On Read-Once Threshold Formulae and their

Randomized Decision Tree Complexity

(Preliminary Version)

Rafi Heiman

Abstract

TC® is the class of functions computable by
polynomial-size, constant- depth formulae with
threshold gates. Read-Once TC" (RO-TC®) is
the subclass of TC? which restricts every vari-
able to occur exactly once in the formula.

Our main result is a (tight) linear lower
bound on the randomized decision tree com-
plexity of any function in RO-TC".

This relationship between threshold circuits
and decision trees bears significance on both
models of computation. Regarding decision
trees, this is the first class of functions for
which such a strong bound is known. Regard-
ing threshold circuits, it may be considered as a
possible first step towards proving TC? # NC;
generalizing our lower bound to all functions in
TCP will establish this separation.

Another structural result we obtain is that
a read-once threshold formula uniquely repre-
sents the function it computes.

1 Introduction

1.1 Boolean Decision Trees

The Boolean decision tree is an extremely sim-
ple model for computing Boolean functions. It
charges only for reading input variables. Every
function on n variables has complexity < n.
Perhaps surprisingly, decision trees turned out

*The Weizmann Institute of Science, Rehovot, Israel

1 The Hebrew University, Jerusalem, Israel

{ The Hebrew University, Jerusalem, Israel. Partially
supported by Israel- American Binational Science Foun-
dation Grani No. 87-00082

CH2899-3/90/0000/0078%01.00 © 1990 IEEE

Ilan Newman |

78

Avi Wigderson *

to be fundamental in studying the complexity
of Boolean functions in general models, such
as CREW PRAM [Nisg9], and AC® circuits
[LMN89].

The first major result for this model was
the linear lower bound of Rivest and Viullemin
[RV78] for the class of monotone graph proper-
ties, proving the Aanderaa-Rosenberg conjec-
ture.

A conjecture that an §(n) lower bound ap-
plies to this class even if we allow random-
ization, is attributed to Karp. This has been
proven for a few special monotone graph prop-
erties, but the best general lower bound is
Q(n2/3) of Hajnal [Haj88] (improving on Yao
[Yao87] and King [Kin88)).

Our main result exhibits a natural class of
functions for which a linear lower bound holds.
The proof combines generalizing techniques de-
veloped in [SW86] to study read-once formu-
lae, and understanding ‘partial’ computation
of threshold functions by decision trees.

1.2 Threshold Circuits

The study of circuits with threshold gates and,
in particular, those of polynomial size and con-
stant depth (the class TC") also has several
motivations. These circuits capture essential
aspects in neural net computations [RMP86],
[Hop82). They have been shown to be equiva-
lent to constant-depth arithmetic circuits over
finite fields [Rei87), [SFB). They were recently
related to simulating the Polynomial hierarchy
by counting oracles {Tod89], [A1189].

The fundamental question of whether the in-
clusion TC® C NC* is proper, surfaced natu-
rally after AC® # TC® was resolved ([FSS84],

-

[Ajt83] and their umprovements), and after
the results about constant depth circuits with
prime modulo gates were proved ([Raz87],
[Smo87]). This question has been under attack
in the last few years.

Two important steps were made in the di-
rection of separating TC® from NC!. The first,
by Hajnal et al. [HMP*87], separated depth-
2 from depth-3 polynomial-size threshold cir-
cuits. The second, by Yao [Yao89], separated

the monotone analogues of the classes TC® and
NC'.

In 1986 Saks suggested a bold approach to
separating these classes: Show that every func-
tion in TC® has high (say linear) randomized
decision tree complexity (in terms of its deter-
ministic complexity). This will suffice, as there
are several examples ([Sni85], [Bop], [SW86])
of evasive (deterministic complexity n) func-
tions in NC! with randomized complexity n®
for o < 1.

This approach reduces a lower bound in the
Circuits model to a lower bound in the informa-
tion theoretical model of randomized decision
trees. It is particularly original and intriguing,
since the separation will be proved by showing
that functions in the smaller class are harder
{(in the second model).

QOur result can be considered as a first step
in this direction. It proves the desired lower
bound for read-once TC® functions. It is naive
to be optimistic just because every TC® func-
tion is a simple projection of a read-once TC®
function; it is not clear what happens to deci-
sion tree complexity under projections. Ilow-
ever, the proof of the lower bound reveals that,
from the point of view of randomized decision
trees, threshold gates are no more powerful
than ANDs and ORs, which hints that this may
be the right direction to pursue.

2 Definitions and State-
ment of Results

2.1 Boolean Decision Trees

A deterministic decision tree, T, is a labeled
binary tree. Each non-leaf node is labeled by
some input-variable, z;. The two outgoing
edges of such nodes are labeled, one by ‘1’ and

79

the other by ‘0’. Each leaf is labeled by an
output value which is either ‘17 or ‘0.

The path of T on input-setting ¢ =
€1,....,6n € {0,1}", Pathp(e), is that (unique)
path in the tree which starts at the root, and at
each node, say labeled by z;, follows the edge
labeled ;. Varr(e) denotes the set of variables
labeling the nodes of Pathr(g). The output of
T given €, Outputr(e), is the bit labeling the
leaf of Pathp(g). T computes the Boolean func-
tion f if Outputp(e) = f(¢) for every €.

The time consumed by T, Timer(g), is sim-
ply Varp(e)]. (Every variable is probed at
most once in a path.) The complerity of T
is the time consumed for a worst case input.
The deterministic deciston tree complezity of
f, DC(f), is the complexity of the best deter-
ministic decision tree that computes f,

DC(f) = mTin mgaxTimeT(E). (1)

A randomized deciston tree for f, RT, 1s
a distribution over the deterministic decision
trees for f. Given ¢, a deterministic decision
tree is chosen according to this distribution and
‘performed’. This makes the path and the time
consumed random variables (however the out-
put is always correct). The complexity of RT
is the expected time (the expected number of
variables it probes in order to determine the
output) for a worst case input. The random-
ized decision tree complezity of f, RC(f), is
the complexity of the best randomized decision
tree that computes f,

RC(f) = lTI%}Il:l m’ax ETERT [TimeT(s)}. (2)
Here E stands for expectation and T € RT
stands for a random T chosen according to the
distribution RT.

By a lemma of Yao [Yao77], which is based
on the minimax theorem, we have the follow-
ing equivalence between RC(f) and the disir-
butional complezuty of f.

RC(f) = max mTin Ec.ep[Timer(e)]. (3)
where D ranges over all distributions on input
settings to f, T ranges over all deterministic
decision trees for f, and ¢ € D stands for a
random input-setting ¢ chosen according to the
distribution D. The distributional complexity
is a useful tool for proving lower bounds. One

iitedl

can guess some [and then prove a lower bound
on minr E.¢p[Timer(¢)].

A partial decision tree, T, for f is very sim-
ilar to a deterministic one, except that a leaf
in it may contain a ‘7. T is required to
satisfy Outputyp(e) = f(e) for every ¢ with
Outputp(e) # 7°. For example, the trivial de-
cision tree, which contains a single node (a leaf)
labeled by a 7', Is a partial decision tree for
every Boolean function. Central to our proof
is an inequality satisfied by all partial decision
trees computing a simple threshold function.

2.2 Read-Once Threshold For-
mulae

A threshold gate, denoted T} for some k > 1
and 1 <! <k, is a Boolean gate with k& inputs
that outputs ‘17 iff at least [of its inputs are
‘1’. For example, T and T} are, respectively,
OR and AND gates of fan-in k.

A read-once threshold formula is a formula
with threshold gates in which each variable ap-
pears exactly once. We would like to point out
here that disallowing negation gates doesn’t
restrict the generality of our results. Nega-
tion gates can be ‘pushed’ to be applied to in-
puts only. Then renaming all negative liter-
als as positive ones (as input-variables) doesn’t
change relevant combinatorial properties such
as the deterministic and the randomized deci-
sion tree complexities.

An example of read-once AND-OR formula
is the AND-OR tree function, g(?), defined for
every depth d on n = 29 input-variables:

¢9(z;)=z,; and
g2y, Tgan) =
9Nzy, ., 220)00 9 (29ap), oy Toar).

where ¢ is AND for even d and is OR for
odd d. This function is in NC!; its formula
depth is logarithmic in the number of variables.
It is easy to see that its deterministic dec-
sion tree complexity is maximal, DC(g{¥) =
n. However its randomized complexity is low,
RC(3@) = O(n°) for o = logy(1F) =
0.753... [SW86]. The large (logarithmic) depth
enables iterated savings that turn out to give
this low randomized complexity.

80

2.3 Statement of Results

Qur main result says that large depth is neces-
sary for low randomized complexity.

Theorem 1: let F be a read-once threshold
formula of depth d over n input-variables that
computes a Boolean function f. Then

n

RCU) 2 22

The next section is devoted to the proof of
this theorem. The proof is based on general-
izing techniques of [SW86], as well as on us-
ing the new concept of partial decision trees.
A weaker lower bound, namely RC(f) > f,
can be proven more simply by using the lower
bound result of [SW86]. The direct proof given
here is, we believe, a more significant step in
the study of the randomized decision tree com-
plexity in general, and that of threshold circuits
in particular. This direct proof has another
advantage. It works also in a more powerful
model. This model enables, in particular, gates
that compute arbitrary symmetric functions:

Definition: A Boolean function g, defined
on k input-variables, is said to confain a flip
if there exists an [, 1 < ! < k, such that ¢
outputs the same value whenever exactly [of its
inputs are ‘1’, and outputs the opposite value
whenever exactly { — 1 of its inputs are ‘1.

Corollary (of the proof): Let F be a read-
once formula of depth d over n input-variables
whose gates are functions that each contains a
flip. Let f be the function F' computes. Then

n

RC() 2 o

One may verify that the proof given in the
next section works for these gates as well.

Our second result says that a Boolean func-
tion that can be represented by a read-once
threshold formula has a unique such represen-
tation.

Definition: A read-once threshold formula
is non-degenerate if no input of some TF-gate
(OR) is the output of some other T¥ -gate, and
similarly, no input of a T}-gate (AND) is the
output of a TE -gate.

Theorem 2: Two non-degenerate read-
once threshold formulae that compute the same
Boolean function are identical.

This theorem is proved in section 4.

3 Proof of Theorem 1

In the definitions of time and complexity above
we assumed a unit cost for probing a vari-
able. In order to carry an induction argu-
ment, we generalize these notions, and de-
fine them relative to a variables cost func-
tion, ¢ : {z1,..,z,} — R. Given such ¢
we define Time.r(g) = Zz.ePathT(s)c(zi)‘
DC(f,c) and RC(f,c) denote the complexities
relative to ¢ and are defined similar to (1) and
(2). (3) becomes then

RC(f,c) = 1n3x1r¥n E.ep[Time, r(e)]. (4)

3.1 Overview of the Proof

For a formula consisting of a single threshold
gate the proof is not very difficult, even if vari-
ables have non-unit costs. One can use this
case as a single step in a top-bottom induc-
tional proof. However this doesn’t yield a lower
bound on RC(f), rather a lower bound on the
complexity of directional randomized decision
trees for f. Directionality means that variables
are probed in a restricted manner, depending
on the formula’s structure; if any variable in
any sub-formula is probed then after this probe
the decision tree must figure out first the value
of that sub-formula before probing any variable
that appears in another part of the formula.

That is the reason for the need of a bottom-
up induction given in the next sub-section. The
bottom-up method forces the single step of
that induction (the shrinking lemma) to make
a global statement on the formula. In the
lemma’s proof (sub-section 3.3) we carefully de-
fine a distribution D on inputs and a (set of)
decision tree(s) 7", that enable reducing the
lemma’s statement into a statement involving
a simple threshold formula only (i.e., a single
gate). The analogue to the evaluation of a sim-
ple threshold function (for the directional case)
is a claim on partial decision trees that com-
pute a simple threshold function (for the gen-
eral case). Sub-section 3.4 is devoted to this
claim.

8!

3.2 Reducing Theorem 1 to the
Shrinking Lemma

The shrinking lemma: Let F be a read-
once threshold formula of depth d > 0 that com-
putes a Boolean function f. Consider an inter-
nal gate T whose entries are all variables. De-
note these variables by Y = {m,...,yx}. De-
note the rest of the variables X = {z,...,zm}.
(See figure 1.) Let ¢ : X UY — R be a cost
function for the m + k variables of f. Let F’
be the formula obtained from F by replacing the
sub-formula TF(y1, ..., y&) by a single variable v
(see figure 2), and let f' be the function com-
puted by F’. Define a new cost function, ¢, by
¢(zi) = c(zi) V1 £t < m and d(v) = C(QY)
where ¢(Y) = Zle (i)

Then RC(f', ') < RC(f,c).

Y1 Y2 oo Yk

Figure 1: The given F

Figure 2: The shrunk £’

Theorem 1 follows by applying the lemma in-
ductively. The beginning is with unit variables
cost. The last shrinking yields the simple for-
mula consisting of a single variable, v/, whose
cost bounds RC(f} from below, and is

n
C(U’) — ZQ—Depth(r;) > Q_Tt[
i=1

Here Depth(z;) and d relate, respectively, to
the depth of a variable z; (which is well de-
fined since 2; appears only once) and to the
maximal depth over all variables in the (origi-
nal) formula F.

3.3 Reducing the Shrinking
Lemma to the Claim

First, we introduce some necessary notations.

Notations:
(k] denotes the set {1,...,k}.

(#) denotes the set of all subsets of a set A of
cardinality a.

0! (resp. 6°) denotes the extension of a (par-
tial) setting 6 © X' — {0,1}, on X" U {v} by
01(v) = 1 (resp. 0°(v) = 0).

0ar denotes the extension of § : X' — {0,1} on
NUY b} ()Af(yi) = liE]\I (i,e., 1ifi € M and
0 otherwise) where M C [k].

Prp(E) denotes the probability of E given a
distribution D.

c(U') denotes the total cost of a subset U of in-
put variables, ¢(U) = 3° (s c(u).

UZT denotes the variables in some subset U of
inputs that are probed by T given an input-
setting ¢) (to all variables), UT = U nVarp(e).

For proving the shrinking lemma we have to
show RC(f’,¢') < RC(f,c). Using (4) we show
that
Vv distribution D’ on the input-settings to f’

3 distribution D on the input-settings to f s.t.
V deterministic decision tree T for f
3 deterministic decision tree 7° for f' with

Eeep/[Time. 7:(¢")] < E.ep[Time, r(¢)). »
(5)
So let D' be given. Define a distribution D

as follows. For every X-setting 6 : X — {0, 1}
and a subset M C [k] define

Prp{fa) =
PI‘D/(()I)-PT(A{)]f“ﬂl:l
Prp/(8°) -Pr([k]\ M) if|M|=1-1
0 otherwise,
(6)
where
Pr(s) = —mies <) (7)

(|;]__l|) : C()r)

for a non-empty set S C [k]. (The point here is
to split Prp,(8') and Prp:(6°) among the diffi-
cult to separate extensions of #. These are the
extensions fxr for which |M|=lor [M|=1-1.
The ‘piece’ of probability that such extension
gets is proportional to the cost of the ‘mean-
ingful’ Y-variables in it.)

Now, let T be given. We don’t define 7"
explicitly, rather we define a set of candidate
deterministic decision trees and prove that (5)
holds for (at least) one of them. The candidates
are the following k- (* - 1) decision trees, T w,
indexed by pairs (i, W) where ¢ € [k] and W €
(1 00),

Tii,w) is defined as the ‘projection’ of T" un-
der the following actions:

1. Each question ‘47" (in T') is replaced by
the question “v?’ (in T; w)).

2. For each j € W, Tt wy assumes that
y; = 1. Namely, for each node of 7" con-
taining the question ‘y;7’, Ti; wy bypasses
this question to the 1 direction while delct-
ing that node and the whole sub-tree under
the 0 direction. (See figure 3.)

3. For each other j (ie.. j € [A]\ W, j #
i), Ti;,w) assumes that y; = 0: for cach
node of 7" containing ‘y; 7’ T wy similarly
bypasses the question, this case to the 0
direction. (See figure 4.)

sub-tree

Figure 3: Assuming y; =1

82

sub-tree

Figure 4: Assuming y; =0

Qur remaining problem is to show that in-
equality (5) holds for some Tj; yy). We show it
by proving that the following convex combina-
tion of these k- (* = 1) inequalities holds.

2

iE[I\'],WE([k} _ (1‘))

piiw)Eerep [Timee 1, (€]
S EsED[TilﬂeCIT(‘E)]’ (8)

where the appropriate coefficients {p; iy} will
be defined when used.

First we write the explicit terms for the two
expectations above:

Eoep {TimeC:’T(l.m (")

(i_e_ [Z

g:X—{0,1}

+Prp(0°) - Timey 1, ,,, (0°)].

(Prp/(0') - Timey 7, ., (8")

and
Ecep[Time, r()]

Z Z Prp(0yr) - Time, 1(0ar))]

#:X —{0,1) M C[k]

(g) Z

9:X —{0,1}

def

ety

+Prpi(6°)- Pr([k]\ M) Time, r(8:)].

2

sreqH,)

Plugging these terms in (8) we note (due to the
‘split’-manner definition of D) that it.is suffi-
cient to show for each § : X — {0, 1} that

2

ie[k],we(l*ll _ (l-))

p(i,W)Tilnec‘,T(,vw) (01)

[PI.D,(QX). Z Pr(A)y Time, v(0ar)

83

< Z Pr(M

Me(l)

) - Time, 7(0nm) (9)

and

2

iglk],We(IK) ()

piw)yTimee 1,) (6°)

< > Pr((k]\ M) Time.7(8x) (10)
Ale(xlfll)

hold. By duality, we show only one of them, say
(9). (9) implies {10} by changing the roles of
1-s and 0-s in the Y variables and considering

the threshold gate TL e

Separating the time to the costs of X and
v, and to the costs of X and Y, and using the
notations above, (9) is equivalent to

T, ,
Z P (X)) +c (v)'lue\/arr(, ‘V)(‘gl):l
(i,W) '

< Y Pr(M)[e(XT,) + eV (1)

Me(l)

The key observation here is that
Pathr,, ,,(8') is the ‘projection’ of
Pathz(0(;yuw) under actions 1-3 above.

. T w
[n particular, X,"" = ‘(BT(Lo and
v E VarT(,’w)(Yiffy, € }9(Lo

Using these and (7), and enumerating the pairs
(i, W) as {(M,i) : M e(%), ie M}, (11
equivalent to

Z ZP(; w)

Me(“,")‘e“f

W(ex,)'FC() 1,evr]

ear

C(\eu) + C(}a\,)]

l—l

Me(k})ze‘\l

By definition, ¢/(X]) = (\'sw). To cancel
them we now define p; = C(Ty'l and piavy =

22— for i €
GI2y)

these coefficients are non-negative and their
sum is 1.) So, by canceling and multiplying
both sides by (- }) - ¢(Y), the last inequality
reduces to

(k] and W € (%) (1) (Note

Z Z c(y:)

Me(M) iEeM

1, eyr
vieYy,

T 5y e

R

< ST elw) - eYa,),

)WE({‘;])iGM

or, using the notation Y = {y; + 1€ M},

d(v) Y e(YmnYy,) < ST e(Ya)e(Yay,):

Me(l) Me(th)

(12)

Note that we are left now with a prob-
lem involving the simple threshold sub-formula
Fab = TF(y1, .., yx). The only role 6 plays
in (12) is to determine some projection of T
that becomes a partial decision tree for Fg}-
This projection is derived from T by bypassing
each z;7-question to the direction 6(z;). It is
partial since T may compute F without com-
puting F . In other words, the claim in the
next subsection implies (12) and completes the
whole proof.

3.4 The Reduced Claim

In the following claim a set M C [k]is identified
also with the input-setting to ¥ in which y; =1
iffie M.

The Partial Decision Tree Claim: Let T
be a partial decision tree for T (y1, ... yx), and
let ¢ be a leaf cost function on Y. Then

C(;’)' S e(YunYip) < ST e(an)-e(Vin)-

Me(t) Me(lh

Proof of claim: The proof is by induction
on k, with two base cases for each k.

Base case 1: [= k (AND gate).
The only M € (1) is M = [k]. Hence Y[y =Y
and the case follows.

Base case 2: [=1 (OR gate).
T doesn’t probe a variable more than once,
hence it is of the form of figure 5, where
0<s<kand Z={n,.,z}CY.

84

Figure 5: A partial decision-tree for OR

Denote Y \ Z by W = {wy, L Wh_s)
M € (M) encodes some element Yar € Y.
If Yy is some z; then Yi§ = {z1, ..., zi},
and if Y is some w; then Yyl =2
So what we have to show is

C(;/) ‘ZC(Zz) <
i=1
s i k—s s
Sle(z) D el)+ (3 el (el)

This holds since the quantity

i=1 i=1
is inbetween the inequality’s two sides, due to

3

LYNED DU BEAE

i=1 ji=1

The induction step: 1 <! < k (non triv-
ial threshold gate).

I T is trivial (doesn’t probe any variable),
then for every M, YL is empty, and the claim
trivially holds.

Otherwise, let ‘y,?’ be the first question of
T, and let 7y and Ty be the subtrees under the
directions y, = 1 and y, = 0 respectively (see
figure 6).

4 Th

Figure 6: a non-trivial tree, T

For M 3 ¢t say M = {t} U M’, we have
Yar = {ye} UYar and YT = {y}UY.
For M #t we have Yar C Y \ {1} and

Y& ={yuyls.
In these terms the claim states that

e(Y) T

5~ 1
A/[le(lkl]l(l‘})
2
A[E([H\,(‘))

< 2

-"{'E((k,]_(l())

DY

Me(t \1 {t} }

[e(ye) + e(Yar N Y]

(Yar N Y3}

[e(ue) + e(Yar)) - [e(ye) + c(Y3)]
e(Yar) - [e(ye) + e(YiP)):

Tl and T are partial decision-trees for
T\ {we}) and for TE2(Y \ {ui}) respec-
tlvel_y So by induction,

(' \ ()

MIg([k‘I _(1l})

<Y Ya)

Mig(["‘l _ (l‘))

c(Yan N Y, L)
(Yo,

and

(Y \ {w}))
: Me(gj\,“’)
<Y eYar) oY)

Me(¥ \1 {thy

e(Yar NY5p)

Using these, and dividing by ¢(y,), the claim is
reduced to
e(Y) Il
57 (12D + 5 2 eVar NYR)
M

85

+5 Z (Yar NY)
S y‘)+z c(Yaar)
+Zc YAZ‘, +Zc (Yar),
M M

and this holds due to

oY) | 1
_2"'(1_1) = 3 Z c(Yar)
ME([':])
p— lk-—l 1 Y
= 5(._1)‘0(?/1)*’5 Z (Yarr)
A{;e([k']l(l'))
1
+§ Z C(YM).

A«IE([H \l {1})

This completes the proofs of the claim, the
lemma and theorem 1.

4 Proof of Theorem 2

The proof is by induction on the number of
variables n. The case of n = 1 is trivial.

Let f be computed by the two non-
degenerate read-once threshold formulae F} =
TF(hy, ..., ht) and Fy = T7 (g1, .., g-). Since F
and F, are read once, each variable appears
in a positive form (with no negation) in Fy if
and only if it appears in a positive form in F».
Thus, we will assume from now on that F; and
Fy are monotone. (Change names of negative
variables if there are any.)

The proof uses partial assignments and ex-
amines the restricted function and the re-
stricted formulae. We note here that a re-
stricted formula may be degenerate, however,
in such a case we always change it to nonde-
generate form by merging AND (OR) gates to-
gether and this does not change the type of the
output gate.

Let H;, 1 <i<kand Gj, 1 < j<rbethe
variable sets of h; and g; respectively.

Proposition 4.1 If H; = G; for some i,j
then h; = g; (as functions and as formulae).

Proof: Any assignment to H; that makes h; to
be ’0’ makes g; to be ‘0’ too, since it leaves the

restricted function (lookingon F}) independent
of the variables of H;. But, if g; does not be-
come ‘0’, the restricted function depends on at
least one variable of G; (looking on F3). By
the same argument on g; we get that h; = g;
as functions. By the induction hypothesis they
are identical as formulae, too. O

Proposition 4.2 J[fl <<k, 1 <s<r and
hi = g; for some 1,7 then Fy 1s identical to F»

Proof: Assume (w.lo.g)that i = j =1 1If
1 > 3, assign ‘1’ to the variables in Hy. F} re-
duces to F{ = T} (ha, ..., hy) (where the out-
put gate s not AND nor OR). By the induction
hiypothesis, F; reduces to the same formula. It
follows that F; and F5 are identical. Dually, if
{ < k — 2 then by the assignment of the vari-
ables in I7; to ‘0’, we get the result. Therefore,
we may assume that [= s=2and k =r = 3.

Assign ‘0’ to the variables in H,. F} reduces
to AN D(hy, hz). By the induction hypothesis
at least one of gq, g3 must become ‘0’ (so that
the restricted F» will also have AND as its out-
put gate). Assume g becomes ‘0°. It follows
that Go € Hs. Now re-assign ‘0’ to the vari-
ables in G2. The same argument yields that
Hy C G2. We have Hs = G, and proposition
4.1 implies that ho = go. Similarly hg = g3. O

We return to the proof of the theorem. As-
sume (w.lo.g) that H, NG, # ¢. Let z €
H.nG,.

There are basicly two cases.

l.1<l<kand 1 < s <.

If hy = g, = z then by proposition 4.2
we are done. Otherwise, there is an as-
signment to z such that at least one of hy
and ¢, does not become constant, say it is
hi. The output gate of Fy does not change
by this restriction (so it is not AND nor
OR). By the induction hypothesis, the two
restricted formulae must be identical. In
particular, the output gate of F3 doesn’t
become AND nor OR and since k,r > 3,
there exist 7,7, 1 # k, j # r for which
hi = g;. Again, by proposition 4.2 we are
done.

2. 1= k, i.e., F] = AJVD(hl, ..,hk).

First assume that s < » and get a con-
tradiction as follows. Assign ‘1’ to z. F}

86

reduces to some non-constant formula, Fy.
F, reduces to either T7 (g1, ...,9,-1,9,) or
T:_’ll(gl, .y gr—1) (but the latter is possi-
ble only if s > 2). In any case the output
gate is not AND, and by the induction hy-
pothesis so is for F|. This is possible only
if k = 2 and F{ = h;. Comparing the vari-
ables sets of the two restricted formulae,
we deduce that H, C G,. We get the con-
tradiction by assigning 0’ to all variables
of Hy; Iy becomes 0’ while F, doesn’t.

So far we got that Fy = AND{gy,..,g,).
Assign ‘1’ to the variables of Hy, getting
AND(hy, ..., hi_1) = AND(g}, ..., g.) (the
latter might be degenerate). By the in-
duction hypothesis on the h;’s and by the
fact that each h; can not have AND as Its
output gate (otherwise Fj is degenerate),
we get that for every 1 < & — 1 there is
some j such that H; C G;. Similarly, for
every j < r — 1 there is some ¢ such that
G; C H;. Note that the H;’s are pairwise
disjoint, as well as the G;’s. It follows that
r = k and that for every ¢ < k there s a
(unique) j < rsuch that H; = G;. There-
fore Hy = G,, too. By proposition 4.1,
hi = g; for every pair ¢,j as above and
also hy = g-.

The case where one of the output gates is OR
gate, is dual to the last case above. O

Acknowledgements

We thank Uriel Feige, David Harel, Mike Saks
and Moshe Tennenholz for helpful discussions
and comments.

References
[Ajt83] M. Ajtai, Zi-formulae on finite

structures, Annals of Pure and Ap-
plied Logic 24, 1983, pp. 1-48.

[AlI89] E. Allender, A note on the power of
threshold circuits, Proc. 80th IEEE
Symp. on Foundations of Computer
Science, 1989, pp. 580-584.

[Bop] R. Boppana, Private communication.

[FSS84]

(Haj88]

M. Furst, J. Saxe, and M. Sipser,
Parity, circuits and the polynomial
time hierarchy, Mathematical Sys-
tems Theory 17, 1984, pp. 13-27.

P. Hajnal, An Q(N %) lower bound on
the randomized complezity of graph
properties, Technical Report 88-19,
University of Chicago, August 1988.

[HMP*87] A. Hajnal, W. Maass, P. Pudlak,

[Hop82]

(Kin88)

[LMN89]

[Nis89]

[Raz87]

[Rei87]

[RMPS6]

M. Szegedy, and Gy. Turan, Thresh-
old circuits of bounded depth, Proc.
28th IEEE Symp. on Foundations of
Computer Science, 1987, pp. 99-110.

J.J Hopfield, Neural network and
physical systems with emergent col-
lective computational abilities, Na-
tronal Acad. Sci. USA 79, 1982,
pp. 2554-2558.

V. King, Lower bounds on the com-
plexity of graph properties, Proc.
20th ACM Symnp. on Theory of Com-
puting, 1988, pp. 468-476.

N. Linial, Y. Mansour, and N. Nisan,
Constant depth circuits, fourier
transform, and learnability, Proc.
30th [EEE Symp. on Foundalions of
Computer Science, 1089, pp. 574-
579.

N. Nisan, CREW PRAMs and deci-
sion trees, Proc. 2/st ACM Symp. on
Theory of Compuling, 1989, pp. 327-
335.

A. A. Razborov, Lower bounds on
the size of bounded depth networks
over a complete basis with logical
addition, Mathematical Notes of the
Academy of Sciences of the USSR
41, 1987, pp. 333-338.

J. Reif, On threshold circuits
and polynomial computations, 2-nd
structure in complezily theory conf.,

1987, pp. 118-125.

D.E. Rumelhardt, J.L. McClelland,
and the PDP research group, Par-
allel Distributed Processing : Ezplo-
ration n the Microstructure of Cog-
nition, Volume 1, MIT Press, 1986.

[RV78)

[SFB]

[Smo87]

(Sni85)

[SW86]

[Tod89)]

[Yao87]

[Yao89]

87

R. Rivest and S. Viullemin, On rec-
ognizing graph properties from ad-
Jacency matrices, Theoretical Com-
puter Science 3, 1978, pp. 371-384.

C. Sturtivant, G. Frandsen, and
J. Boyar, Is finite field arithmetic
a restricted model of computation?
Manuscript, 1989.

R. Smolensky, Algebraic methods
in the theory of lower bounds for
Boolean circuit complexity, Proc.
19th ACM Symp. on Theory of Com-
puting, 1987, pp. 77-82.

M. Snir, Lower bounds for proba-
bilistic linear decision trees, Theo-
retical Computer Science 38, 1985,
pp. 69-82.

M. Saks and A. Wigderson, Prob-
abilistic Boolean decision trees and
the complexity of evaluating game
trees, Proc. 27th IFEE Symp. on
Foundations of Computer Science,

1986, pp. 29-38.

S. Toda, On the computational
power of PP and &P, Proc. 30th
IEEE Symp. on Foundations of
Computer Science, 1989, pp. 514~
519.

A. C. Yao, Lower bounds to random-
1zed algorithm for graph properties,
Proc. 28th [EEE Symp. on Foun-
dations of Computer Science, 1937,
pp. 393-400.

A. C. Yao, Circuits and Local Com-
putation, Proc. 21st ACM Symp. on
Theory of Computing, 1989, pp. 186-
196.

