On a Search Problem Related to
Branch-and-Bound Procedures

R. M. Karp,*

0. INTRODUCTION

Branch-and-bound procedures are
commonly used in practice for the
of NP-hard
optimization problems (see e.g., [PS,
LW)).

tures the essential elements common

solution combinatorial

We describe a model that cap-

to all branch-and-bound procedures.

Storage limitations in these pro-

cedures raise in a natural way an

We

present deterministic and probabilistic

interesting search problem.
algorithms for this problem. These
imply that branch-and-bound can be
performed with very small storage and

only slightly superlinear time.

In section 1 we describe the
search problem and state our results.
In section 2 we describe the algo-
rithms. Section 3 elaborates on the
relation of our search problem to

branch-and-bound procedures.

*University of California and MSRI, Berkeley, CA

M. Saks,**

A. Wigderson***

1. ASEARCH PROBLEM

The will be
ordered, infinite binary tree T. By

input a valued,

this we mean

(1) every vertex v€T has a left
child and a right child, denoted
L{v) and R(v) respectively. The
root of T is r.

(it) every vertex has a value, val(v),

and the function val: T - N

satisfies val(v) < val(L(v)) and

vallv) < val(R(v)). (In

words, values along any path

other

from the root increase, so the

tree is a heap).

(For simplicity we shall assume that
values on the tree are distinct, i.e.
val(v) # val(u) for each
u €T, u = v.

not affect any of the results).

This assumption does

**Bell Communications Research, Morristown, NJ and Department of Mathematics, Rutgers University,

New Brunswick, NJ

*++MSRI, Berkeley, CA and Institute of Mathematics and Computer Science, The Hebrew University,

Jerusalem

0272-5428/86/0000/0019301.00 © 1986 IEEE

@ R
I Y . A

The computation is performed by
a RAM M (e.g. AHU) that "explores"
the tree. At any time step M resides
at a vertex v€T. Only then can it
read val(v). As atomic steps, M may
decide to move to either L{v), R(v) or
F(v) (the father of v) if it exists.

tially, M is placed at the root r of the

Ini-

tree, and is given a separate integer
input n. The task of the computation
is to find the n'* smallest value in the
set {val(v)|[v€T}. We call this prob-
lem SELECT(n).

Every traversal of an edge costs
one unit. For simplicity we assume
that all other computation is free.
(Charging for the arithmetic opera-
tions as well will only affect our upper
bounds by a constant factor). Hence,
the time of a computation is defined to
be the total number of edge traversals
(the length of the tour of M) during
the The space is
defined to be the total number of
M. For a (fair

account of space we allow a register to

computation.

registers used by

contain only one tree value, i.e. these
values are atomic and can only be
compared. The program, however,
may apply the usual arithmetic opera-

tions to other integer variahles.

For a given (randomized) algo-
rithm A, let T4(n) and S,(n) denote,
respectively, the (expected) time and
space complexity of SELECT(n) for

the worst case function val:T — N.

Before stating our results we

recommend that the reader verify the
fact: SELECT({n)

requires {l(n) steps, and can be solved

following easy

in O(n?) steps.

Our main results are three algo-
rithms for SELECT (n»,

(1) A randomized Las Vegas algo-

rithm B, with

Tgin) = n-20 Viens
Sgin) = OiVlogn).

(2) A deterministic algorithm C,
with Teln) = n.zO(Vlogn)’

Sc(n) = O(log?5n).

(3) For every fixed & a randomized
algorithm D¢ with
TD((n) = O(nl‘l"f)’

SD((R) = 0(1)

2. ALGORITHMS

Both the deterministic algorithm
C and the randomized algorithm B
will be variants of algorithm A,
described in subsection 2.1. Algorithm
A will not be
(S4(n) = 0O(n)), but will serve to illus-
trate the ideas for achieving the time
bound T4(n) = n - 20(@).

section 2.2 we will show how to reduce

space efficient

In sub-

space using randomization (Algorithm

B). In subsection 2.3 we describe the

deterministic small space algorithm C.
In 2.4, we show how to trade space for

time.

In this section, the algorithms
and the analysis are described infor-
mally. However, we add an appendix
that contains the precise description of
Algorithm A in a PASCAL-like

language for scrutiny.

2.1. The Deterministic Algorithm A

This algorithm is best thought of
as a branch-and-bound algorithm. Let
NTH be the n'* smallest value in the
tree. The algorithm will proceed in
phases. The i** phase will start with
lower and upper bounds L;_; and
U,_, on NTH
L, <NTH = U;_;) and terminate
with better bounds L; and U; (ie.
L,_, <L, sNTH = U, <U;_,). For
the first phase,
L, = val(r), U, = =,

(i.e.

assume

To understand a phase, we must
understand the "roots" of this phase.
Let T; be the tree of all vertices whose
values are = L;_,;, (ie. T; contains
the "good" values found before the it
phase where good means = NTH). A
vertex u is a root for this phase if it is
the child leaf in T;

val(u) < U;_;. Note that the remain-

of a and

ing good values to be found must be in

subtrees rooted at these roots.

21

e TR T e o

Let R = {r,,ry,.,r,} be the set of
roots for phase i. This phase will pro-
duce a total of g =g(n) =n (a
parameter to be determined later) new
good values from the subtrees rooted

at R.

Assume that somehow we knew
that the smallest n; values in the sub-

tree rooted at r, are good (i.e. all are

= NTH), and further that 2 n, =g.
/=1

Then we could call our algorithm

recursively from r;

; asking for the

smallest n; for

; from this subtree,

1 = <s. The complexity of this

phase will be then bounded by

|T;| + 2 f(n)), where f(n) is the
i=1

time to find the n** smallest using this
algorithm. The overhead |T;| is for
After
phase i we shall set L; to be the larg-

traveling between the roots.

est good value found in this phase (U;
is not needed in this hypothetical
situation), and proceed to the next

phase.

Of course, we do not know the n;
in advance. However, using an obser-
vation we shall describe soon, we will
be able to bound the total cost of
recursive calls to root r; by c; f(nj),
and the total by

o |T;| log?n < where

overhead
con log?n,
¢y, ¢y are absolute constants, indepen-

dent of n. As each phase will provide

gin) new good values, the number of
n

phases will be about) and hence
fin) = =] 2 fin) + nlogtn

Zn, =gln:

where ¢ = max{c,, ¢c,}. We will show

that for a suitable choice of g(n), there

1s a constant K such that
f(n) = nK Ylogn satisfies this
recurrence.

The key (simple) observation is
that given a value Z, it is easy (O(n)
time) to test if it is good (i.e., whether
or not Z = NTH). Perform depth-first
search, retreating each time a value
greater than Z is found, and count the
number of values < Z found, stopping
at n. If the counter reaches n, then Z
is bad, else it is good. (This is the pro-

cedure "good" in the appendix).

Moreover, given s values,
Z2.2,,.,2, we can test which of them
is bad in time O(nlogs), by sorting
them and using binary search to find
the largest good value amongst them.

(This is procedure "bounds" in the

calls the £** best from each r;, say Z,

will be returned, and we shall test
which this
S ={Z,2,,..Z,) are good. For the

next iteration, rdoubling k) we will

values on set

proceed only with roots r; such that Z;
was good, which we call live roots.
This has the effect that if r, eventu-
ally supplied n; good values, the total
time spent in recursive calls to it is
fi) + A2 + fld) + ... + f(2Y),

that 2’71 = n. < 2, and f will satisfy

such

that this sum is bounded by ¢, f(n)).
The overhead in finding after each
iteration which roots are alive is
O(nlogn), and as there are at most
log g(n) = logn iterations, this time
is bounded by c, nlog?n steps. At the
end of the phase, L; is taken to be the
largest good value found so far, and U;

the smallest bad one found so far.

Analysis
< £) + nlog?
f(n) 2(n) [angg(n) f(n;) + nlog*n]

We will choose a convex function f, so

appendix). fin) = =2 [f(g(n)) + nlog?nl.
g(n)
Now the idea will be to call the Set, f(n) log® n h(n). Th
algorithm recursively to find the k* et f(n) = n log"n hin). .
smallest in the tree of r;, 1 =j =,
with & = 1,2,4,8,.... (This is the inner h(n) = clh(g(n)) + g(r;) :
while loop in procedure "findbest" in
the appendix). After each such set of <o 42 &R +m+ct£[t__1](_")
gln) glgn)) g(n)

22

Given ¢ this

where gl (n) = 1.

expression is minimized when all of its

terms are equal, and in this case their
t+1 1

. 2 n .
common value is ¢ © n‘. Choosing

t = V2log. n, corresponding to

we obtain

hin) = m c 2logcn = 90 Viegn:

Hence

n log2n 20(logn) _ n20| Viogn:

f(n) =

2.2. The Randomized Algorithm B

The deterministic algorithm A
maintains a constant number of vari-
ables per level of recursion, except for
the set S = (Z,,Z,,...Z ,} from which it
should extract the live roots for the
next iteration (doubling k). Algorithm
A sorted S and then used binary
search to find which Z; are good
(= NTH).

use

We now describe how to
this

"binary search" using only a constant

randomness to perform
number of registers, in expected time
O(nlogs).

First, assume that r,r,,..,r, are
ordered in the way they occur in a
depth first traversal of the tree T,.
Then Z; can be computed given only

23

L, _,,U;,_;,j and k& in this level of
recursion (plus a recursive call to the
tree of r;), simply using a counter to
identify the j* root rj. Furthermore,

the procedure "good" to test whether
Z < NTH

S only one

also requires

counter.

Now, the binary search is done
We keep X,

and X;-, lower and upper bounds on

using random splitters.

the largest good value in S. Initially,
X = - When
X; = X we are done. If not, the fol-

and XU = oo,

lowing iteration is repeated:

(1) Count the number (say I) of Z,
such that X; = Z, < X;;. (This
is procedure "roots” in the appen-

dix).

(2) Pickarandomj, 1 = <[

(3) Find the j* root (say r,) among
roots r, which

Xy, =2, = Xy in the ordering

those for

F1s7 95T g,

(4) If Z; is good, then X; « Z,, else

XU « Zm'

It is easy to see that the expected
time until X; = X, is O(logs), and
since each goodness test is linear, the
expected time to

O(nlogs).

completion is

The time analysis of algorithm B

is identical to that of A, so

Tg(n) < nK'“er,

recursion only a fixed number of vari-

At every level of

ables is needed, and since

gln) < there are at most

2V10gn
O(Vlogn) levels of
Sg(n) = O(Vlogn).

recursion, so

2.3 A Small Space Deterministic

Algorithm C

In light of the previous section,
we can now distill an abstract prob-
lem, a small space solution to which

will provide a small space algorithm.

We wish to perform binary search
which

(restricting ourselves to depth first

on an unordered set Z,,Z,,...Z,,

search) can be accessed only sequen-
tially in left to right order (perhaps
several times). This can be done if we
have a selection algorithm which finds
the i** smallest element in the set for
any 1 =i < s. But this is exactly the
"external selection” model discussed in
[MP].
O(log? s) space, selecting the i** smal-
lest from the set {Z,,..,.Z,} takes only
O(log s) left-to-right passes over the

set.

They show, that using only

As s = n and scanning Z,..,Z,
in left to right order takes O(n) time
(depth first search), the total overhead
in every phase, even if we use
O(log? n) variables per level of recur-

sion, is O(n log? n).

24

Munro-

the

So incorporating

Paterson selection algorithm into

Algorithm A results in a deterministic

algorithm C for the tree selection

problem with Te(n) = n K een
(same analysis) and
Sctni = Otlog®® n) (each level of

recursion requires O(log® n) space).

2.4. Trading Space for Time

The choice of g(n) in the analysis
of section 3.1 was made to minimize
the running time of the algorithm.
Note, however, that g(n) determines
also the depth of recursion, and hence

the total space used.

The analysis of section 2.1 shows,

that for every t, 2 <t < Vlogn, if
1

we choose g(n) = n !, we obtain an

algorithm D, whose running time is
1+ L
Tp,in) =0n ‘b,

maximum depth of recursion is O(t).

and whose

Hence if D, uses randomization in the
binary search, also Sp (n) = O(t) (if
D,
O(t log? n).) This means that even

were deterministic, space is
with constant space, we have for any
fixed €>0
SELECT(n) whose running time is

bounded by O(n1**)!

an algorithm for

3. RELATION TO BRANCH-AND-
BOUND PROCEDURES

Branch-and-bound procedures are
widely used in practice for the solution
of NP-hard combinatorial optimization

The main results of the
paper
bound procedures to be implemented

problems.

present permit branch-and-
with a very small amount of working
storage, at the cost of a relatively
modest increase in execution time. In
order to explain this consequence of
our results, we describe the essential
elements common to all branch-and-

bound procedures.

We consider combinatorial optim-
ization problems of the form: minimize
g(x), where x ranges over {0,1}™.
Each coordinate of x corresponds to a
zero-one variable, and the branch-
and-bound approach is based on con-
sidering certain restrictions of the ori-
ginal problem, obtained by fixing some
of these zero-one variables to constant
values. A restriction is defined as an
element s€ {0,1,*}. The coordinates of
s containing a zero or a one are called
fixed, and those containing a * are
called free. Associated with any res-
triction s is the domain Dom(s), con-
sisting of those solutions x which
agree with s in all the fixed coordi-

nates; i.e.,

Dom(s) = {x€ {0,1}"|s;, # « = x; = s;}.

The subproblem associated with res-

triction s is to minimize gix), where x
ranges over Dom(s). In particular, the
original optimization problem is the
subproblem associated with the res-
triction +™, in which every coordinate

is free.

Fundamental to each branch-
and-bound procedure is a subroutine
for computing lower bounds. On the
input s this subroutine returns a
value A(s) such that

A(s) = min g(x). Often, this sub-

x€ Domis)
routine derives its lower bound by

solving a relaxed version of the sub-
problem associated with restriction s;
for example, the relaxation might
replace an integer programming prob-
lem by a linear programming problem;
this is done by allowing the variables
corresponding to free coordinates to
range over the interval [0,1], rather
than the discrete set {0,1}. We assume
the following monotonicity property of
the function A(s): if restriction s’ is
obtained from restriction s by fixing
one or more free coordinates, then
A(s') = A(s).

lower bound cannot decrease as the

In other words, the

domain of the restriction shrinks.

Certain restrictions are desig-
nated as terminal restrictions; every
terminal restriction s has the property
that the associated lower bound is

tight;, ie, A(s) = min g(x). We
x€ Domi(s)

assume that there is an efficient pro-

m

cedure for testing whether a given res-
triction s is terminal and that, in par-
ticular, every restriction in which all

coordinates are fixed is terminal.

The final element in a branch-
and-bound formulation of a combina-
torial

optimization problem is a

branching rule. This rule associates.
with each nonterminal restriction s, a
pair of restrictions L(s) and Rts) (the
left child and right children of s)
obtained by fixing some free coordi-
nate of s to the values 0 and 1, respec-
tively. In other words, there is some
coordinate [such that
sli] =* L(s); =0 and R(s), = 1.
For any other
J» sj = L(s); = R(s);.

coordinate

The object of a branch-and-bound

procedure is to determine min g(x) by
X

finding a terminal restriction s for
which A(s) is a minimum. At any
stage in the execution of a branch-
and-bound procedure, let us say that a
restriction is active if it has been
created but not yet branched from, so
that its children have not yet been
created. A typical branch-and-bound
procedure maintains a list of active
restrictions. For each active restric-
tion it keeps track of the associated
lower bound A(s), together with an
indication of whether s is terminal or
nonterminal. Initially the only active

restriction is ™, the restriction in

which all coordinates are free. At

each step the procedure selects some
nonterminal active restriction s and
replaces it by its two children, Lts)
and R(s),

ing the restriction s. The computation

This step is called expand-

terminates when the smallest lower
bound, among all the active restric-
tions, corresponds to some terminal
restriction s. In this case it is easy to
check that

A(s) = min g(x) = min g(x),
x x€Domts)
so that the combinatorial optimization

problem is solved.

The following rule defines the
branch-and-bound procedure known as
best-first-search: among all the active
restrictions, expand the one whose
lower bound is smallest. In the case
where the function A(s) is one-to-one,
so that no two restrictions have the
same lower bound, this procedure is
optimal, every restriction that it
expands must be expanded by every
branch-and-bound procedure. Among

best-

first-search is the method of choice

branch-and-bound procedures,

when enough space is available to
store the list of active restrictions.
However, this amount of storage is
typically exponential in m, the size of
the problem. In such cases space may
be too limited for best-first-search to

be implemented.

The algorithms given in the pre-
vious section allow branch-and-bound
procedures to be executed using a very
small amount of space, at the cost of a
modest increase in execution time. To
make explicit the connection between
our results and the branch-and-bound
method, let us think of the branching
rule as determining a finite, rooted,
ordered binary tree whose nodes
correspond to restrictions. The root of
the tree corresponds to the restriction
«™; if node s is not terminal then its
children are the restrictions L(s) and
R(s). The the

correspond to terminal restrictions.

leaves of tree
The goal of the branch-and-bound pro-
cedure is to find a terminal restriction
of least value. Because of the mono-
tonicity property of the lower bound
function A(s), the values on any path
directed away from the root form a
Thus the

tree conforms to the assumptions of

nondecreasing sequence.
our tree search model, with two excep-
tions: the tree is finite, and the same
value may occur on more than one
node. These the
model are easily dealt with. The

finiteness of the tree can only make

deviations from

the tree search problem easier. In the
presence of equal values a simple
tiebreaking rule can be used to obtain
a total ordering of the nodes of the
the branch-and-bound

problem can be solved by repeated use

tree. Hence,

of any of our tree search algorithms,
doubling the input parameter at each
step, and halting when the terminal

node of least value is found.

The following table compares the
time and space requirements of best-
first-search with those of the algo-
rithms in the previous section when
the terminal node of least value is the
n'*-smallest node in the branch-and-

bound tree.

Time Storage
best-first-search O(n) O(n)
Algorithm B n 20Y0er O(Vogn)
Algorithm C n 20V182 O(log?5 p)
Algorithm D nlt+é€ o)
REFERENCES

[(AHU] A. V. Aho, J. E. Hopcroft and
J. D. Ullman, The Design and
Analysis of Computer Algorithms,
Addison-Wesley, 1975.

[(LW] E. L. Lawler and D. E. Wood,
"Branch-and-Bound Methods - A
Survey", Operations Research, 14
pp. 699-719, 1966.

[MP] J. I. Munro and M. S. Paterson,

"Selection and Sorting with Lim-

ited Storage", Proceedings of the
19th FOCS Conference, pp. 253-
258, 1978.

[PS] C. H. Papadimitriou and K.
Steiglitz, Combinatorial Optimi-
zation: Algorithms and Complex-

ity, Prentice-Hall, 1982.
APPENDIX
All our be

described in informal PASCAL. Every

procedure will have as a first input

algorithms will

parameter the vertex in which it
resides. A procedure residing at v can
(recursively) call a subroutine that
will reside in either v,L{v) or R(uv).
When such a subroutine terminates, it
returns to the vertex from which it
was called. Hence, the time analysis,
we shall count the number of subrou-

tine calls to a child.

We shall use upper case variables
for vertex values, and lower case vari-
ables for vertex names and integer

counters. The names of procedures

appear in boldface. Let T, will denote
the tree rooted at vertex v, and T be

the k** smallest value in the tree 7.

Algorithm A (r,n) (returns a value)
return (findbest (r,n))

findbest (v,n) (returns a value)
LOWER ¢ val(v), UPPER « UP
while good (v,n, LOWER) < 2 do;
Ir « roots (v,1, LOWER, UPPER)
k « 1; NEW_LOWER « LOWER;
while Ir = 0 and [good (v,n, NEW_LOWER)
- good (v,n, LOWER) < g(n)] do;
§ « expand (v,k, LOWER, UPPER);
(L,U) « bounds (v,n,S);
if L # — ® then NEW_LOWER « L;
if U = o then UPPER « U,
k < 2k; Ir « roots {v,k, LOWER, UPPER);

28

if Ir = 0 then NEW_LOWER — UPPER.

end

LOWER « NEW_LOWER,
end
return select (v,n, LOWER)

expand (v.k, LOW.UP) (returns a set of values)
if valtvy = LOW then return
expand (L(v),k, LOW. UP). U expand (R:vr.k. LOW. UP -
else if good (b k. UPy = k then
return - findbest v &

good (v,n,K) (returns an integer;j
if valiv: = K then do.
y+< 1 =good L'v.n -1 K:
ify < n then return 1y + good :Riv). n — v A
else return (n)
end
else return (0).

roots (v.k, LOW,UP) (returns an integer)
if val{v) = LOW then return
roots (Liv),k, LOW, UP) + roots (Riv),k, LOW. UP:
else if good (v,k, UP) < k then return (0)
else return (1).
bounds (v,n,S) (returns two values)
Sort S.
using binary search find:
L « largest value L' in SU{—} s.t. good (v,n, L") < n
U « smallest value U’ in SU{=} s.t. good (u,n,U’) 2 n
return (L,0)
select (v,n,K) (n = good (v,»,K) < 5n) (returns a value)
simple binary search on the
values < K in T, to find X s.t. good (v,® X) = n
return (X).

