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Succinct Representations of Graphs
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For a fixed graph property (, the complexity of the problem: Given a graph G,
does G have property Q? is usually investigated as a function of | V', the number of
vertices in G, with the assumption that the input size is polynomial in | ¥]. In this
paper the complexity of these problems is investigated when the input graph is
given by a succinct representation. By a succinct representation it is meant that the
input size is polylog in {¥]. It is shown that graph problems which are approached
this way become intractable. Actually, no “nontrivial” problem could be found
which can be solved in polynomial time. The main result is characterizing a large
class of graph properties for which the respective “succinct problem™ is NP-hard.
Trying to locate these problems within the P-Time hierarchy shows that the
succinct versions of polynomially equivalent problems may not be polynomially
equivalent.

|. INTRODUCTION

The design of efficient algorithms for graph theoretic problems is a major
research area in recent years. The word “efficient” generally means that the
amount of computing resources is minimized. One of the ways considered
frequently is the use of complex data structures in algorithms, while the
assumption is made that the input is given by some conventional represen-
tation. Traditionally. graphs are represented by either adjacency matrices or
adjacency lists with representation size of O(] V|*) and O(]E1), respectively.
For graphs that are relatively small this is perfectly acceptable, but when we
deal with graphs that have a huge number of vertices the conventional
representations are quite costly. In the areas of architectural design systems
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184 GALPERIN AND WIGDERSON

and very large scale integrated circuitry (VLSI) design systems the graphs
dealt with could have millions of elements. This motivates us to develop
succinct graph representation (i.e., represent a graph G in space o] V|)). The
goals one would like to achieve by using a succinct representation are:

(1) Reduce the amount of space required to store the graph.
(2) Improve the complexity of certain graph algorithms.

In this paper we deal with a specific succinct representation—the small
circuit representation (SCR). While certain graphs can be represented in
logarithmic space using the SCR model, checking simple graph properties
for graphs represented this way is very difficult.

In Section 2 we prove some simple properties of the SCR model. which
are helpful in proving that certain graphs have such a representation. Then
we illustrate the difficulty of checking simple graph properties on this
representation by proving in details a typical theorem.

Our results are listed in Table I.

Sections 3-5 are devoted to the proofs of these results. In Section 3 we
characterize a large class of graph properties for which the respective
problems are NP-hard. In Section 4 we improve this lower bound to X,/II,-
hardness for some of the probiems. Section 5 shows how to obtain upper
bounds for these problems, when given upper bounds on the complexity of
the respective predicates for a non-succinct representation {(e.g.. adjacency
matrix) of the input graph.

TABLE 1
Problem Upper Bound Lower Bound
(1) Has a triangle NP NP
(2) Has a k-cycle NP NP
(3) Has a k-path NP NP
(4) A(G) =2k NP NP
(5) HG) <k z, z,
{6) Has a cycle DSPACE(n) NP
(7) Has an Euler circuit NSPACE(n) NP
(8) Has an s — ¢ path NSPACE(n) 1,
(9) Connectivity NSPACE(n) n,
(10) Perfect matching Exp.-DTIME ,
(11) Hamiltonian circuit Exp.-NTIME 1,
(12) Planar Exp.-DTIME z,
(13) Bipartite Exp.-DTIME z,
(14) k-colorable Exp.-NTIME z,

Note. G is a simple undirected graph, 4 and § denote the maximum and minimum degree.
respectively, and k is a fixed integer.
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In the last section we suggest further research directions, and state some
open problems.

2. Tie SMALL CIRCUIT REPRESENTATION

Let G(V,E) be a graph with m < 2" vertices vy, V)., 1,,_,. We can
encode the names of vertices with n-bit strings. Denote the binary represen-

tation of a number x by .
We define C,, to be an SCR of G if the following hold:

(1) C, is a combinatorial circuit (i.e., a circuit without memory).
(2) C, has two inputs of n bits each.
(3) C, has r gates, r = O(n*) for some integer k.
(4) The output of C,; is given by
Coi.jy=1 if v,€Vorv, &V,
=0 (viv;) € E.
1 (viyv)) € E

Note. This representation can be used for directed and undirected graphs.
However, since for an undirected graph C,(i, /) = C,(i, j), we define it only
for i < Jj.

Next we derive two basic lemmas concerning SCR which will be used in
Section 3.

Lemma 2.1, Let G (V,,E,) and G,(V,.E,) be two graphs that have
SCRs such that V,< V,. Then G(V,, E,\J E,) has an SCR.

Proof. Let C, . C,, be the small circuits that represent G,, G,, respec-
tively. Then we define Cg, the circuit that represents G(V,, E, U E,) as
CaiN=1 if Colif)=".
I it Cq (i, )=1orCq (i, j)=1,
=0 if Cg4(i,j)=0and Cq(i./j)=0.

Since |V, <|V,| and Cg , Cg, are small also Cg; is small. ]

DerFNITION 2.1, SAT is the following problem:

Input. F. a Boolean CNF formula s.t. |F|=0(p(n)), where n is the
number of variables in F and p is some polynomial.

£43/56/3 4
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Question. 1s F satisfiable?
SAT is well known to be NP-complete (Cook, 1971).

DerFINITION 2.2. Let F be an instance of SAT with n variables. We
define the graph of F. G.(V, E,) by

Vo= {Ugs U} wers Ugn_1s W= Uguls E, = {(v,,w)|i<2" Fi)y=1}.
In words. v, and w are adjacent iff i satisfies F.

’

LEMMA 2.2. G, has an SCR.

Proof. We construct a circuit C, , that represents G, . It has two inputs

of n + | bits each.
The outputs are:

Co, (b ))=" if i>2"0r)j>2",
=1 jf i<2n j=2"and F(i) = I,

=0 otherwise.

C;, is a SCR since the number of conncctives (or. and, —) in F. which
dominates the number of gates in Cg; , is polynomially bounded by n. 1

Given an SCR of a graph G, it is difficult to check if G has certain graph
properties. This will be shown true for a large class of such properties in
Section 3. We illustrate it here by proving that it is NP-complete to test if a

graph has a triangle.
Define the problem TRIANGLE by

an SCR of an undirected graph G(V. E).

Does G have a triangle?

Input. Cg,
Question.

Tueorem 2.1. TRIANGLE is NP-complete.

Proof. (a) TRIANGLE € NP. We guess the three vertices and feed

every pair of vertices into the circuit to verify that the edges exist.

(b) SAT oc TRIANGLE. Let F be an instance of SAT
variables. Define G (V,, E,) as

with #

E|: {(U,.,a)logiQZ"}.

V= {00 Uparees Ugn s W= D30y @ = Ugy g by
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The following small circuit C; represents G,:

C, (i, jy=1 if i>2"+lorj>2"+ 1,

=1 if 2" j=2"+1,

=0 otherwise.

Let G,.(V,.. E,) be the graph of F. By Lemma 2.2, G, has a SCR. Also, V, is
contained in V,. (Intentionally we used the same names for the vertices). The
graph G(V,, £, \U E,) is shown in Fig. 2.1. We construct C,,. the SCR of G

as in Lemma 2.1.
Claim. F is satisfiable iff G has a triangle.

Proof. only if Suppose there exists an { such that F(i)=1I.
{a, w, v;} form a triangle in G.

Then

if Suppose G has a triangle. Since (v;,v;) is not in E\UE,, 0<i<jg
2" — 1, then a and w must be two of the vertices in the triangle. Suppose the

triangle consists of {a, w, v;}, then (v;, w) € E which implies F(i/)=1. |

3. NP-HARDNESS

Let Q. be defined for every graph property ¢ by:

C,.an SCR of a graph G.
“Q(G)?" (Does G have property Q7).

Input.

Question.

This whole paper is concerned with the complexity of @, for various
(undirected) graph properties Q. In this section we will generalize the idea of
Theorem 2.1. to characterize a class of graph properties Q for which Qg is
NP-hard. Then we show that many nontrivial graph properties are in this
class.

DerFmviTION 3.1,
if the following hold:

A graph G(V, E) is called t-critical w.r.t. a property Q
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() V=Avg, 0 0y (s W=0,,0,, s Uy, 1 1V = O(0).

(2) Let M={(v;,m)|0Ki<t—1}. Then MNE =@,

(3) —Q(G(V, E)). (G does not have property Q).

(4) Let M’ be any nonempty subset of M. Then Q(G'(V.E\U M")) (if
we add at least one edge of M to G, the resulting graph G’ has property Q).

If (1)-(4) hold, G is denoted by G¢.

TureoreM 3.1. Let Q be a graph property. such that for every positive
integer t:

’
(1) There exists a t-critical graph w.r.t. Q, GY.
(2) G? has an SCR. C,.
Then Q. is NP-hard.

Progf.  We show that SAT cc Q. Let F be an instance of SAT with n
variables. The graph G (V, E;) has an SCR by Lemma 2.1. The graph GY,
exists and has an SCR by the conditions in the theorem. Also note that ¥, is
contained in V. Therefore, by Lemma 2.1, we can construct C,. a small
circuit that represents G(V, EE,). Since |V|= 0(2"), constructing Cj
takes polynomial time in n.

Claim. F is satisfiable iff Q(G).

Proof. if If F is not satisfiable, then E,. =@, and G(V, E\J E,.) is in fact
the graph GY,. From Definition 3.1(3), —Q(GY,) holds. and therefore —Q(G)
holds.

only if f F is satisfiable, then E, is a nonempty subset of M
{Definition 3.1(2)). Therefore Q(G) holds (Definition 3.1(4)). &

It seems in order to prove that Q (for some property Q) is NP-hard using
Theorem 3.1, substantial work should be done. We have to come up with an
infinite list of critical graphs w.r.t. Q, each having an SCR. However, for all
the properties we considered, it is easy to construct “uniform™ critical
graphs. i.e., graphs with the same structure for every t. The procedure is as
follows:

(1) Find a l-critical graph w.r.t. Q. GY.
(2) Replicate v, in GY ¢ times to get GY.

The symmetric structure of GY guarantees that it has an SCR.

CoroOLLARY 3.1. Let G be an undirected graph and k a fixed integer. If
Q is one of the properties in the following then Q. is NP-hard.

(1
(2)
(3)
(4)
(5)
(6)
(7

Proof.

SUCCINCT REPRESENTATIONS OF GRAPHS

G has an edge.

G is connected,

G has a triangle (a k-path, a k-cycle),

G has a cycle,

G is not bipartite (not k-colorable),

MG) = k. (4(G) is the maximum degree in G),

G is not planar.

The critical graphs for these properties are shown in Table IL

TABLE 1]
Q Q
O G| G'
" °
é o O +44 O
A Yo Yi Yi-1
w
w (o]
? o Yi Yoy
a

5 o o i
9, O, Oy Wbl
6 V} \
$ o o o
Vo Yo Yi Yy
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FiGure 3.2

Sometimes it is not sufficient jujt to replicate v, ¢ times, and we need to
build a simple structure on vy, Uy, Uy, Such as clique, cycle. or path.

COROLLARY 3.2. If Q is the predicate “G is Hamiltonian™ or the
predicate “G is not Eulerian™ then Qg is NP-hard.

Proof. The r-critical graphs of the two predicates are given in Figs. 3.2
and 3.3, respectively.

Note that in the proof of Theorem 3.1 we use only the {-critical graphs for
t values that are powers of 2. Iherefore, it is sufficient to present t-critical
graphs for any sequence of integers that contains {27}/ .

COROLLARY 3.3. If Q is the predicate “G has a perfect matching.” then
Qg is NP-hard.

Proof. We construct G¢ for all even integers = 2r. GY is shown in
Fig. 3.4. 1

The above list of graph properties for which Qg is NP-hard is by no
means exhaustive. One can easily construct critical graphs for many other
properties, using the same method. Also, it is not difficult to create a similar
list for properties of directed graphs.

We conclude this section by noting that we proved the lower bounds for
problems (1)}-(4), (6), and (7) in Table L. Since checking if a graph has a
triangle, a k-path, a k-cycle or a vertex of degree at least k (k fixed) amounts
only to guessing a fixed number of edges and verifying their existence using
C,,. we have also the upper bounds on problems (1)}-(4) in the table.

a w b a w b
: ; Q Q
G‘ L—o— jG'
v e o —O— . .
Vo Voo W4 Y, Yig
FiGURE 3.3

SUCCINCT REPRESENTATIONS OF GRAPHS 191

w v
P\ v2v»| ° v,

Fioure 3.4

4. ¥,- AND IT,HARDNESS

In this section we improve the lower bounds of Section 3 for sevcral
problems. We first review some known facts and introduce some notation
which will be used in this section.

DeFmITION.  C, = {R(X, Y)[R(X, Y} is a Boolean formula, and for all X
there exist ¥ s.t. R(X. Y) =1}

The following useful theorems are proved in Stockmeyer (1977).
TueoREM A. C, is log-complete in mns.

TheoreM B.  For a problem PR.
PR is I1,-hard (complete) = —PR is £, hard (complete).

Let F be VX 3Y R(X.Y), where X = [, x,boand Y=V v By
assigning i to X, where 0 i< 2" — 1, we mean that we take the binary
representation of i, i, padded with zeros to the left so that |i] = r. and we
assign the kth bit of i to x,. Assigning jto Y has the same meaning. We
denote the assignment by R(i. ).

The rest of the section contains the proofs of the lower and upper bound
on problem (5), and the lower bounds for problems (8)-(14) in Table I. In
the following theorems we polynomially reduce C, to Q, for the property ¢
under consideration. For every instancc F=R(X,Y) (with |Xj=r and
|Y|=s) of C, we construct a graph G, s.L. FE€ C, iff G has property Q.
Following similar arguments as in Section 3. the graphs constructed have an
SCR, so we will not go into the boring details of those small circuits.

THEOREM 4.1, For Q: “6(G) > k™, where 8(G) is the minimum degree of
G and k is some fixed constant, Qg is I1,-complete.

Proof. (a) Qg¢€I,. Let Cq be an SCR of G. Then Q, can be
represented by the Boolean formula Vx 3y, Vs (A, Ca(x 1) = 1.
Avcicick Vi# Vs where X, ¥, ..., ¥, are the codes of the vertices.
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(b) Let Qg be Qg with k= 0. Define G(V, E) (Fig. 4.1) by
V= 1{x,0<i<2 — U {3]0< <2 —2),
E={(rp v MO <2 =2V U (3, ) [ RU, J) = 1.

Claim. F& C,<« 8(G)> 0.

It is obvious that the degree of all the p-vertices is greater than 0. For an
x; to be connected to another vertex, there should exist some j for which
(x;. »)) € E or in other words R(i, )= 1. So H(CG)> 0 Vidj(x;,, y)EE=
ViR, j)=1=Fe&C(C,.

This proves that Qg, is IT,-conjplete. This idea is generalized for every k
by adding k — 1 vertices that are connected to all x,, y,. Hence, Qy is /T,
complete.

THEOREM 4.2, For Q, “G is connected” Q. is IT,-hard.

Proof.  Let G(V.,E) be the graph in Theorem 4.1 (Fig. 4.1). It is easily
seen that G is connected iff FE C,. |
THEOREM 4.3,

hard. )

Proof. Define G(V, E) (Fig. 4.2) by

For Q, “G has a path connecting a and b." Qg is Il

V=1{a, bl U{x | 0<i<2" = Uy, J0<ig2"— 1,072 — 1,
E={(ax)lU{(re X ) T2 = 11U (0,0, b))

(s P 02" - 1,0 j <25 -2}

U (e yi ) R3 J) = 1),

Claim. F € C,« G has a path connecting a and b.

In order for a and b to be connected by a path there must exist an edge
(x;, ¥;;)Vi. For all i there exists an edge (x,, ¥i;) = Vidj such that
Rii,)=1=FeC, |1

THEOREM 4.4. For Q, “G is planar,” Q is Z,-hard.

Xo X X; Xpr_y
o) o o e . c\ e S
it RO, =12\
O——O— . . l}. . . « —0
YO Y| yl YZS_|

Ficure 4.1

SUCCINCT REPRESENTATIONS OF GRAPHS 193

yzv_“o yz'.z_o yI,O y0.0
/1Yz’-|,i/1yz'-2.l /Iy\.l ﬂyo,x
: L. ) o——q
b L Xprl . X, boox . %o
Y

l l l
Yoroy2sar Yar-z2,284 Yi28-1 Yo,2%-1

Froure 4.2

Proof. We show that —Q is IT,-hard. Define G(V, E) by

V=labocdetUix0Li<2 — 1}
Uiy 10<i<27 =10/ <2" = 1L,
E = {(a, c)., (@, d). (a. e}, (b. ¢), (b. d), (b, e}, (c, d). (d. e), (c. e).
(@.xq), (F2ri00 D)}
U (s Y1027~ 10K <2 =2
U m )V RE D = THU (0, X )12 = 2}

This is essentially a complete graph on {a, b, ¢, d, e}, e.:xc.ept that the edge
(a, b) is replaced by the graph of Fig. 4.2. Therefore it is clc.ar that G is
nonplanar iff there is a path from a to b, whllch by the previous theorem
happens iff F € C,. Since —Q; is /1,-hard, Qg 1s Z,-hard.

THeoREM 4.5.  For Q. “G is bipartite,” Qg is X, hard.

Yi, 281 Yaro1, 251

Yo, 251

FiGure 4.3
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Yo.0 Yio-1.0 Yi,.0 Y2'-1.0
Yig-t.1 ¥io.l Yot
X, X X,r
Yo 2 Yig-1.2%1 Yip.25-1 Yaroh, 25

JiGure 44

Proof.  We show that —Qq is {1,-hard. Define G(V. £) (Fig. 4.3) by

V={x]0<i<2"U{y;]0<i<2" - 1,02 =1},

E= 135X )0<IK2 = L0 <2 = U (e vy ) R ) = 1)
U {(xg, X500}

Claim. F& C,< G is not bipartite.

= Suppose F€ C,. Let j@) be any y-value for which R(i. j(i)) =1
(072" = 1) Then {xg, Yo i Xia Vijony=es X o Voe pjezr s Yoo Xl 08
an odd cycle in G and G is not bipartite.

<= Suppose F & C,, then there exist i, such that Vj, R(iy. )=0 so the
vertices of G can be colored Black and White (Fig. 4.4) in the following
way:

Black = {x; [0 i i Wy [ <i<2" = 1O /<27 1
White = V-Black. I
COROLLARY 4.1. For Q, “G is k-colorable,” Q¢ is L,-hard.

Proof. Connect every vertex of the graph in Fig. 4.3 to all vertices of a
(k — 2)-clique. The new graph is k-colorable iff the original is bipartite. |

X . X,
yo.z‘/-ot/_g\oy\o‘o yi,Zs-/lO,i)‘,\OZi,O yz'—1,z‘—/vo/-o§;‘0\)'2'- 1.0
/ AN // \\ s N\

/ \ / \ / \
’ o] \ ‘ (e} ‘ [ o] ‘
\ Xo / \ Xi / \ Kor-s /
\ / \ / \ /
~ - e ~N - " ~ e
FIGURE 4.5
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Yo.0

Yo.,25-1

FiGURE 4.6

THEOREM 4.6, For Q.G has a perfect matching,” Q. is I1,-hard.
Proof. Define G(V,E) (Fig. 4.5) by
Vo x5 02— U |02 = 10 €2 = 1]
E=1{(y i N0 X)10<i<2" = 1)
U (g 1o X100 27 = 1 (X vi) | R(i, /)= 1}.

Claim. F € C,<> G has a perfect matching.
The ith component of G has a perfect matching iff x; is connected to any
of the y,; or in other words if 3/ such that R(i, j))=1. So G has a perfect

matching Vi3 R(i. ) =1 Fe€C,.
TuEOREM 4.7. For Q, “G has a Hamiltonian circuit™ Qg is IT,-hard.

Proof. Define G(V, E) (Fig. 4.6) by
Ve {x,x|0<ig<2 = 11U {ri10<i<2 = 1,0 j<2" =1},

Ee i(F.x, )]0€i<2 = HUIE,. 1 )10<i<2 = 1,0<j<2 1)
U e e NIOKIL27 1,0 €/ € 2= U, vy JIRGE =1

Fe C, + G has a Hamiltonian circuit.
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<= Suppose F & C,, then i, such that Vj, R(i,, /) = 0. In this case X, is
connected only to X; | and could not be included in a cycle. G does not
have a Hamiltonian circuit.

= Suppose FE€C,. Let j(i) be any y-value for which R(/, j(i)) =1
O0<gig Tf 1). Then Vi3 such that R(i, j(i)) = 1. = {
Yojr-1 Xos Xis Vijiysos Yoo jar 1y, Xao g, X,
circuit. J

Yoo Yojiors Yo jwr v 130
1S a Hamiltonian

5. UPPER BOUNDS

Deﬁne Qy to be the problem of deciding whether a graph, given by its
adjacency matrix, has property Q or not. In this section we show how to
convert any algorithm for Q, into an algorithm for Qg. This yields simple
time and space upper bounds for Q. The model of computation we assume
is the RAM (Aho et al., 1979).

Let n be the size of an SCR of a graph on m vertices. From the definition
of the SCR we have that n < ¢ log“ m for fixed constants ¢ and k. Also note
that n 2 2 log m since there are 2 log m input lines in the SCR.

I'AEMMA 5.1. Given an SCR of a graph G(V, E), we can construct the
adjacency matrix of G in time O(n2*"), where n is the size of the SCR,

' Proof. There are | V'|* = O(2*") entries in the matrix. For each entry we
input the binary encoding of the two vertices into the SCR, and fill the entry
gccording to the result. Since this is a combinatorial circuit, the processing
qme is bounded by the size of the circuit, so computing each entry takes
time O(n). The total time is therefore on2™). 1

THEOREM 5.1. Let A be an algorithm that solves Q. in time T (m) for
any graph on2 m vertices. There Is an algorithm B that solves Qs in time
Ty(n) = 0(n2* + T (2"), where n is the size of the SCR. »

Proof.  Algorithm B first constructs the adjacency matrix of the input
graph from the given SCR. By the lemma, it requires O(n2°") steps. Then it
feeds the matrix to algorithm 4, which runs in time T, (m)=O(T (2")) since
m < 2", Therefore the total number of steps required is O(n2*" + T,(2”)). |

COROLLARY 5.1.

I/ Oy € P-DTime then Q, € Exp-DTime.
If Qy € P-NTime then Qg € Exp-NTime.

Since testing whether a graph is planar, bipartite or has a perfect matching
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is in P, and testing for a Hamiltonian circuit or k-colorability is in NP, the
upper bounds 12-16 in Table 1.1 follow from Corollary 5.1.

Tueorem 5.2, Let A be an algorithm that solves Q. in space S (m) for
graphs on m vertices, where S (m) 2 log m. Then there is an algorithm B
that solves Q. in space S, (n) < S ,(2"), where n is the input size of Q,.

Proof. Let C, be the input to Q.. Algorithm B mimics algorithm A
except when 4 consluts the adjacency matrix, B consults C,,. This is possible
since S,(n) = S,(m) 2 log m 2 n. Therefore S,(n)=S,(m)<S,2"). 1

COROLLARY 5.2, For any integer r:

If O, € DSPACE(log" n) then Q. € DSPACE(n").
If O, € NSPACE(log" n) then Q, € NSPACE(n").

Given the adjacency matrix of a graph, testing it for an s — path or
connectivity are known to be in NSPACE(log | V]). Testing for an Eulerian
circuit is in the same complexity class, since it is merely a connectivity test
plus verifying that all vertices have even degrees. which is easily done in
log | V| space. Therefore the upper bounds (7x-(9) in Table! follow
Corollary 5.2.

We are left to prove that testing whether & graph (given by an SCR) has a
cycle, takes only O(n) space on a deterministic Turing machine. Hong
(1980) gives an algorithm with this upper bound for a certain class of
succinctly representable graphs. His algorithm is easily seen to perform
similarly when the input graph is given by an SCR.

6. FURTHER RESEARCH AND OPEN PROBLEMS
1

Our major motivation in studying succinct representation of graphs comes
from the VLSI world. The new technology makes it possible to place on one
chip tens of thousands of elements. The layout of a chip forms a graph.
whose description by an adjacency matrix would be horrible. Also, those
circuits usually have a “uniform™ structure which gives rise to hope that they
can be represented succinctly. To find out if this idea is practical we
investigated the difficulty in testing graph properties on a succinct represen
tation. The lower bounds obtained in this paper seem to discourage this idea.
However, those results were obtained only for an SCR. which is only one
type of succinct representation. In fact, another succinct representation
which yields more “positive’ results is analyzed in Galperin (1983). Other
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forms of succinct representation should be examined. These even may be
“special purpose” representations designed especially for the types of graphs
we find on VLSI chips.

Other Open Problems

(1) Theorem 3.1 gives sufficient conditions for a graph predicate to be
NP-hard. We conjecture that for every “nontrivial” graph property Q, the
relevant decision problem on succinct input (g, is NP-hard. The term
“nontrivial” graph property should be defined. A possible definition could be
a property that has infinitely many critical graphs. Note that we do not
require that those critical graphs be succinctly representable.

(2) Table II leaves a lot of room for improvement. Onc can try to
improve the upper and lower bounds for predicates in the table, or work on
other properties. One of the difficulties we could not overcome in proving
lower bounds, was to show that a problem is hard for /7, or £,. i 2> 3. This
may require different techniques then those we developed to probe NP-
hardness and X,/IT,-hardness.

(3) Characterize classes of graphs that can be represented succinctly.

RECEIVED: August 5, 1983; ACCEPTED: September 22, 1983

ACKNOWLEDGMENTS

We are grateful 1o Professor Richard Lipton for guiding us in this research. We aiso thank
a careful referee for his comments.

REFERENCES

AnQ. A. V.. HopcrorT. 1. E.. aND Urnisman. 1. Do (1979), “The Design and Analysis of
Computer Algorithms,” Addison—Wesley, Reading, Mass.

Cook. S. A. (1971), The complexity of theorem proving procedures. in “Proceedings, Third
Annual STOC,” pp. 151-158.

Garperin, H. (1982), “Succinct Representations of Graphs,” Ph.D. thesis. Department of
Electrical Engineering and Computer Science, Princeton University, Princeton, N.J.,
August.

HonG, J.-W. (1980), On some deterministic space complexity problems. in “Proceedings of
SIGACT Conference,” pp. 310-317.

HorcrorT, J. E., AnD ULiman 1. DL (1979), “Introduction to Automata Theory. Languages
and Computation,” Addison—Wesley, Reading, Mass.

STOCKMEYER. L. J. (1977), The polynomial-time hierarchy. Theoret. Comput. Sci. 3. 1-22.

INFORMATION AND CONTROL 56, 199-211 (1983)

On Storage Media with Aftereffects

H. S. WITSENHAUSEN AND A. D. WYNER

Bell Laboratories, Murray Hill, New Jersey 07974

Successive independent batches of data are writlen into a memory and then read
out. The behavior of a memory cell in cach read/write cycle is dependent (this is
the “aftereffect’™) on its previous history. Each cell can be modelled as an
automaton. Using a large number of identical ceils and coding/decoding across the
memory, what is the maximum throughput that can be achieved in N cycles with
negligible error probability?

This problem is equivalent (by a time/space interchange) to finding the toual
capacity of a certain multiuser interference channel.

Exact answers are obtained for the cell-model in which the output of a cell is the
exclusive OR of the two most recent inputs. For the (more realistic) inclusive OR.
Jower and upper bounds are determined.

The increase in throughput obtainable by delaying some of the read cycles is abso

determined or bounded.

¢
I. INTRODUCTION

We consider a medium made up of a large number N of independent cells,
each capable of staring one bit of information. The medium is used in the
following way: For r=1,2,.., T\ data from a source S,, possibly encoded, is
stored at time [ and read at time 1 + 6, by a user who seeks to recover the
data from S, with arbitrarily small error probability. This user does not care
about the sources S, (v # ¢). The sources are independent.

If the celis function perfectly and 0 < (),’< 1, then N bits of data can be
transmitted this way from each source. This is a rate of 1 bit per cell at each
usage cycle.

Now consider the case of imperfect cells, each cell being a copy of a
certain stochastic or deterministic finite state machine. (In the stochastic
case, the randomness in each cell is assumed independent of that in all other
cells.) Then, the aftereffect on the cells of usage in prior time periods
introduces errors in the current storage-retrieval cycle. As the data ot
previous cycles is only known in distribution, not in realization. onc 13 faced
with a noisy channel and error-correcting codes must be used. As N is large,

the capacity of this channel will indicate the maximum possible rate of

transmission.
199
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