Theoretical Computer Science 107 (1993) 63-76 63
Elsevier

On read-once threshold
formulae and their randomized
decision tree complexity

Rafi Heiman

The Weizmann Institute of Science, Rehovot, Israel

Ilan Newman and Avi Wigderson*

The Hebrew University, Jerusalem, Israel

Abstract

Heiman, R., 1. Newman and A. Wigderson, On read-once threshold formulae and their randomized
decision tree complexity, Theoretical Computer Science 107 (1993) 63-76.

TCO is the class of functions computable by polynomial-size, constant-depth formulae with thres-
hold gates. Read-once TC® (RO-TC®) is the subclass of TC® which restricts every variable to occur
exactly once in the formula.

Our main result is a (tight) linear lower bound on the randomized decision tree complexity of any
function in RO-TC®.
This relationship between threshold circuits and decision trees bears significance on both models of
computation. Regarding decision trees. this is the first class of functions for which such a strong
bound is known. Regarding threshold circuits, it may be considered as a possibie first step towards
proving TC?#NC?; generalizing our lower bound to all functions in TC® would establish this
separation.

Another structural result we obtain is that a read-once threshold formula uniquely represents the
function it computes.

1. Introduction

1.1. Boolean decision trees

The Boolean decision tree is an extremely simple model for computing Boolean
functions. It charges only for reading input variables. Every function on n variables
has complexity <n. Perhaps surprisingly, decision trees turned out to be fundamental

* Partially supported by Israel-American Binational Science Foundation Grant No. 8§7-00082

0304-3975/93/506.00 © 1993 —Elsevier Science Publishers B.V. All rights reserved

64 R. Heiman, I. Newman. A. W igderson

in studying the complexity of Boolean functions in general models, such as CREw.
PRAM [10], and AC°-circuits [9].

The first major result for this model was the linear lower bound of Rivest
and Vuillemin [13] for the class of monotone graph properties, proving the
Aanderaa-Rosenberg conjecture.

A conjecture that an Q(rn) lower bound applies to this class even if we allow
randomization, is attributed to Karp. This has been proven for a few special mono-
tone graph properties, but the best general lower bound is Q(n*?) of Hajnal [5]
(improving on Yao [21] and King [8]).

Our main result exhibits a natural class of functions for which a linear lower bound
holds. The proof combines generalizing techniques developed in [15] to study read-
once formulae. and understanding “partial” computation of threshold functions by
decision trees.

1.2, Threshold circuits

The study of circuits with threshold gates and. in particular, those of polynomial
size and constant depth (the class TC?) also has several motivations. These circuits
capture essential aspects in neural net computations [14, 7). They have been shown to
be equivalent to constant-depth arithmetic circuits over finite fields [12,19], and were
recently related to simulating the polynomial hierarchy by counting oracles [20, 2].

The fundamental question of whether the inclusion TC® = NC? is proper, surfaced
naturally after AC® # TC? was resolved ([1. 4] and their improvements), and after the
results about constant-depth circuits with prime modulo gates were proved [11,17].
This question has been under attack in the last few years.

Two important steps were made in the direction of separating TC° from NC'. The
first, by Hajnal et al. [6], separated depth-2 from depth-3 polynomial-size threshold
circuits. The second, by Yao [22], separated the monotone analogues of the classes
TC? and NC!.

In 1986 Saks suggested a bold approach to separating these classes: Show tha£ every
function in TC? has high (say linear) randomized decision tree complexity (in terms of
its deterministic complexity). This would suffice, as there are several examples of
evasive (deterministic complexity n) functions in NC! with randomized complexity n”
for x<1 [18,3,15].

This approach reduces a lower bound in the circuits model to a lower bound in the
information theoretical model of randomized decision trees. It is particularly original
and intriguing, since the separation will be proved by showing that functions in the
smaller class are harder (in the second model).

Our result can be considered as a first step in this direction. It proves the desired
lower bound for read-once TC-functions. It is naive to be optimistic just because
every TC®function is a simple projection of a read-once TC®function; it is not clear
what happens to decision tree complexity under projections. However, the proof of
the lower bound reveals that, from the point of view of randomized decision trees,

—_—

3 =]

ae]

C(

r
tic
(h
th

co

w]
th

fol

wh
det

- oac

On read-once threshold formulae 65

hreshold gates are no more powerful than ANDs and ORs, which hints that this may
se the right direction to pursue.

). Definitions and statement of results

2.1. Boolean decision trees

A deterministic decision tree T is a labeled binary tree. Each nonleaf node is labeled
oy some input variable x;. The two outgoing edges of such nodes are labeled, one
oy “1” and the other by “0”. Each leaf is labeled by an output value which is either “1”
or “0”.

The path of T on the input setting e=¢,,...,£,€10,1}", termed Pathz(g), is that
‘unique) path in the tree which starts at the root, and at each node, labeled x;, follows
the edge labeled ¢;. Var;(e) denotes the set of variables labeling the nodes of Pathr(e).
The output of T given ¢, termed Outputy(e), is the bit labeling the leal of Pathr(e).
T computes the Boolean function f if Outputy(e)=f(e) for every &.

The time consumed by 7, termed Timer(e), is simply |Vary(¢)|. (Every variable is
probed at most once in a path.) The complexity of T is the time consumed for
a worst-case input. The deterministic decision tree complexity of f, termed DC(f), is the
complexity of the best deterministic decision tree that computes f,

DC(f)=min max Time(¢). (1
T £

A randomized decision tree for f, RT, is a distribution over the deterministic decision
trees for f. Given ¢, a deterministic decision tree is chosen according to this distribu-
tion and is “executed”. This makes the path and the time consumed, random variables
{however, the output is always correct). The complexity of RT is the expected time (i.€.,
the expected number of variables it probes in order to determine the output) for
a worst-case input. The randomized decision tree complexity of f, termed RC(f), is the

complexity of the best randomized decision tree that computes f,

RC(f)=min max E; gr[Timey(e)], (2)
RT z
where E stands for expectation and TeR T stands for a random T chosen according to
the distribution RT.
By a lemma of Yao [21], which is based on the minimax theorem, we have the
fOllowing equivalence between RC(f) and the distributional complexity of f.

RC(f)=max min E, p[Time,(¢)], 3)

D T
where D ranges over all distributions on input settings of f, T ranges over all
deterministic decision trees for f, and eeD stands for a random input setting ¢ chosen
according to the distribution D. The distributional complexity is a useful tool for

i

F

66 R. Heiman, I. Newman, A, Wigderson

proving lower bounds. One can guess some D and then prove a lower bound o
ming E, 5[Time,(e)].

A partial decision tree T for fis very similar to a deterministic ong, except that a leaf
in it may contain a “?”. T is required to satisfy Outputy(e)=f (e} for every ¢ with
Outputy(e) #“?”. For example, the trivial decision tree, which contains a single node
(a leaf) labeled by a 77, is a partial decision tree for every Boolean function. Central
to our proof is an inequality satisfied by all partial decision trees computing a simple
threshold function.

2.2, Read-once threshold Jormulae

A threshold gate, denoted T/ for some k>1 and 1 <I<k, is a Boolean gate with
k inputs that outputs “1” iff at least | of its inputs are *1". For example, T¥ and T} are,
respectively, OR- and AND-gates of fan-in k.

A read-once threshold formula is a formula with threshold gates in which each
variable appears exactly once. We point out here that disallowing negation gates does
not restrict the generality of our results. Negation gates can be “pushed” to be applied
to inputs only. Then renaming all negative literals as positive ones (as input variables)
does not change relevant combinatorial properties, such as the deterministic and the
randomized decision tree complexities.

An example of read-once AND-OR formula is the AND-OR tree function g,

defined for every depth d on n=2¢ input variables:
g(OJ(Xl)z-\‘ls

and
g I (x,, e Xaae)=g"xy L x00) O V(X204 1,0, Xpa-1),

where O is AND for even d and is OR for odd d. This function is in NC': its formula
depth is logarithmic in the number of variables. It is easy to see that its deterministic
decision tree complexity is maximal, DC(g")=n. However, its randomized complex-
ity is low, RC(g')= ©(n°) for a=log,[(1 +./33)/4]=0.753... [15]. The large (logar-
ithmic) depth enables iterated savings that turn out to yield this low randomized
complexity.

2.3. Sratement of results

Our main result says that large depth is necessary for low randomized complexity.

Theorem 2.1. Let fbe a Boolean Junction computed by a read-once threshold Jormula of
depth d over n inpur variables. Then RC{f)=n/2¢

The next section is devoted to the proof of this theorem. The proof is based on
generalizing techniques of [157, as well as on using the new concept of partial decision

Defin
TE-g
(ANT

Theor
Boole

Th:

3. Pr¢

In t
Int
a vari:
and d.
acwe
ties rej

31. 0

For
even if

On read-once threshold formulae 67

ses. A weaker lower bound, namely RC(f)>n/4% can be proved more simply by
ing the lower-bound result of [15]. The direct proof given here is, we believe, a more
znificant step in the study of the randomized decision tree complexity in general, and
threshold circuits in particular. This direct proof has another advantage. It works
so in a more powerful model. This model enables, in particular, gates that compute
bitrary symmetric functions.

efinition. A Boolean function g, defined on k input variables, is said to contain a flip
there exists an [, 1 </<k, such that g outputs the same value whenever exactly [of its
puts are “17, and it outputs the opposite value whenever exactly /—1 of its inputs

‘e uln

orollary. Let fbe a Boolean function computed by a read-once formula of depth d over
input variables whose gates are functions that each contains a flip. Then RC()= n/2°%

One may verify that the proof given in the next section works for these gates as well.
Our second result says that a Boolean function that can be represented by a read-
1ce threshold formula has a unique such representation.

efinition. A read-once threshold formula is nondegenerate if no input of some
{-gate (OR) is the output of some other T} -gate and, similarly, no input of a T)*-gate
\ND) is the output of a T} -gate.

heorem 2.2. Two nondegenerate read-once threshold formulae that compute the same
oolean function are identical.

This theorem is proved in Section 4.

Proof of Theorem 2.1

In this section we prove Theorem 2.1.

In the definitions of time and complexity above we assumed a unit cost for probing
variable. In order to carry out an induction argument, we generalize these notions,
ad define them relative to a variables cost function, ¢:{x,,...,x,}—R. Given such
¢ we define Time, r(¢) =Y x cpain, (; (X;). DC(f, ¢) and RC(f, ¢) denote the complexi-
3s relative to ¢ and are defined similarly to (1) and (2). Analogue to (3) is

RC(f.¢c)=max min E,.p[Time, +(£)]. 4)
D T
1. Overview of the proof

For a formula consisting of a single threshold gate the proof is not very difficult,
n if variables have nonunit costs. One can use this case as a single step in

68 R. Heiman, 1. Newman. A. Wigderson

a top-down inductional proof. However, this does not yield a lower bound on RC(f),
but, rather, a lower bound on the complexity of directional randomized decision trees
for /. Directionality means that variables are probed in a restricted manner, depending
on the formula’s structure; if any variable in any subformula is probed, then after this
probe the decision tree must first figure out the value of that subformula before
probing any variable that appears in another part of the formula.

This is the reason for the use of a bottom-up induction given in the next subsection,
whose single step (the shrinking lemma) consists of a global statement on the formula,
Interestingly, Santha [16] developed a proof for a similar problem that uses a top-
down induction and need not use Yao’s lemma. In the proof of the shrinking lemma
(Section 3.3) we carefully define a distribution on inputs and a set of decision trees that
enable reducing the lemma’s statement into a statement involving a simple threshold
formula only, ie., a single gate. The analogue to the evaluation of a simple threshold
function (for the directional case} is a claim on partial decision trees that compute
a simple threshold function (for the general case). Section 3.4 is devoted to this claim.

3.2. Reducing Theorem 2.1 to the shrinking lemma

The shrinking lemma. Ler F be a read-once threshold Jormula of depth d>0 that
computes a Boolean function f. Consider an internal gate T}, whose entries are all
variables. Denote these variables by Y = {¥1...3). Denote the rest of the variables by
X={x1,..,x,}.(See Fig. 1) Let c: X U Y—R be a cost function for the m+ k variables
of . Let F' be the formula obtained from F by replacing the subformula T (¥1s - yi) by
a single variable v (see Fig. 2). and let 1" be the function computed by F'. Define a new
cost function ¢' by c(x))=c(x;), VI<i<m, and c'(v)=c(Y)/2, where ¢ Y)=Z:."= ey
Then RC(f',¢")<RC(f).

Theorem 2.1 follows by applying the lemma inductively. The beginning is with unit
variables cost. The last shrinking yields the simple formula consisting of a single
variable, v, whose cost bounds RC(f) from below, and is

n

C(U’)= Z 2—Deplh(,\',)> n‘/zd’

i=]

Y1 Y2 oo Yk Ty Tz +e+ Ty
Fig. 1. The given F. Fig. 2. The shrunk F".

wl
ext
ot
g
hlg
Ul
we
wh
tic

an

whi

On read-once threshold formulae 69

. where Depth(x;) and d relate, respectively, to the depth of a variable x; (which is

. well-defined, since x; appears only once) and to the maximal depth over all variables
in the (original) formula F.

L 3.3. Reducing the shrinking lemma to the claim

First, we introduce some necessary notations.

Notations: [k] denotes the set {1, ...,k }. {4} denotes the set of all subsets of a set A,
8 which have cardinality a. 6' (6°) denotes the extension of a (partial) setting
F 6:X—{0,1}, on XU{r! by 8'(r)=1 (0°(w)=0).), where M <[k] denotes the
& cxtension of 0:X-{0,1}to X Y by Oy (¥:)=1;c0 (ie., 1 if ieM and 0 otherwise).
Prp(E) denotes the probability of E, given a distribution D. ¢(U) denotes the total
cost of a subset U of input variables, c(UY=Y,.uc(u). 1, denotes the input setting that
gives 1 exactly to those variables in U. U denotes the variables in some subset U of
* inputs that are probed by T given an Input setting ¢ (to all variables),
U= UnVarg(e).

¢ Toprove the shrinking lemma we have to show that RC(f",c'Y<RC(f,c). Using (4)
¥ we show that

) (YD)EDYNVYTHIT') Epc p [Time, 1-(¢')] < E, o p[Time, 1(e)], (5)

% where D (D') is a distribution on the input settings to f(f*), and 7'(7") is a determinis-
4 tic decision tree for f(f").

% Let D' be given. Define a distribution D as follows. For every X-setting : X —{0, 1}
" and subset M < [k], define

Pr,(8')-Pr(M) if (M|=1,
Prp(By)= PrDr(8°)~Pr([k]\M) if IM|=1-1, (6)
0 otherwise,

Pr(s)= Zies i)
! (5-1)e(Y)

{9ra nonempty set S < [k]. (The point here is to split Prp.(6') and Prj, (8°) among the
gsxtensions of 6 that are difficult to separate. These are the extensions 8,, for which
,;Ml=l or [M|=I[—1. The portion of probability that such an extension gets is
Proportional to the cost of the ‘meaningful’ Y-variables in it.)

‘{NOW, let T be given. We do not define T explicitly. Rather, we define a set of
§ @ndidate deterministic decision trees and prove that (5) holds for at least one of them.
B be candidates are the following k- (42} decision trees, ;. w), indexed by pairs (i,),
&Where ic[k] and we{t 51

Ti,w) is defined as the “projection” of T under the following actions:

(1) Each question “y;?” (in T') is replaced by the question “0?” (in Tj;)).

70 R. Heiman, 1. Newman, A. Wigderson

(2) Foreach je W, Tj; w, assumes that y;= 1. Namely, for each node of T containing
the question “y;?", T y, passes down this question to the 1-direction while deleting
the node and the whole subtree under the O-direction. (See Fig. 3)

(3) For all other j (i.e., je[k]\ W, j#i), T, wy assumes that y;=0: For each node of
T containing “y;?", Tj; w, similarly passes down the question, this case to the (-
direction. (See Fig. 4))

It remains to show that inequality (5) holds for some T w). We do this by proving
that the following convex combination of these k- (}2) inequalities holds.

Z ’ p(i.WjEc‘eD’[Timec’. Tl,_w,(g/)JgEesD[Timer,T(‘g)]’ (8)
et e {11

where the appropriate coefficients { p; w,} will be defined when used.
First we write the explicit terms for the two expectations above:

. def i
E ep[Timeo 7, ()= 5 [Prp(6') Time. 7w (01)
0:X 10,1

+Prp (6°)- Time,. 7, (6°)].

and
. def .
E..p[Time, r(e)] = Z Z Prp(0x)-Time, 1(0))]
0:X=10.1 Me[k]
2 Y [Prp@) Y PriM)-Time, 1(0y)
0: X501 Me{[‘;‘]}
+Prp(6°)- Y Pr([k]\M)- Time. r(84)].
MG{I[fjl
The ___
p
a
S
s

sub-tree

Fig. 3. Assuming =1L Fig. 4. Assuming yj:O.

Inser
to sh.

and

We p
Y-var

Nex
Inequ:

The
under
yie YJV
ieM }

¥ By de
y Pi=c()
coeffici
¥ both si

£ which |

On read-once threshold formulae 71

Inserting these terms into (8), and using the definition of D, we note that it is sufficient
to show for each 6: X —{0.1} that the following inequalities hold:

Z, Pi.wy Time,, T .‘,(91)
iE[k].We{U‘] 1{':}

< Z Pr(M)-Time, r(0y), 9)
Me{[’;']}
and
Z Pu.w) Time, Tiw ,(90)
ie[k]. u/'e{["’,]_\lm }
< Y Pr([k]\M) -Time, r(0y). (10)
Me{l[l‘]] }

We prove (9), and (10) follows by duality: Change the roles of 1's and 0's in the
Y-variables and consider the threshold gate T)¥_,, ;.

Next, we divide “Time” to the costs of X, Y and v, and use the notation above.
Inequality (9) becomes

y Pu. ”)[(+(() 11'6\"ur, ((l’]:|
(W) e
< Y Pr(M)[e(Xi,)+ (Y] (11)
me {40

The key observation here is that Pathr__(6')i 1s the “projection” of Pathy (6)
under actions (1)—(3) above. In particular, Xg‘ "'—X(f‘_,v" and LEVHI‘T(,,(01) iff
Yi€ Y(;Tmu.. Using these and (7), and enumerating the pairs (i, W) as 1(M i Me{ [”}
ieM}, we find that (11) is equivalent to

Z Z Pi.wy [¢' (XHM)"'C (v)-1 EY{/]
we{lk1y feM

—

)Y <) Le(Xg,)+c(¥a,)]

St <)
7)

By definition, (X(; —C(XOM To cancel these terms out we now define

pi=c(y;)/c(Y) and pyw,=p:/(}2}) for ie[k] and We U‘] " } (Note that these
coefficients are nonnegatlve and their sum is 1.) Hence, cancelmg out and multiplying
both sides by (121)-¢(Y) reduces the last inequality to

@ Y T lp< Y Y e eV
Me{[k]} ieM Me{[’f]} ieM

which is equivalent to

c) Y e(YunYi)< Y e(Ya)el¥i,). (12)

me {11 me (B}

—i*‘:‘i

72 R. Heiman, 1. Newman, A. Wigderson

Note that we are now left with a problem involving the simple threshold sup.
formula Fsusz,"(yl,...,yk). The only role 8 plays in (12) is to determine some
projection of T that becomes a partial decision tree for Fouv- This projection is derived
from T by passing down each x;?-question to the direction 0(x;). It is partial Since
T may compute F without computing Fy,. In other words, the claim in the next
subsection implies (12) and completes the whole proof.

3.4. The reduced claim

The partial decision tree claim. Ler T pe g partial decision tree for Ty, <y W), and
let ¢ be a leaf cost Junction on Y. Then

5(21)_ L dLoVarr())< ¥ e(L) e(Vary(l,))
Le{?’} LE{IY}

Proof. The proof is by induction, with two base cases.

Base case 1: 1=k (AND-gate).

The only Le{:} 1s L=1Y and the case follows.

Base case 2: =1 (OR-gate).

T does not probe a variable more than once. Hence. it is of the form of Fig. 5, where
O<s<kand Z=1{:,, - Rl ¢

Denote Y\ Z by W= wi,, Wiy Le{ ly} consists of an element ye Y. If y is some

z; then Vary(1,)= {z1,-...2;), and if y is some w; then Varr(1,.)=Z. We thus have to
show that
s s i k—s s
c(Y)
5 clz;)< [C(:i)'zc'(:j)]+[z C(VV,‘)]'[ZC(ZJ']-
i=1 i=]1 i=1 i=1 ji=1

Fig. 5. A partial decision-tree for OR.

and

Usir

On read-once threshold formulae 73

T, Ty

Fig. 6. A nontrivial tree T.

This indeed holds, since the quantity $[Yio; c(z)]?+[Tizfcw)] [Ti=y clz)] is
setween the two values on both sides of the mequahty, due to 4[¥i.,a]’<
Yi=1 [a;-Ti=14;].

The induction step: 1 <!<k (nontrivial threshold gate).

If Tis trivial, i.e., it does not probe any variable, then for every L, Var(1,) is empty,
ind the claim trivially holds.

Otherwise, let “y, 7" be the first question of 7, and let 7, and T be the subtrees under
he directions y,=1 and y, =0, respectively (see Fig. 6).

For L containing y,. say L={y,}ul’, we have Vary(l,)= {3} v Vary (1) For
L not containing y,, we have Varp(1.)={y}wVarg(1.). In these terms the claim
states that

C(Y).{ Y [e(r)+ell’ nVary,(1,)]+ Y C(L”Va”o(“))}

2 o] AN
vefhy) el)
< Le(y)+c(L)] [e(y)+c(Vary,(1.))]
Ie«f Yoni
L=
+ Y (L) [e(y+c(Varp (1. D]
()

T, and Ty are partial decision-trees for 727" (Y\{y,}) and T}~ (Y\{y,}), respec-
ively. Hence, by induction,

YA ()
)y qravVar (< Y ell) e(Varn (1)
ind B T : } Le { : !~1 i } }

C(Y\{yz}). Z

2 c(LnVarp, (1)<) c(l) c(Varg,(1L)).

Yoin Yi(n
LE{ ;-‘)} Le{ ;-‘f}
Jsing these, and dividing by c(y,). the claim reduces to

iY—)'<k_l>-|-lzc(L'r\VarT,(l,,)HEZC(LmVarTO(lL))
5 \i-1)22 22

<<?_11) 1+ T L)+ cVarr, (1) T L)

L

74 R. Heiman, I. Newman, A. Wigderson

and this holds due to
oY) (k=1 1
2 '<1—1>:§' L el

1/k—-1 1 1

=—<’)'C(y,)-%" Z c(L)+5 Z c(L).

2\ -1 2 o 2 An
ref’ 1497} e J

This completes the proofs of the claim, the lemma and Theorem 21, O

4. Proof of Theorem 2.2

In this section we prove Theorem 2.2. The proof is by induction on the number of
variables n. The case of n=1 is trivial.

Let f be computed by the two nondegenerate read-once threshold formulae
F,=Tkh,.....h)and F.=T/(g,,....g,). Since F, and F, are read once, each variable
appears in positive form (with no negation) in F, if and only if it appears in positive
form in F,. Thus, we assume from now on that F; and F, are monotone. (Change
names of negative variables if there are any.)

The proof uses partial assignments and examines the restricted function and the
restricted formulae. We note here that a restricted formula may be degenerate,
however, in such a case we always change it to a nondegenerate form by merging
AND-gates together and OR-gates together. This does not change the type of the
output gate.

Let H;, 1 <i<k, and G;, 1 <j<r, be the variable sets of h; and g;. respectively.

Proposition 4.1. If H;=G, for some i,j then h;=g; (as functions and as formulae).

Proof. Any partial assignment of “0” to the variables of H; that assigns “0” to h; leaves
the restricted function independent of the variables of H;=G; and, therefore,
g; becomes constant too. By monotonicity, this constant must be “0”. The same
argument on g; implies that h;=g; as functions. By the inductive hypothesis, they are
identical as formulae too. 0O

Proposition 4.2. If 1 <I<k, 1 <s<r, and h;=g; for some i,j, then F, is identical to F».

Proof. Assume (w.l.0.g) that i=j=1. If I3, assign “1” to the variables in Hy.
F, reduces to F;=T¥7"(h,,.... h) (where the output gate is neither AND nor ORJ}.
By the inductive hypothesis, F, reduces to the same formula. It follows that F, and
F, are identical. Dually, if <k —2, then by the assignment of the variables in H, to
“0”, we obtain the result. Therefore, we may assume that I=s=2 and k=r=3.
Assign “0” to the variables in H,. F, reduces to AND(hy,h3). By the inductive
hypothesis at least one of g, or g3 must become “0” (so that the restricted F, will also

On read-once threshold formulae 75

have AND as its output gate). Assume g, becomes “07. It follows that G, € H,. Now
re-assign "0” to the variables in G,. The same argument yields H, = G,. We have
‘H,=02 and Proposition 4.1 implies that h, =g,. Similarly, hy=g;. O

Proof of Theorem 2.2 (continued). We now return to the proof of Theorem 2.2.
Assume (w.L.o.g) that H,nG,#0. Let xe H,nG,. There are basically two cases.

. Case 1. 1<l<kand I<s<r.

§f h, =g, =X then by Proposition 4.2 we are done. Otherwise, there is an assignment to
“x such that at least one of h, and g, does not become constant; say it is .. The output
. gate of F, does not change by this restriction (so it is neither AND nor OR). By the
’ inductive hypothesis, the two restricted formulae must be identical. In particular, the
3 output gate of F does not become AND or OR and since k,r =3, there exist i, j,i#k,
j#r for which h,=g¢;. Again, by Proposition 4.2 we are done.

Case 2. 1=k, e, F{=AND(h,..... k).
First assume that s<r and obtain a contradiction as follows. Assign “17 to x.
F, reduces to some nonconstant formula, F. F, reduces to either TGy aGr=1:9r)

,; or T/21(gy,---.g,—1) (but the latter is possible only if s>2). In any case. the output
gate is not AND, and by the inductive hypothesis so is the output gate of Fi. This is
possible only if k=2 and F;=h,. Comparing the variable sets of the two restricted
formulae, we deduce that H, € G,. We obtain the contradiction by assigning “07 to all
variables of H,: F, becomes “07 while F, does not.

So far we have F,=AND(g;,...,g2). Assign “17 to the variables of H,. yielding
AND(h,,....hy-)=AND({g1,g.) (the latter might be degenerate). By the induc-
tive hypothesis on the /s and by the fact that each h; cannot have AND as its output
gate (otherwise F, is degenerate), we get that for every i <k— 1, there is some j such
- that H; £ G;. Similarly, for every j<r— 1, there is some | such that G; € H;. Note that
" the H,s are pairwise disjoint. and so are the Gj's. It follows that r=k, and that for
every i<k there is a (unique) j<r such that H;=G,. Therefore, H,=G, too. By
Proposition 4.1, h;=g; for every pair i,j as above, and also hy=4g,.

The case where one of the output gates is an OR-gate, is dual to the last case
above. [J

Acknowledgment

We thank Uriel Feige, David Harel, Mike Saks and Moshe Tennenholz for helpful
discussions and comments.

References

[1] M. Ajtai. T !-formulae on finite structures. Ann. Pure and Appl. Logic 24 (1983) 1-48.
[2] E. Allender. A note on the power of threshold circuits. in: Proc. 30th IEEE Symp. on Foundations of
Computer Science {1989) 580-584.

76 R. Heiman. I. Newman, A. Wigderson

[3] R.B. Boppana. private communication.
4] M. Furst. J. Saxe and M. Sipser, Parity. circuits and the polynomial time hierarchy, Math. Svstems
Theory 17 (1984) 13-27.
[5] P. Hajnal. An Q(N**)lower bound on the randomized complexity of graph properties, Tech. Report
88-19, University of Chicago, 1988.
[6] A.Hajnal. W. Maass. P. Pudlak, M. Szegedy and Gy. Turan. Threshold circuits of bounded depth, in:
Proc. 28th IEEE Symp. on Foundations of Computer Science (1987) 99-110.
(7] J.J. Hopfield. Neural network and physical systems with emergent collective computational abilities,
Nat. Acad. Sci. US4 79 (1982) 2554-2558.
[8] V.King. Lower bounds on the complexity of graph properties. in: Proc. 20th ACM Symp. on Theory of
Computing (1988) 468-476.
[9] N. Linial. Y. Mansour and N. Nisan. Constant depth circuits. Fourier transform. and learnability. in:
Proc. 30th TEEE Symp. on Foundations of Computer Science (1989) 574-579.
[10] N. Nisan, CREW PRAMSs and decision trees. in: Proc. 2Jst ACM Symp. on Theory of Computing
(1989) 327-335.
[11] A.A. Razborov, Lower bounds on the size of bounded depth networks over a complete basis with
logical addition. Math. Notes 41 (1987) 333-338.
[12] J. Reif. On threshold circuits and polynomial computations. in: Proc. 2nd Structure in Complexity
Theory Conf. (1987) 118-125.
{13] R. Rivest and S. Vuillemin, On recognizing graph properties from adjacency matrices, Theoret.
Comput. Sei. 3 (1978) 371-384.
[14] D.E. Rumelhardt, J.L. McClelland and the PDP research group, Parallel Distributed Processing:
Exploration in the Microstructure of Cognition. Vol. 1 (MIT Press. Cambridge, MA, 1986).
[15] M. Saks and A. Wigderson, Probabilistic Boolean decision trees and the complexity of evaluating
game trees. in: Proc. 27th IEEE Symp. on Foundations of Computer Science (1986) 29-38.
[16] M. Santha. On the Monte Carlo Boolean decision tree complexity of read-once formulae, in: Proc. 6th
Structure in Complexity Theory Conf. (1991} 180-187.
[17] R. Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit complexity. in:
Proc. 19th ACM Symp. on Theory of Computing (1987) 77-82.
[18] M. Snir, Lower bounds for probabilistic linear decision trees. Theoret. Comput. Sci. 38 (1985) 69-82.
[19] C. Sturtivant, G. Frandsen and J. Boyar. Is finite field arithmetic a restricted model of computation?,
manuscript, 1989.
[20] S. Toda, On the computational power of PP and @& P. in: Proc. 30th 1EEE Symp. on Foundations of
Computer Science (1989} 514-519.
[21] A.C. Yao, Lower bounds to randomized algorithms for graph properties, in: Proc. 28th IEEE Symp.
on Foundations of Computer Science (1987) 393-400.
[22] A.C.Yao, Circuits and Local Computation. in: Proc. 2/st ACM Symp. on Theory of Computing (1989)
186-196.

Theoretic
Elsevier

Ii

