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ABSTRACT

In [KUWI] we have proposed the sclting
of independence systems to study the relation
between  the computational complexity of
scarch and decision problems. The universal
problem that capturcs this rclation, which we
termed the S —search problem, is: "Given an
oracle for the input systern, find a maximal
independent subsct in it”.

Many interesting and important scarch
problems can be described by a special class of
independence systems, called marroids.  'This
paper is devoted to the complexity of the S-
scarch problein for matroids.

Our main result is a lower bound on any
probabilistic algorithm for the S-scarch problem
that acquires information about the input sys-
tem by interrogating an independence oracle.
We prove that the expected time of any such
probabilisic  algerithm  that  uses  a
sub —exponential  number of processors s
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D+ ). This is one of the first nontrivial,
super-logarithmic lower bounds on a random-
ized parallel computation. It implics that in
our model of computation Random-NC is
strictly contained in P. Another conscquence
of the lower bound is that the O(,R) time pro-
babilistic upper bound for arbitrary indcpen-
dence systems, presented in [KUWI], is close
to  optimal and cannot be significantly
improved, cven for matroids.

However, this O(,7) upper bound can be
improved in a different sense for matroids - it
can be made deterministic, still with polynomi-
ally many processors.

I“inally, we show that the lower bound can
be beaten for the special case of graphic
matroids. Here, the S-scarch problem is simply
to find a spanning forest of a graph, when the
algorithm cannot see the graph, but can only
ask whether subscts of edges are forests or not.
We give an O(logn) time deterministic parallel
algorithm that uscs n2%e" processors.

From the upper bounds on parallcl time
above we deduce similar bounds (up to a poly-
log factor) on the sequential space required by
a dcterministic Turing machine  with an
independence oracle to solve the S-scarch
problem.




1. INTRGDUCTION

ILI.  PRELIMINARIES
RESULTS

AND  PREYVIOUS

In [KUWI] we began an investigation of
parallel algorithms within the context of
indcpendent  systems. This abstract setting
cnables us to unify a number of constructions
that had previously  been investigated
separatcly, in conncction with parallcl algo-
rithms for problems such as computing the
rank of a matrix [BGH], finding a maximal
independent set of vertices in a graph [KWw,
[u], and finding 2 maximum matching in a
graph [KUW?2]. The sctting of independence
systems also provides an abstraction of the
parallel sclf-reducibility process, in which one
solves a search problem in paralicl by making
calls on an oracle for an associated decision
problem.

An independence system S is dcfined by a
pair (E.7). E is a finitc sct of » clements,
called the ground set. [ is a family of subscts of
E, called the independent sets of S. The
independent scts are closed under containment,
so if ACBCE and B€J, then also A€/, The
scts in 28 —7 arc called dependent. A sct BCE
1S a maximal independent sct of S if B is
independent, but every superset of B is depen-
dent. A system is wniform if all its maximal
independent scts have the same cardinality.

Many combinatorial scarch problems arc
naturally captured by the following, canonical
scarch problem, whose complexity is the main
issuc of both [KUWI] and this paper.

S-search: Given an independence system
S=(E.I), find a maximal independent set of 5.

In studying the complexity of this prob-
lem, we shall assume that the input is given by
an oracle to one of the following two st func-
tions on S.

Independence: INDs:2f — {TRUE, FALSE} is
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defined by INDs(A)=TRUE iff A€I. (INDq
simply decides whether the sct A is indepen-
dent in S or not).

Rank: RANKs:2F —{0]1..n} is defined by
RANKs(A)=MAX{|B|:BCA, BEI}.

(Rank computes the size of the largest indepen-
dent subsct of 4. Note that /INDg(4)=TRUE
iff RANKs(4)=4])

The time complexity T of S-scarch will be
measured in terms of n, the size of the ground
sct £, and p, the parallelism allowed in the
algorithm. By parallclism p we mean that P
qucrics to the input oracle arc allowed per step
(a precisc definition of the model is give later),
We shall study both probabilistic and deter-
ministic algorithms. For probabilistic algo-
rithins T/%%(n,p) will denote the expected time
to solve S-scarch on a worst casc input, given
by an independence oracle. T2aKn p) is simi-
larly dcfined. For deterministic algorithms we
use T@(n.p) and TE¥(n.p) for the worst case
complexity.

Obscrve that for sequential computation
(p=1) the §—scarch problem is trivial. The
sclf-reducibility  (greedy)  algorithm  gives
Ti(n1) = TP*(n 1)=n. What spced-up s
possible with parallclism p?

To put our new results in perspective, we
summarize the results of [KUW1]. There we
gave probabilistic upper bounds and deter-
ministic lower bounds on the complexity of §-
scarch for arbitrary independence systems.
Probabilistic Upper Bounds:

(UD) Tidn,n) = O(,R)
(U2) For a uniform system
Tyek(n,n) = O((logn)»

Deterministic Lower Bounds:

(L1) THd(np) = ﬂ(é)

)

(np) =X Tognp

(L2) T




(A harder problem than S-scaich, namely
to find a lexicographically first maximal
independent set, was shown by Martel [Ma] to

require time Q(l_o%;)) by any probabilistic algo-

rithm when the input is given by an indepen-
dence oracle).

Three main questions remained open:
1. What is the inherent limitation of the
independence oracle? Can (Ul) be improved,
or is there a matching probabilistic lower
bound?
2. Is there a lower bound that separates
between the power of the independence and
the rank oracles?
3. Are there interesting classes of independence
systems for which the deterministic lower
bounds do not hold?

Matroids, the most well-studiced subclass of
independence  systems, provides us  with
interesting answers to these questions.

1.2. MATROIDS - NEW RESULTS

A matroid is an indcpendence  system
M =(E.1) in which the following condition is
satisficd;
Borrowing  Axiom: if A€, BEl and
|Al=|B|+1. then there exisis e€A such that
BU{e}€l.

Some very important combinatorial prob-
lems have a matroid structure [La). For cxam-
ple:

Graphic Matroids: E is the set of edgesin a
graph G, and a subsct ACFE is independent itb
it is a forest in G.

Linear Mutroids: E is a sct of vectors in a
veetor space over some ficld, and a subsct
ACE is independent iff the vectors in 4 are
lincarly independent.

Maiching Matroids: E is a sct of vertices of
a graph G, and a subsct ACE is independent
iff some matching in G covers all vertices in 4.

A maximal independent sct in a matroid is
called a base. A minimal dependent set is
called a circuit. The S-scarch problem for
matroids is to find a basc of the input matroid.

The borrowing axiom which matroids
satisfy adds a lot of structure. For cxample, a
matroid is always a uniform system, i.c., all its
bases have the same size. A striking example of
the algorithmic usefulness of the additional
structure is the following casy result.

THEORLEM 1: For inatroids,
TE%(n,n)=0().

So the lower bound ([.2) docs not hold for
matroids, and cven the probabilistic upper
bound (U2) can be improved. In fact, thcorem
1 says that for matroids the rank oracle is too
strong to be intcresting.

Onc might expcct a similar improvement
for computation with an indcpendence oracle.
However, we can prove

THEOREM 2: For matroids,

1

Tod(n.p) = QU(—2—)3).

s .p) Q((]Ognp) )
This is the main result of our paper. It
says that even if p is exponential in n, say 27°,

any  probabilistic  algorithm  will  require
R
cxpected time Xn? ) to solve the S-scarch

problem for some matroid.  Theorem 2
presents one of the very few non-trivial, super-
logarithmic, probabilistic lower bounds for
paratlel computation known today. In particu-
lar, it shows that polylogarithmic time is not
achicvable with polynomially many processors
and randomness, and so the theorem supplics a
natural model of computation with an oracle,
in which a problem that is solvable in P is not
solvable in Random-NC,

The lower bound implics that the proba-
bilistic  upper  bound (Ul) cannot be
significantly improved, cven for matroids. It
scems at this point that matroids are not casier
than arbitrary independence systems, if the




input is an independence oracle. However, the
upper bound (Ul) can be improved in a
different sense - it can be made deterministic!

THEOREM 3: For matroids,
T§d(n,n)=0(,n).

Theorem 3 shows that that the determinis-
tic lower bound (L1) does not hold for
matroids. The dcterministic upper bound of
thcorem 3 almost matches the probabilistic
lower bound of thcorem 2. Are there interest-
ing matroids for which the lower bound of
thcorem 2 can be becaten? The answer is yes,
graphic matroids.

THEOREM 4. For matroids

T24(n,n 0% =0 (logn)

graphic

For graphic matroids, the S-search prob-
lem is to find a spanning forest in a graph.
There are simple NC algorithms for this prob-
lem. To motivate the difficultics in proving
theorem 4 note that the only way the algorithm
can learn about the input graph is by indepen-
dence queries, which tell it if subsets of edges
are forests or not. [t is casy to scc that there is
no way to determine the vertices of the graph
in this way, and hence impossible to carry out
a "transitive closure” type opceration, which all
known fast parallel algorithms usc. Still, the
fact that there cxists an underlying graph
describing the matroid is a source of uscful
propertics. In proving the thcorem, wc first
devise a randomized algorithm for the problem
with the same complexity. Then, genceralizing
techniques of [ACGS] and [l.u], we usc the
idca of "k-wisc independent random variables”
to climinate randomness from our algorithm,

The relationship between parallel time and
scquential space is  well cstablished (c.g
Goldschlager [Go), Borodin [Bo]). In [KUWI]
we cxtended one direction of this simulation to
machines with oracles (in which the oracle tape
is a writc-only tape), and thus obtained lower
bounds on the sequential space required to
solve S-scarch, from our deterministic lower
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bounds on parallet time. In this paper we prove
that the other direction of this simulation is
also valid for machines with oracles, and can
thus obtain upper bounds on scquential space
from our detcrministic upper bounds on paral-
lel time, theorems 3 and 4. Thesc analogous
thcorems are

THEOREM 3. There is a Turing
machine that given an independence oracle for a
maltroid, finds a base of this matroid using only

O{nlogn) space.

THEORFEM 4':  There a Turing
machine that given an independence oracle for a
graphic matroid, finds a base of this matroid in
space O((logn})

is

2. A PROBABILISTIC LOWER BOUND
FOR GENERAL MATROIDS

QOur model of computation is a parallel
decision tree with an input oracle. A proba-
bilistic parallel decision tree of parallelism p
and oracle f is a tree with three types of
nodes:

1. Randomization nodcs. Every such internal
node has some number & of branches, cach is

taken with probability %

2. Oracle query nodes. Every such internal
nodc is Jabcled with p subscts By, ..., B, of E.
The branches from the node arc labeled with
all possible oracle answers f(By). . ..., f(B,).

3. Lcaves. Every leaf is labeled with one sub-
sct of E.

Assume without toss of generality that all
matroids on a clements have the same ground
st £. A uee M, that uses the independence
oracle IND, is said to solve the problem of
constructing a base for every matroid on n cle-
ments if {or any such input matroid M and for
any root-lcaf path the tree may take on this
input, if the lcaf is labeled with the sct B, then
| B is cqual to the rank of M, and the cdge
feading to the leaf is labeled with the oracle
answer IND(B) = TRUE.




For a given tree A, lct ¢(H,M), the cost of
M, be the expected (with respect to the ran-
domization nodes) number of oracle query
nodes (steps) on a root-leaf path that M may
take. Let ¢(H.n) be the maximum valuc of
c{H M) over all input matroids M with n cle-
ments.  Finally, the expected time to construct
a base for a matroid of size n with the

independence  oracle  and  parallelism  p,
denoted by 7#4(n,p), is the minimum of

c(H.n) over all trees A of parallclism p that
solve the problem.

1

THEOREM 2: Ti(n p) = Q{(logan)’].

PROOF: Although the result can bc
proved dircctly by combinatorial analysis, wc
find it morc transparent to present the proof
through the following reduction, (which in our
case simply converts a combinatorial proof to a
probabilistic onc).

Propoesition 2.1: Yao [Ya], Let T| be the
expecled running time for a given probabilistic
algorith solving problem P, maximized over
all possible inputs. Let T, be the average run-
ning time for a given input distribution, minim-
ized over all passible deterministic algorithms to
solve P. Then T, > T,

A deterministic algorithm is modeled in
our formalization by a deterministic parallel
decision tree which is a special case of a proba-
bilistic onc, in which there arc no randomiza-
tion nodes. The deterministic computation
time 73d(n.p) is similarly defined. 'The average
running time for a given input distribution D is
AT (n p.D) = Aﬁ” Lc({.n)]. where the aver-

age is taken over the distribution 2. To prove
the lower bound we have to present an input
distribution D such that

AT§(np.D) =

1

)]

n
lognp

For our proof we consider only partition
matroids of the following form: The » ground
clements arc partitioned into 2¢ cqual size scts,
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n
2t
iff |BN4;| 5’27“’ for all i=1,...,2t. The

Ay Ay, 1A = A sct B is indcpendent

input probability space D consists of all such
partition matroids that arc obtained from all
possiblc partitions of »n labeled elements into 2¢
sets of cqual size. All the matroids in this pro-
bability space have equal probability.

A computation path in a decision trce H
defines a sequence of cvents 0,,0,, - - - where
0, is the cvent defined by the oracle answers at
the first i—1 steps of the algorithm. Without
loss of generality, we can assume that the algo-
rithm is given more information through its
exccution. Narmely, that at the end of the j*
step, the content of the set A4; is revealed to the
algorithm. It is straightforward to cxtend the
trce H to a decision trec A’ that models this
computation. A computation path in H'
defines an  additional scquence of cvents
01.Q2-.., where @; is the cvent defined by the
assighments of clements to the  sets
An ..., A, 1. The probability of an input
instance at the start of step ¢ of the computa-
tion is its conditional probability (in D) given
the cvent 0, N Q.

We say that an oracle query IND(B) in the
j* step is local if
IND(B ﬂ(kL>JjAk) = FALSE and B has a

circuit in A4,
or
IND(B ﬂ(kL>JjAk) = TRUE and for cvery

>},
Yy, — n-
|Bﬂ(kL2J1A,()| 5(/+4)(2: 1+1)4lz.

Intuitively, as long as the algorithm cxe-
cutes only local querics, it can only lcarn about
the content of one sct 4; at a time,

Claim 2.1: For any i<t, if all the queries
in the first i —1 steps were local, then with pro-

a_.
bability 1-4pte ™ all the queries in the i*
step are local.




Proof: Our probabilistic calculations are
based on the following version of the Chernoff
bound for the approximation of the tail of the
Binomial distribution [AV, Ch}:

Forevery n >0,0<p <1,and 0< B <1,
11— B)np) 2

> Qrta-prt <gw(-£22)
k=0

and

n y 2
2 Qpr-prt <Eup(- £y
& =[(1+ B)np]

Let £ denote the event "ar least one of the
queries in the i* step was not local'. Then

ProbE£M0, | Q] <

ProblE | 0,NQ,] = Prob[o, Q] =

Probl£ | Q/]
Pr("b[oilQi].

We first compute the probability of the
event  Q;, for 1, (0,= D). Let
]A’D(Bﬂ(kLg_Ak)) be an oracle query in the j*

=)
step, j<i. It IND(B ﬂ(kQ_Ak)) = FALSE then
2J
since the query is Jocal, B has a circuit in A,
thus this oracle answer docs not give any infor-

mation about the distribution of the clements
in BIXUA). If IND(BN(U ALY was true
k>t k2j

then it gives the information that Bﬂ(kL>J_A,() is
>i
an independent set in the input matroid. Since
the query was local we also know that
. ] . n
lBﬂ(kLE’IA,()l <(@i-1+ 4—)(21 l+1)4[2.

ProblO; 1 Q] is lower bounded by the pro-
bability that p(i—1) given scts of size
.3 , n . .
(1—-;)(21—1-% 1)272 arc all independent in the
input matroid restricted to kL>J Ai. Ifasct B is
>

not independent it must have an intersection of
sizc at Icast

.n .3 . n 1 1
gANE —=X2r—i+1)-2- — |1+ =
1412 > [ 4)( ! ])412 Qi~i+ D) g 2i)

with onc of the scts 4. For given sets B and

Ax, the distribution of the size of the intersce-
tion BMA, is stochastically bounded by the
Binomial distribution with the parameters

1
T u-i+D |

.3 . n
@i —Z)(Zz z+l)4l2
Using the Chernoff bound [Ch], we compute

Prob[| BNA,| > [:4%] <

3
-3 n 1 1
EXP(-—— Q=14 iy )

Since there arc no more than p(i —1)<pr
possible B's, and no more than 21 4,’s we get

n

Prob{O; | Q)] > 1 — 2pite %7,

Let IND(C)....IND(C,) be the p oracle
qucrics at the i step, We distinguish between
two cascs:

It 1GMU A)] > i —i+l)4—':2(1+$)

then by the Chernofl bound with probability

LA
1200 4,3

1 —e C; has a circuit in A,.

Flse, (if C; is smaller) then, again by the
Chernoff bound, with probability

1 _n
1 - 21ehﬁ(’6’;’5_, FCNA, | _<_(i+%)4~';2 for any
k>i.  Thus, with that probability, cither
C’ﬂ(kl‘;'/'*) 1s not independent and has a circuit
in A, or C,ﬂ(kL}J/Ak) is indcpendent and for
every gl
1GO0Y 401 < (z’+71—)(2t—i+1)4—':2.

In both cases IND(C;) is a local query, and
we can conclude that

| ProblE | Q)]
ProblE] QN0 < 50T S




n

" 1200
___p____ <4pte 1200:'

1 - 2ptle e

The result of Claim 2.1 implics:

Claim 2.2: With probability greater than

__n
1 — 4pie 120063
steps are local.

all the queries in the first ¢

If the algorithm terminates in step j then
this step includes a query IND(B) where
IND(B)Y = TRUE and |B| equal the rank of
the matroid. In any of the first ¢ steps such a
query is not local, since if B is a base of the
matroid then

18N Y 40 2 3 g

k=j+l 4f2
.1 . n
+ X2t — -
U 4)(2t J+1)4t2

The probability of exccuting a query that
is not local in the first ¢ steps of the algorithm

n

. 3
is not greater than 4pele 120007

‘Therefore, with

probability >1 — 4pt2e ™ the number of

parallel steps is at lcast ¢, and hence
AT5(n.p.D) > t(1 — 4pi’e 120"’3.). Chousing
1
R i
= ( 5400 l ) we obtain
ind n
pmb(n rp) > ATdCl(n L D) Q[( ]ognp) ]

Remarks:

1. We prove a somewhat stronger result
than the statement of T'hcorem 2.1 since the
lower bound remains valid cven if we restrict
the input to the sct of partition matroids which
is a special case of lincar matroids.

2. The rank of the matroids used in the
proof is lincar in lhcir size, therefore we also

proved that Q{(

)3] is a lower bound for

the worst-case expected time to construct a
basc of a rank n matroid using the indepen-
derce oracle and parallelism p.

3. UPPER BOUNDS

3.1. PRELIMINARIES

Our algorithms will use two basic opera-
tons on matroids, restriction and contraction
[We].

Let M
E'CE.

= (E,I) be a matroid, and let

The matroid M  restricted to E',
M' =MI|E'=(E'I) is defined by
I'={BCE': BEI}.

Let A be an independent sct in M. The
matroid M contracted on the set E-—A,
M =M(E-A)=(E—-AT1) is defined by
I ={BCE—A:BUAEI}.

Both opcrations will be used to repeatedly
decrease the size of the problem. The follow-
ing propertics about the smaller system are
uscd in the proofs [We]:

Fact 1: If M is a matroid so are M' and M.

Fact 2: If BCE' then INDy(B) = INDy(B).
If BCE — A then INDg(B) = INDy(AUB).

Fact 3: If U is a base of M then AUU is a
base of M.

We say that a restricted matroid M’ is fidl
if ank(M") = rank(M).

Vact 4: If M is full then every base of M' is a
base of M.

Fact 5: Let T be a family of circuits in M and
let RCE be a set s.t.
L. R chchC (every member of R appears in

al least one circuit).
2 |RNC| L1 for every CET.




Then M' = M |(E =R) is full

3.2. GENERAL MATROIDS
THEOREM 3: Ti(n,n) = O(,n).

PROOF: Let M = (E,7) denote the input
matroid, £ = n. We show that in 0(1) steps
and using n processors we can reduce the
problem of constructing a basc in M to that of
constructing a basc in a submatroid M '=(£' /")

where £ < E(1L - L_). Let the ground sct
v

E be ordered, ie. E ={e,..., e, }. define
Akl = {e:j <i<k}andletr = NI

For all Jj=0...,r test
IND(ALjr (j +1)r =1.

If  there  exist ;' such  that
IND(A'r '+ D)r=1] = TRUE  then it is

cnough to find a base. for the contracted
matroid M" = M.(E = A[j'r, (' + 1)r—1)).

Else for every j=1....,r let k; be the
smallest index such that k;>jr,
IND(A[jr.k;~1] = TRUE and
IND(A[jr.k,)} = FALSE. 1ct R = {ekj:0_<_j(r};

then the clements of R lic on a disjoint cir-

cuits, thus the restricted matroid
M' = M(E-R)is full.
In  both cases the size of M’
1E'l < |Ej0-—L),
v

3.3. GRAPUHIC MATROIDS

A matroid M = (£ is graphic if there
exists a graph G = (V.E) such that for all
ACE, A€l iff 4 is a forest in G. Any such
graph G is said to represent the matroid M.
For the following proof we need the notion of
the girth. The girth of a graph G, g(G), is the
size of its smallest cycle. The girth of matroid
M. g(M) is the size of its smallest circuit. If G
represents M than g(G) = g(M).

THEOREM  4: For graphic matroids
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Tig(n,n%%ey = 0(logn).

PROOF: The algorithn works in itera-
tions, cach itcration reduces the rank of the
matroid that is considered. This will be done
in two steps. First a restricted full matroid of
high girth is obtained, then a large independent
set is found in the restricted matroid. The
input to the next iteration is the restricted
matroid contracted on the independent set, thus
a matroid with smaller rank. The algorithm for
increasing the girth works for any matroid, not
neeessarily graphics. The idea is simply to fix
an ordering on the clements and then to
remove in parallel the last clement in cvery
small cycle,

Procedure Increasc_girth(M, k).
input: M = (E,I), 0<k<n, E = {er....e.}.
R «{e;:existsAd, Cle. . . ., e_1},
|4;] <k st IND(A) = TRUE
IND(A,Ue)) = FALSE};
E'«E — R;
M'«M|E"
output: M,
Claim 3.1: 1. M is full
2. 8(MY> k.
3. The procedure takes O(1) time
and uses n**? processors,

and

Having a matroid M = (E,/), |E] = n,
with girth g(M) > Glogn, we show how to con-
struct in constant time an independent  set
ACE with [A] > an for a fixed a30. We first
describe a probabilistic algorithm  that uscs
O(n) processors, then we shaw how (o ¢clim-
inate the randomness using 7% processors.

Cliim 3.2: Let ACE, |A| = g be a ran-
dom subset chosen uniformly among all subsets
of size —2"— then

ProblIND(4) = TRUE] > 1 — %

Prool: Let G = (V.E) be a graph that
represents M. Note that as |E| = a,




[Vi<2n. Also, the girth of G satisfies
g2(G) = g(M)> 6logn. If g(G)>2r, there can
be only onc path of length r between any two
vertices in G, therefore the total number of
paths of length r in G is bounded by

[‘ IZ/I] <2n If 4 is dependent it contains a

cycle in G. As all cycles in G arc longer than
6logn, A certainly contains a path of length
3logn. Thus

Prob[IND(A) = TRUE] > 1—2n22-Y&" > 1—3

Claim 3.2 clearly implies a probabilistic
algorithm. It also shows that the problem of
finding a large independent sct can be formu-
lated in terms of constructing a large sct that
does not contain any member of a small pre-
defined family of small forbidden subscts. The
next section shows how to solve this problem
dcterministically.

33.1. EXPLICIT CONSTRUCTION OF

PACKINGS

[.et U be a universe of n clements. A
(b.k)-family is a family of at most b subscts of
U, cach containing at Icast £ clements.

A (b.J)-Tamily W is (s.)-universal if for
any (s.)-family £, there exists a sct from W
that contains no sct from F.

Note that in the context of the previous
discussion, F is the family of forbidden subsets
(paths). The family F itsclf is unknown cxcept
for its paramcters s = 2n%, and ¢ = 3logn. A
(b.k)-family W that is Qa2 3logn) -universal,
with k = n) will give us a way of finding an
independent sct by simply testing in paraliel all
members of W for independence. Hence we
nced an explicit construction of W in which &
is as small as possible (it corresponds to the
number of processors required for the exccu-
tion).

We first reduce the problem of finding a
universal families to that of finding packings.
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A (b.k)-family W is a (1,A)packing if every ¢-
subsct of U is a subset of at most A members
of W.

Claim 3.3: If a (b,k)-family W is a (¢,N)-
packing, and b>s\, then W s (s,t)-universal.

To construct such a packing, assume
n = 2" and consider the clements of U as the
clements of the finite field GF(Q2™). Lct
P:GFQ2™) — {0,1} be any fixed predicate which
partitions the ficld into two cqual halves. Let
SEGFQ™)x] be a polynomial over the ficld.
We interpret the n-bit vector
v(f) = (PAO). ..., P(f(2" -1))) as a charac-
teristic vector of a subset V(f) of U. Consider
the family of subscts

Vi = {V(f): FEGFQ™)x], deg(f)< t}.
Claim 3.4: Every t-subset of U is a subset

of exactly (—;1)’ sets in V,.

Proof: ¥, has n* members. By Lagrange’s
interpolation theorem, we know that for any ¢
clements in the field 7. .. ., i, <fUY .. fUY
tikes all possible n* valucs as we vary over all
polynomials f of degree <. Hence every ¢-bit

occurs (%)’
PG, ..., P(fG)» as we vary over all
polynomials. ‘This is truc in particular for the
all 1's bit vector, which corresponds to the

number of occurrences  of the  subsct
{iL....§} in subscts of V,.

vector times in

Sct 8, = {VEV,: |V|2§}.

Claim 3.5: B, is«a (%r-,%)-ﬁlmily which is

2 3.0)-universal.

Proof: Thec fact that B, has at least -':—;—

members  follows from Markov's incquality.
By construction, as it is a subfamily of ¥, it is

a (1.(%)’)-packing. Since & = %'— > 2“3(—'2’—)’
= sA, by Claim 4.3, B, is (2 -3,¢)-universal.

Returning now to the problem of finding a




large independent set in a graphic matroid with
high girth, we mnote that for ¢ = 3logn,
273> 212, so by Claim 4.5 at least one of the
O{n’) scts in B, is independent.
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