note here the differ-
ent character of the connectivity and majority
functions in the Boolean and arithmetic mono-
tone circuits models. Shamir and Snir [ShS]
showed an $¥(log® n) depth bound for both
functions in the arithmetic model. The diffi-
culty in applying these techniques to Boolean
circuits are the axioms zVzy = z and its dual,
which do not hold in fields. Indeed, Valiant
[V] (by probabilistic methods) and [AKS] (by
explicit constructions) showed that these ax-
ioms make a difference for the majority func-
tion which admits O{legn) depth monotone
Boolean circuits. Qur result says that, unlike
for majority, for connectivity the situation in
the Boolean case is very similar to the arith-
metic one.

It is worthwhile to mention that our results
apply to undirected graph st-connectivity,
a function that, in some models, is easier

2We present here and improved and simpli-
fied version of an early result of ours giving a
Q(log? n/ loglogn) bound. This was possible
after J. Hastad formulated and proved lemma
4.1. A similar improvement was independently
discovered by R. Boppana.
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than its directed version. For example, see
[AKLLR] for some relevant evidence. More
recently, Ajtai and Fagin [AF] show that,
while undirected si-connectivity is definable in
monadic second crder logic, the directed case
is not.

The paper is organized as follows: In §2 we
define the communication game and show its
equivalence to circuit depth; in §3 we give a
simple proof of a theorem of Krapchenko. In
§4 we give the lower bound for connectivity.

2 Communication
Complexity
Circuit Depth

and

In this section we show ihe equivalence be-
tween circuit depth and a problem in commu-
nication complexity. We will be considering
circuits over the basis {V, A, ~} where {Vv,A}-
gates have fanin 2 and —-gates are only applied
to input variables. For a function f, d(f) is the
minimum depth of a circuit computing f.

Let By, By C {0, 1}” such that BgnB; = 0.
Consider the following game between players
I and II: Player I gets ¢ € B; while player II
gets y € By; their goal is to find a coordinate
i such that &; # y;. Let C(By, By) be the
minimum number of bits they have to com-
municate in order for both to agree on such
coordinate. Note that unlike standard prob-
lemns in communication complexity [Y1], the
task of the players here is to solve a search,
rather than a decision, problen.

Theorems 2.1 For every funciion
F:{0,1}" — {0,1} we have

d(f) = C(f~1(1), fF71(0))
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Proof: Follows from the following two lem- -
mas. B

Lemma 2.1 For all functions f and all

By, By € {0,1}" such that By C f~4(0) end
By C Y1) we have

C(By, Bo) < d(f}

Proef: By induction on d{(f).

I d(f) = O then f is either #; or %. In
either case, we have that for all z € B, and
y € Bo, z; # w so that { is always an answer
and C(B, Bg) = 0.

For the induction step we suppose that f =
Sinfa (thecase f = f,Vfo is treated similarly)
so that d(f) = max(d(f1), d(f2))+1. Let B} =
Bgﬂfj"l(ﬁ) for § = 1,2. By induction we have
that C(By, B]) < d(f;) for j = 1,2. Consider
the following protocol for By and Bg: I sends
a 0 if y € Bj, otherwise he sends a 1; the
players then follow the best protocol for cach
of the subcases. We have

C(B1,By) < 14 ;g%(C(BhBE’;))
< 1+ ggﬁ(d(fj))
= d(f)
g

The converse is as follows:

Lemma 2.2 Let By, By € {0,1}? such that
Bon By = @. Then, there exists a function f
with Bg C f~1(0) and By C f~(1) such that

d(f) < C(By, By)



Proof: By induction on C(By, Bo}-

If C(By, Bo) = 0 then there exists an ¢ such
that Ve € B; and Vy € Bo, 2 # ¥i- It is clear
that V&', " € By we have zj = #{ and the
same holds for all ¥',y" € By. Without loss
of generality #; = 1 so that letting f = z; we
have By C f~10) and By € f7H{(3).

To prove the induction step, we assume that
11 sends the first bit (the other case 1s treated
similarly). For some partition Bo = BluBg, 1l
sends a 0 if y € B}, a 1 otherwise; the players
then continue with the best protocol for each
of the subcases and

C(By,Bo) =1+ 3@%@(0(81, ByY)

By induction, there exist fy, fa so that
B C £710), B € F7(1) and d(fy) <
C(By, B}y forj=1,2. Takingnow f = fiAf2
we have

B, € FnftW=10
By = BluB?

c oYU =71 0)
and
af) < 1+ maxdls)

< 1+ jm%??g(C(Bl,Bé))
= C(B1,Bo)
B

For monotone circuits we can give a modi-
fied version of theorern 2.1 which captures, ina
nice way, the restrictions of monotone compu-
tation. A minterm, (mazierm) of a monotone
function f is a minimal set of variables which
if we set to 1 {0), f will be equal to 1 (0) re-
gardless of the other variables. Define min(f),

Maz(f) as the set of minterms, reapectively
maxterms of f. It is easy to sece that every
minterm intersects every maxterm. We will
look at minterms and maxterms as subsets of
[n] 3. For a monotone function f, let du( )
be the minimum depth of a monotoene circuit
computing f.

Consider the following communication
game (the monoione game) between players
Tand I Let P,Q C 9ln! guch that ¥p € P and
¥q € @ we have pN g # #. Plaver I gets a
p € P while player Il gets a ¢ € @; their goal
is to find an element in pNg. Let Cm{ P, Q)
be the minimum number of bits they have to
communicate in order to find such element.

Theorem 2.2 For every monotone function
f we have

dm(f) = Cm(min(f), Maz(f))

Proof: Note that in the base case of lemmma
2.1, if the circuit is monctone, we always find
a coordinate ¢ such that z; = 1 while y; = 0.
In the other hand, if the protocol always gives
a coordinate i with the above property, lemma
2.2 gives a monotone circuit.

Let z € f~*(1) be the characteristic vector
of a subset p C [n]. Similarly, Jet y € FH0)
be the characteristic vector of the complement
ofasubset g C[n](le. i€¢ &= K= 0). By
the above argument, it is clear that the answer
of the protocol will be an element of png. The
theorem follows by noticing that it is enough
to give a protocol for (min(f), Maz(f)) be-
cause the players, in case they get inputs p’
and ¢, can always behave as iftheygot pC 7
and ¢ C ¢’ wherep € min{f)and g € Maz(f).
E

For proving lower bounds for the commu-
nication game, it may be convenient to have

3[n) = {1,...,n}
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more structure in the way the players behave,
We would like to synchronize the protocol so
that the players communicate in rounds where
players I and II send messages of length at
most ay, ayy respectively:

Theovem 2.3 Let D be 6 protocol in rounds
where at each round player I sends a bits and
player II responds with 2° bits (a < logn).
Then for any funclion f, the number kb of
rounds satisfics

b < 4D
a
Jor the general game and

dm(f)

a

k<

Jor the monotone one.

Proof: Let C be the best circuit for f. The
idea is to simulate @ layers of C with a round of
D. Divide C into stages of depth a each and
look at the subcircuits of each stage. Each
one computes a function which depends on at
most 2% wires and, thus, can be represented in
CNF form with less than 22° clauses, each of
length 2°. Following the proof of lemma 2.1,
it is easy to see that such CNF representation
can be simulated by a round where player II
sends 2% bits and player I sends o bits. The
same holds for the monotone case. §

Of course, in theorem 2.3, the roles of I and
Il can be switched so that I and I send 2%, a
bits per round respectively.

3 Krapchenko’s
bound

As a nice application of theorem 2.1, we give a
simple proof of a depth analogue of a theorem

of Krapchenko. Let C,, be the graph of the

n-cube with vertex set {0,1}" and two nodes
adjacent iff they differ in one coordinate. Any
subset 4 of edges induce a graph G4 of Oy in
the natural way. For a graph G4 and a node
x, we denote ds(z), Na(z) as the degree of z
in A and the set of neighbors of z in A respec-
tively, We drop the subindex A if no confusion
arises. Let E denote expectation with uniform
distribution.

Theorem 3.1 (Krapchenko) Let By, B €
{0,1}” such that BoNB; =8. Let A=Cp N
(Bg % By). Then, for every funciion [ with
Bo C F~Y(0) and By € f1{1) we have

2
ﬂﬂzwqg%m

Proof: Fix a protocol I for the communi-

cation game and let C(z,y) be the number of

bits I} uses on inputs z,y. We will prove that

for (=, y) taken uniformly from 4 we have
14P

E(C{z,y)) = ROgW (x)

By lemma 2.1, we get d(f) > E(C(=,¥y)).
We view (=) as follows: Write
AP, 14 14
BB~ S 1Bl T B IR
and notice that |A}/|Bo| and | 4|/|B1] are the
average degree of nodes in By and B; respec-
tively. In what follows, we will claim that the
number of bits player I sends is at least the
logarithm of the average degree of nodes in By
(similarly with player II). Intuitively, this is
so because even if player I knows y, he needs
log d{y) bits to tell IT which z he has.

log

We now proceed formally. For (z,y) € A4,
let b5(2, y), biz{x, y) be the number of bits play-
ers I, II send when the input to the protocol
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is (z,y). We have

E(C(z,y)) = %‘E‘ [ Z (bi(=, ¥) + bui(z, v))
(

W'U)EA

i
iy [Zweﬂx 2ope N tulz, ¥+

Zyéﬂn Zxé N(w) bx(zY y)}

We claim:

e ¥For any & € B, ZyEN(w) bu(z,y} =
d(z) logd(x). This is so because, even
if I knows z, he has to tell I which y
he has.

s Similarly, Yy € Bo we have
T eeniyy bil® ¥) 2 dy) og d(y).

We now conclude,

E(C(z, ¥))
> e’iﬁ (3, e, d(z) log d(a)+

Syen, d(¥) logd(v))

A (Sem, i ton
Syeo. filontfh)
2

el log.....lﬂ_..-

18111 Bol

A"

where the last inequality follows from the con-

vexity of zlogz. §

4 A Lower Bound for
Connectivity

In this section we give a Q(Iog2 n} depth lower
bound for monotone circuits computing undi-
rected graph si-connectivity. This section is

organized as follows: In §4.1 we give some in-
tuition and we state the main theorem; In §4.2
we give some definitions and useful lemmas; fi-
nally, in §4.3 we give the proof of the theorem.

4.1 Intuition

The function si-connectivity receives as in-
put an undirected graph and two distinguished
vertices s and ¢, and tests whether there is a
path from s to ¢ or not. The function is ob-
viously monotone with rminterms correspond-
ing to minimal si-paths, and maxterms cor-
responding to minimal si-cuts. We view si-
paths as ordered sets of vertices excluding s
and t. We view si-cuts as a partition of the
set of vertices into two subseis, one contain-
ing s and the other containing 1. The minimal
cut contains all edges between the two sub-
sets. This is the same as having a coloring
g : V — {0,1)} where ¢(s) = 0 and 9(t) = 1.
The game thus, is as follows: Player I gets an
st-path while player II gets a coloring of the
nodes. Their goal is to find a bichromatic edge
in the path.

Let us lock at the protocol based on the idea
of raising the adjacency matrix of the graph to
the n*" power: Player I sends the name of the
middle vertex on his path, player II responds
with the color of that vertex. The players then
continue recursively on the half path where a
bichromatic edge is ensured to exist. Note that
the protocol requires O{logn) rounds in each
of which I sends logn bits and II sends just
one.

The crucial observation is that, evem if
player 11 would be allowed to send O{n®) bits
each round (instead of one bit as in the proto-
col), the players will still need many rounds.
Basically, this is because I doesn’t know much
about the nodes in I’s path. If he sends O(n®)
bits and the path is of length O(n*) then the
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probability that I gets valuable information
from II is negligible. If we could prove a
2(log n} lower bound for the nurnber of rounds
needed, we will be able to use theorem 2.3 to
get the promised ((log? 1) depth lower bound
for circuits.

Note the asymmetry between players [ and
If. Indeed, if the roles of both players were
switched so that player I would be the ome
which sends O(n®) bits per round, they would
be able to sclve the problem in a constant
number of rounds. This is consistent with the
intuition gotten by Shamir and Snir in [ShS].

Define stconn(l) as the restriction of si-
connectivity to the case where playver I gets
a path of length I. We state the main theorem
of this section:

Theorem 4.1 Let | < n'/'®, There exisis an
0 < ¢ < 1/2 such thet if I is ¢ k-round proio-
col for steonn(l) where al each round, player
I sends clogn bits end plager IT sends n® bits,
then & > logl.

Corollary 4.1 Any mono-
tone circusl compuling st-connectivily requires
Q(log® n) depth.

Proof: Follows from theorems 2.3 and 4.1 by
taking { == n/1® E

Open 4.1 Prove a similar lower bound for
Connectivity.

Corollary 4.2 Any monoione formula for
st-connectivity has size n*X1087)

Proof: Follows by noting that the relation
d{f) = O(log L(f)) bolds also in the monotene

case.

To prove theorem 4.1, we will assume, for
contradiction, the existence of a k-round pro-
tocel (k < logl) good for a large family of ali
possible paths and a large family of all pos-
sible colorings. We will pick a large subset
of the paths and colorings for which players
I and II sent the same message in the first
round. We will give some extra information {
by applying a random restriction to the col-
oring of the nodes) to both players so as to
get smaller, yet nicer, subsets which are in 1-1
correspondence with a family of paths shorter
in length (but of higher quality) and a family
of colorings of fewer nodes. The fact that the
original protocol had (k — 1) rounds to go, will
allow us to find a (& — 1}-round protocol for
the smaller families. Repeating this Q(logn)
times will give us a protocol without commu-
nication that solves a problem which cannot
be solved without any messages.

Note the top-down structure of the proof;
essentially, the argument shows that, if the
output of a circuit is in some sense complex
and, as long as we do not go too far down the
circuif, there is a wire which computes a com-
plex subfunction.

4.2 Notation and Defini-
tions

Denote by I C [n] the set of all paths on [n]
of length I. |IP| = (n); where

(nh=nn—1)--(n-1+1)

An interval I  [i] is a subset of consecutive
integers. For a path p € II} and an interval
I C (i}, pr is the subpath of p in the interval
I. For PC P, Py = {p; : p€ P} is the pro-
jection of P into I. Note that Pr ¢ Hrll" Con-
versely, for p € Hi"”, P C P and an interval

I, let Extpi(p) = {P € P : pr = p} be the set
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of extensions of p in P within I. We will drop
the subindices P and I if no confusion arises.
For p € 1}, the support of p, supp(p), is de-
fined as the set of nodes contained in p. When
no confusion arises, we will denote supp(p) by
p. For P C 17, supp(P) = {supp(p) : p € P}.
Given a partition of [{] into two intervals L and
R, we will denote a path p € Iif by (pr,PR)
where each entry is the projection of p into the
respective interval.

Similarly, for a coloring ¢ € {0,1}" and 3
subset T C [n], gr is the projection of g into T
and for Q C {0,1}", Qr = {gr : ¢ € Q} is the
projection of @ into 7. For ¢ € {0,117, Q¢
{0,1}" and a subset T' C [n], let Eztgr(e) =
{G € Q: §r = ¢} be the set of extensions of ¢
in @ within T (again, we drop the subindices
Q and T whenever possible). For a restriction
p: [n] — {0,1,%}, we will denote by @, the
set of colorings in @ consistent with p, (i.e.
faeQ:p()) # += 0(d) = 1)

For a subset A of a universe 2, the density
of A, u(A), is defined as [A|/[2]. In what fol-
lows, we will work with densities rather than
with cardinalities.

We will need the following combinatorial
lemma due to J. Hastad: Let H C Ay X... X A
and for v € Aj, let Bxig(v) = {v € H ¢
u; = v}. Note that, though Ezts(vy C H,
Exts,(v) may be considered as a subset of
.H/A,’ = A1 ¥ ... X Ay X Ai+1 X ... X Ag.
In what follows, we will consider Exzt4,(v) as
a subset of H/A;.

Lemma 4.1 Let H C Ay X...x Ag. Let By =
{u€ A;: p(Brta,(w) > p(H)/2k}. Then

k
p(H)
H u(B;) > 5

i=1

Proof: Say that a member (v, ._..,uk) of H
is bad if for some 4, u; € B;. Let H be the set

of bad elements in H. We have

k
3"(}?) < Zﬂ(UUEBeE"mA»‘(u))
d=1 .
p(H) _ pH)
< ey

§=1

the lemma follows immediately, by noting that

k
11 #(B) 2 w(iD).

§z=1

Corollary 4.3 I}' B = 92, then 3¢ such that
/2
wByz (B2)7 W

Corollary 4.4 Pr{u(B:) < (u(H)/2)%*) <
1/2 for i chosen randomly from {1,...k}. &

We will also need the following result in
extremal graph theory which is based on the
Kruskal-Katona theorem. Let F C 2l Fis
called an ideal if A € F and B C A implies
that B € F. For 0 € s < m, P(F) is the
probability that a random s-subset S is in F.
We present the following lemma of Bollobas
and Thomason:

Lemma 4.2 (BTh) Let F C 9l pe an ideal.
Then for 0 < s <r < n we have

PAFY =z P(FY

Intuitively, the lemma says that the prob-
ability of the different slices of an ideal de-
creases exponentially fast with their distance.
Our majn use of the lemma is the following
corollary:
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Corvollary 4.5 Let S C [n)*) be a family of
s-subsets of [n] with u(S) > «. Take a random
t-subset T of [n]. The probability that T does
not coniain any element of S is at most {1~
a)ifs,

Proof: Say T is good if it contains an element
of S, T is bad otherwise. It is easy to see that
the ideal 7 generated by the bad T’s misses all
of & so that P,(Z) < (1 — a). By lemma 4.3
we get

Pr(T is bad) = P,(T) < {1 — a)*/*

4.3 The proof

Proof: [of theorem 4.1]

In what follows, all our protocols will be
synchronized so that at each round I sends
elogn bits and I responds with n bits. The
existence of ¢ will be clear from the proof,
though one can check that € = 1/10 suffices.
We will define a sequence of problems of dif-
ferent sizes as follows: We first define the pa-
rameters of the problems, let £p,, = logl — 1.

Let Vo = [n] and Vig1 € V; where |V3] = ny
and 1441 = 1y — 4ni'/2, Note that

nf2<n<n for t < tmar

Let Iy = ! and l;;3 = {;/2 and note that

2<lh, <l for  t<tmas

Consider the following property:

H(t,k): There exist a collection of paths P C
Hg" of length I, over Vi, and a collection of
colorings @ C {0,1}" of V;, with u(P*) >
n~¢ and p(QY) > 272" such thai there exists
a k-round protocol D* good for (P, Q).

We will prove the following two claims:

Claim 4.1 For i < ipmee ~H(2,0).

Claim 4.2 For t < tmae H(t,k) — H{t +
L,k -1) '

It is clear that the two claims imply
—H(0, tmae) which in turn implies our theo-
rem.

The first claim follows easily by noticing
that there is not a single node which appears in
every path of P* so that player Il cannot know
any edge in it let alone the answer. To see
this, note that the fraction of paths of length
I, out of n; nodes which contain a given node
is Iy/ny & n~¢. This is enough for proving the
claim as both players must know the answer.
However, it can also be shown that, for most
input pairs, player I will not know the color of
a single node in its path.

The second claim will be proved by assum-
ing H{t, k) and constructing P}, Q'+ and
D1 g0 as to satisfy H{¢+ 1,k —1). Take P?,
Q! and D' which satisfy H(Z, k). Let us lock
at the protocol after the first round. By the
pigeonhole principle, there exist P C P* with
u#(P) > n~% such that for every path in P, I
sent the same message. Similarly, there exists
Q C Q' with u(Q) > 2~ 5o that for
every coloring of @, II sent the same message.

Let L = {1,..»,1;/2} and B = {lt/z -+
1,....1;} be a partition of the path’s coordi-
nates into left and right mtervals of the same
length. We say that P is L-good if "many”
left projections of P have, each, "many” ex-
tentions to the right; that is, if

u{{pr : w(Extpr(pr)) 2 v %*}) 2 2m°

R-goodness is defined similarly. The following
lemma says that if we shrink the length of the
paths to half and we restricted our family P
to one of the intervals, then we can improve
the guality of our collection.
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Lemma 4.3 P s either L-good or R-good.

Proof: We have P C [T x I}, Note
that #(P) > n~2(1 — n~*5) by the choice of
{. The lemnma follows using corollary 4.3 and

noting that n=2¢(1 —n~¥5}/4> =% §

Without loss of generality, assume that P
is L-good and let 4 be the set of paths in P
with many extensions. The next lemima is the
heart of our argument:

Lemma 4.4 There exisls @ resiriction p
Vi = {0, 1,%} with |p7 (#)| = neyy suck that
the following properties hold:

GL: IfQ = Q, then p(@Q) » 27 2+1)n°
G2: 3P C P such that

e ¥p€ Pp; C p~1(%) and pr C p~ (1)
o Vp,p' € P pL#p}
o u(P)>n".

Assuming the lenuna is true, we will finish
the proof of the second claim:

Let Vitl = p—l(*), Qi = mel(*) and
P+l = Pp Note that there is a natural 1-1
correspondence between Q*** and Q and be-
tween P*t* and P. Also note that Vg € § and
Vp € P any bichromatic edge lies in the in-
terval L. The protocol D! on (P!, Q1)
simulates the protocol D? on (P, Q) by follow-
ing the behaviour of the associated path and
coloring. §

Proof: [of lernma 4.4]

In what follows, we denote V = Vi, v = n,,
I =1, U = I3y for simplicity sake. The exis-
tence of a good restriction will be shown by
probabilistic methods. We will pick p uni-
formly from the set of all restrictions with

o1 (x)| = v~ 4/5 and Pr(p(z) = 0lo(z) #
*) = 1/2, and show that, with positive proba-
bility, the conditions of the lemma are fulfilled.
Specifically, we will show that Pr(—-G1) +
Pr(-G2) < 1/2+ o(1).

Let us start with G1: Intuitively, the fol-
lowing lermuna says that, with high probability,
p does not give player I too much information
about the colors of nodes in p~1(+).

Lemma 4.5 Pr(u(Q,) < 272+0n%) < L4
o(1). '

Proof:

Let o = 27(*1n° Picking p uniformly
from all restrictions with |p~*(x)| = v — 4/7,
is equivalent to picking randomly 7' = p~ (1)U
p~Y(0) among all 4/9-subsets of V, and then
picking the restriction of p to T randomly
among all vectors = in {0,1}™VY. Let k =
VU/4. Say T is bad if

1 ({m c {Exig r(z)) > % ) < (%)z/k

T is good otherwise. We have

Pr(u(@Q)) < =)
< Px(T is bad)

o .
+ Pr (#(Qp) < 2% | Tis good)

Note that @, = Ezig (). By the defini-
tion of goodness, and the choice of &, the sec-
ond term is bounded by 1 — (a/2)%/* = o(1).
Also note that a/2k > 27204+1n° [t remains
to bound the first term: We pick a random T
by first picking a rendom partition of V into
4+/v-subsets and then picking a random sub-
set from the partition. We must show that for
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any partition, Pr(7 is bad) < 1/2 for a ran-
dom T in the partition. But this is precisely
the content of corollary 4.4. §

Now we take care of (32:

Let A" = {p€ A:pC p~'(+)}). Wesay
that p kills a path pg € 4 if there is no pp €
Ezxt(pr) with pgr C p~1(1). We will show that
for every choice of p, u(A*) is large and hence
Pr(~G2) < Pr(3ps € A killed by p).

Claim 4.3 For every p, u(A*) > n™¢.

Proof: Recall that [p7'(3}] = v — 4/7 s0
that |V\p~1(#)] = 4/9. It is easy to see that
at most a fraction n~%% of the I'-subsets of V
intersect V\p~1(x) so that at least a fraction
27— n”%8 > ¢ of them are in 4*.  §

We now use some combinatorics to bound
the probability that there exists a path in A
killed by p:

Claim 4.4 Pr(dp;, € A killedby p) =
o(1).

Proof: We have s

Pr(3pg € A killed by p)
< 1A]- max{Pr(pg is killed by p)}
PLEA

so let us look at the worst possible p; € A.
Note that supp(Exi(pr)) contain at least a
fraction n~% of the I-subsets of V. This is
because the worst situation is when all possi-
ble orderings of a given subset are contained
in the collection.

Let FF = (Apr € supp(Ext(py)) with
pr C p71(1)). We will bound now Pr(F). We
will break Pr(F) into two cases according to
how small |p=1(1)| is. We overestimate Pr{F)
as follows:

Pe(F) < Pr(lemi(1)] < VF)
+ Pe(F| 17 D) 2 V)

The first term can be bounded by
exp{—+/7/2) using the Chernoff bound. For
the second term, for every random p, we have
lo™(1)] > +/¥. By choosing a random /v~
subset T of p~(1} we induce a marginal uni-
form distribution for T over all the /-subsets
of V. We can now apply corollary 4.4 to get

1732410

Pr(F| |p7H(1)] 2 W) < (1 - nm %)

so that Pr(F) < exp(—nl/%), Recalling that
{Al is less than 2" we conclude easily our
calculations and get

Pr(dpe Akilled by p) < n"

We have Pr{~G1}+ Pr(-~G2) < 1/2+0(1)
implying the existence of a good restriction.
Take any consistent extension of each py € A*
not killed by p to form P. We have u(FP) >
n~¢ and lemma 4.4 is proved. §
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