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Abstract� We continue the investigation of interactive proofs with

bounded communication� as initiated by Goldreich and H�astad �IPL

������ Let L be a language that has an interactive proof in which the
prover sends few �say b� bits to the veri	er� We prove that the com


plement �L has a constant�round interactive proof of complexity that

depends only exponentially on b� This provides the 	rst evidence that

for NP
complete languages� we cannot expect interactive provers to be

much more �laconic
 than the standard NP proof� When the proof

system is further restricted �e�g�� when b � �� or when we have perfect

completeness�� we get signi	cantly better upper bounds on the complex


ity of �L�
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�� Introduction

Interactive proof systems were introduce by Goldwasser� Micali and Rack�
o� �GMR��� in order to capture the most general way in which one party
can e�ciently verify claims made by another� more powerful party�� That is�
interactive proof systems are two�party randomized protocols through which
a computationally unbounded prover can convince a probabilistic polynomial�
time veri	er of the membership of a common input in a predetermined lan�
guage� Thus� interactive proof systems generalize and contain as a special case
the traditional 
NP�proof systems� �in which veri	cation is deterministic and

non�interactive�
�
It is well�known that this generalization buys us a lot� The IP Characteriza�

tion Theorem of Lund� Fortnow� Karlo�� Nisan and Shamir �LFKN��� Sha���

�Arthur�Merlin games� introduced by Babai �Bab���� are a special type of interactive
proofs in which the veri�er is restricted to send the outcome of each coin it tosses� Such proof
systems are also called public coin� and are known to be as expressive as general interactive
proofs �GS�	�� We warn that the latter assertion refers to the entire class but not to re�ned
complexity measures such as the total number of bits sent by the prover 
considered below��
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states that every language in PSPACE has an interactive proof system �and it
is easy to see that only languages in PSPACE have interactive proof systems
�

It is well�known that the strong expressive power of interactive proofs is
largely due to the presence of interaction� In particular� interactive proofs in
which a single message is sent �like in NP�proofs
 yield a complexity class
�known asMA
 that seems very close to NP� It is interesting to explore what
happens between these extremes of unbounded interaction and no interaction�
That is� what is the expressive power of interactive proofs that utilize a bounded�
but nonzero� amount of interaction�

���� Prior work regarding interactive proofs with bounded interac�
tion�

Interactive Proofs with Few Messages� The earliest investigations of
the above question examined the message complexity of interactive proofs� i�e��
the number of messages exchanged� �Sometimes� we refer to rounds� which
are a pair of veri	er�prover messages�
 The Speedup Theorem of Babai and
Moran �BM��� �together with �GS���
 shows that the number of messages in
an interactive proof can be always reduced by a constant factor �provided the
number of messages remains at least �
� On the other hand� there is a large gap
between constant�round interactive proofs and unrestricted interactive proofs�
As mentioned above� all of PSPACE has a general interactive proof �LFKN���
Sha���� In contrast� the class AM of problems with constant�round interactive
proofs is believed to be relatively close to NP� Speci	cally� AM lies in the
second level of the polynomial�time hierarchy �BM���� cannot contain coNP
unless the polynomial�time hierarchy collapses �BHZ���� and actually equals
NP under plausible circuit complexity assumptions �AK��� KvM��� MV����

Laconic Provers� A more re	ned investigation of the above question was
initiated by Goldreich and H�astad �GH���� who gave bounds on the complex�
ity of languages possessing interactive proofs with various restrictions on the
number of bits of communication �and�or randomness
 used� One of the re�
strictions they considered� and the main focus of our investigation� limits the
number of bits sent from the prover to the veri	er by some bound b� That is�
what languages can be proven by 
laconic� provers�

Since the prover is trying to convey something to the veri	er� this seems to
be the most interesting direction of communication� Moreover� for applications
of interactive proofs �e�g�� in cryptographic protocols
� it models the common
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situation in which communication is more expensive in one direction �e�g�� if
the prover is a hand�held wireless device
�
On one hand� we know of interactive proofs for several 
hard� problems

�e�g��Quadratic Nonresiduosity �GMR����Graph Nonisomorphism �GMW����
and others �GK��� GG��� SV���
 in which the communication from the prover
to the veri	er is severely bounded �in fact� to one bit
� On the other hand�
laconic provers exist only for problems in BPPNP �resp�� BPP in case the
proof system is of the public�coin type
 �GH���� Furthermore� it was conjec�
tured that NP�complete problems cannot have general interactive proofs with
laconic provers �but the results in �GH��� fall short of supporting this conjec�
ture
� In this work� we provide strong support for this conjecture�

���� New results regarding interactive proofs with bounded interac�
tion� Our main focus is on laconic provers� that is� on interactive proofs in
which the total number of bits sent by the prover is bounded�

Laconic Provers� Consider interactive proofs in which the prover sends
at most b � b�n
 bits to the veri	er on inputs of length n� Goldreich and
H�astad �GH��� Thm� �� placed such languages in BPTIME�T 
NP� where
T � poly�n
 � �poly�b�� which clearly implies nothing for languages in NP� In
contrast� we show that the complements of such languages have constant�round
interactive proofs of complexity T �i�e�� the veri	er�s computation time and the
total communication is bounded by T 
� In particular� NP�complete problems
cannot have interactive proofs in which the prover sends poly�logarithmically
many bits to the veri	er� unless coNP is in the quasi�polynomial analogue
of AM� In fact� assuming NP has constant�round interactive proofs with
logarithmic prover�to�veri	er communication we conclude coNP � AM� As
mentioned above� this is highly unlikely� We obtain stronger results in two
special cases�

�� We show that if a language has an interactive proof of perfect complete�
ness �i�e�� zero error probability on yes instances
 in which the prover
sends at most b�n
 bits� then it is in coNTIME�T 
� where T �n
 �
�b�n� � poly�n
� Thus� unless NP � coNP� NP�complete languages can�
not have interactive proof systems of perfect completeness in which the
prover sends logarithmically many bits�

�� We show that if a language has an interactive proof in which the prover
sends a single bit �with some restrictions on the error probabilities
� then
it has a statistical zero�knowledge interactive proof� that is� is in the
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class SZK� This is a stronger conclusion than our main result because
SZK � AM � coAM� as shown by Fortnow �For��� and Aiello and
H�astad �AH���� Recalling that Sahai and Vadhan �SV��� showed that
any language in SZK has an interactive proof in which the prover sends
a single bit� we obtain a surprising equivalence between these two classes�

Interactive Proofs with Few Messages� We obtain one �apparently
 new
result regarding message complexity� A question that is left open by the re�
sults mentioned earlier is what happens 
in between� constant rounds and
polynomially many rounds� Phrased di�erently� can the Speedup Theorem of
Babai and Moran be improved to show that m�n
�message interactive proofs
can be emulated by �and hence are no more powerful than
 m��n
�message in�
teractive proofs for some m� � o�m
� By combining careful parameterizations
of �LFKN��� Sha��� and �BM���� we observe that such an improvement speedup
is unlikely� More precisely� for every nice function m� we show that there is
a language which has an m�n
�message interactive proof but not an o�m�n

�
message one� provided that �SAT is not contained in the sub�exponential ana�
logue of coAM�

���� Additional related work� We note that Goldreich and H�astad �GH���
have presented signi	cantly stronger results regarding interactive proofs with
laconic provers when further restrictions are imposed on the interactive proof�
In particular� they obtain an upper bound ofBPTIME�T 
 �rather thanBPTIME�T 
NP
�
with T � �poly�b� �poly�n
� for languages possessing either of the following kinds
of interactive proofs� ��
 public�coin proofs in which the prover sends at most
b bits� ��
 proofs in which the communication in both directions is bounded by
b�

Multi�prover interactive proofs and PCP� The expressive power ofmulti�
prover interactive proofs �MIP�s
 and probabilistically checkable proofs �PCP�s

with low communication has been the focus of extensive research� Much of
this research is motivated by the importance of the communication parameter
in the applications of MIP�PCP to inapproximability� In particular� Bellare�
Goldreich� and Sudan �BGS��� give negative results about the expressive power
of 
laconic� PCP�s and MIP�s� Since one�query PCP�s are equivalent to inter�
active proofs in which the prover sends a single message� our results provide
bounds on the former�
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Knowledge complexity of interactive proofs� Our work is also related to
work on knowledge complexity� Knowledge complexity� proposed by �GMR����
aims to measure how much 
knowledge� is leaked from the prover to the ver�
i	er in an interactive proof� Several measures of knowledge complexity were
proposed by Goldreich and Petrank �GP���� and a series of works provided up�
per bounds on the complexity of languages having interactive proofs with low
knowledge complexity �see �GOP��� PT��� for results regarding the main no�
tion of knowledge complexity and �GP��� ABV��� SV��� for results regarding
alternative notions
� These results are related to� but incomparable to ours�
For example� Petrank and Tardos �PT��� showed that languages having

knowledge complexity k � O�logn
 are contained in AM � coAM� While
it is true that the knowledge complexity of an interactive proof is bounded
by the amount of prover�to�veri	er communication� their result does not yield
anything interesting for laconic interactive proofs� The reason is that their
result only applies to interactive proofs with error probabilities signi	cantly
smaller than ��k� and it is easy to see that interactive proofs with prover�to�
veri	er communication k � O�logn
 and error probability noticeably smaller
than ��k only capture BPP �and hence are uninteresting
� In contrast� our
results apply even for constant error probabilities�
Sahai and Vadhan �SV��� �improving �GP���
 showed that languages with

logarithmic knowledge complexity in the 
hint sense� collapse to SZK� and
their result applies even if the error probabilities are constant� However� this
is also incomparable to ours� because the 
hint sense� is the one measure of
knowledge complexity which is not bounded by the prover�to�veri	er commu�
nication� �Indeed� the 
hint sense� formulation was dismissed as a satisfactory
de	nition of knowledge complexity by Goldreich and Petrank �GP��� because
of the above and related issues� Still knowledge complexity in the 
hint sense�
yields an interesting extension of zero�knowledge�


Computationally�sound interactive proofs� Finally� it is important to
note that the situation is dramatically di�erent for argument systems �BCC���
�also known as computationally sound proofs
� These are like interactive proofs�
but the soundness condition is restricted to polynomial�time provers� Kil�
ian �Kil��� showed that NP has laconic argument systems if strong collision�
resistant hash functions exist� Speci	cally� under a strong enough �but still
plausible
 assumption� NP has public�coin arguments in which the veri	er�s
randomness and the communication in both directions is polylogarithmic� Com�
bined with �GH���� this provides a strong separation between the e�ciency of
arguments versus interactive proofs for NP� Our results extend this separation
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to the case that only the prover�to�veri	er communication is counted �and the
interactive proof is not required to be public coin
�

���� Organization and techniques� In Section � we recall some relevant
de	nitions� notations and results of prior work� Using these notations� in Sec�
tion �� we state our results and compare them to prior work� Directions for
further research are suggested in Section ��

In Sections � and �� we study laconic provers who send only one message
�or even a single bit
� The main technical contribution of these sections is
a sequence of reductions among various forms of proof systems with the end
result being a statistical zero�knowledge proof system�

In Section � we consider laconic provers of perfect completeness� We reduce
the analysis of such proof systems to a classical result in game theory�

The main result of this paper is proven in Section �� The main technical
contribution is a proof system for proving a �quite tight
 lower bound on the
sum of exponentially many �e�g�� �n
 quanities� where each quantity is eas�
ily veri	able� The basic idea is to cluster these quantities according to their
approximate magnitude� randomly select a few clusters �with probability pro�
portional to the cluster�s 
weight�
 and sample each selected cluster via an
adequate protocol� We stress that the novelty of this proof system is in estab�
lishing quite tight lower bounds �e�g�� tight up to a factor of � � o��

 rather
than lower bounds that may be o� by a much larger factor �e�g�� a factor of n
�

In Section �� we present a message complexity hierarchy �based on a rea�
sonable conjecture regarding �SAT
� The result follows immediately from
re	ned versions of known results� speci	cally� the interactive proof for �SAT
of Shamir �Sha��� �following �LFKN���
 and the Speedup Theorem of Babai
and Moran �BM����

For sake of self�containment and clarity� we provide detailed analysis of
re	ned variants of two known results� the set sampling�lower�bound protocol
of �BM��� GS��� AH��� and the Speedup Theorem of �BM���� We beleive that
these re	ned variants� provided in Appendices A and B� may be useful for
future reference�

�� Preliminaries

We assume that the reader is familiar with the basic concepts underlying in�
teractive proofs �and public�coin interactive proofs
� see� e�g�� �Sip��� Gol���
Vad���� Throughout� we work with interactive proofs for promise problems
rather than languages� A promise problem � � ��Y ��N
 is a pair of disjoint
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sets of strings� corresponding to yes and no instances� respectively� In other
words� a promise problem is simply a decision problem in which some inputs
are excluded� The de	nition of interactive proofs is extended to promise prob�
lems in the natural way� we require that when the input is a yes instance� the
prover convinces the veri	er to accept with high probability �completeness
�
and when the input is a no instance� the veri	er accepts with low probability
no matter what strategy the prover follows �soundness
� Working with promise
problems rather than languages only makes our results stronger �except for one
direction of Theorem ���
�

���� Notation� We denote by IP�b�m
 �resp�� AM�b�m

 the class of prob�
lems having interactive proofs �resp�� public�coin interactive proofs
 in which
the prover sends a total of at most b bits� and the total number of messages
exchanged �in both directions
 is at most m� Note that b and m are integer
functions of the common input length� denoted n� When b is not polynomial
in n� it will be understood that we talk of a generalization in which the veri	er
is allowed time polynomial in b and n �rather than just in n
� Unless speci	ed
di�erently� we refer to proof systems with completeness probability�bound ���
and soundness probability�bound ����

We denote IP�b
 � IP�b� �b
� that is� making only the trivial bound on the
number of messages exchanged� We denote by IP� the analogue of IP when
the proof system has perfect completeness �i�e�� completeness probability �
�

The class of problems with constant�round interactive proofs is denoted AM
def
�

AM�poly�n
� �
 � IP�poly�n
� O��

� �The second equality is by Theorems ���
and ��� below�
 When we wish to specify the completeness probability�bound
c � c�n
 and soundness probability�bound s � s�n
 we will use subscripts�
IPc�s and AMc�s� Unless otherwise speci	ed� we always assume that c�n
 �
s�n
  �� poly�n
�

Comments� Our notations are not universally acceptable� In some other

works IP�r
 denotes IP�poly�n
� r
� Furthermore� whereas the de	nitionAM
def
�

AM�poly�n
� �
 is standard� the class IP is typically de	ned as IP�poly�n
� poly�n

�
Finally� sometimes �e�g�� see above
 we refer to hierarchies such as IP��� �
 by
the notation IP�

���� Interactive proofs with bounded interaction� Using the above no�
tations� we recall some results that are relevant to our study�
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Our starting point� The main results of Goldreich and H�astad are the start�
ing point �and point of reference
 for our work�

Theorem ��� ��GH���
� AM�b�m
 � BPTIME�poly��b� mm� n

�

Theorem ��� ��GH���
� IP�b�m
 � BPTIME�poly��b� mm� n

NP�

Theorem ��� is stated merely for sake of perspective� Our results relate to and
improve upon Theorem ��� �which relates to general interactive proofs rather
than to public�coin ones
� We stress that the transformation from general inter�
active proofs to public�coin ones �see Theorem ���
 does not preserve the total
number of bits sent by the prover� In fact� very laconic provers �i�e�� in which
the prover sends a single bit
 are known for several problems that are widely
believed not to be in BPP� �Examples of such problems include Quadratic
Nonresiduosity �GMR���� Graph Nonisomorphism �GMW���� and the
Discrete Logarithm Problem �GK����


Results used� We will use some �parametrized
 extensions of known re�
sults� Except for the second inclusion in Theorem ��� �which is justi	ed in
Appendix B
� all the extensions �or parameterized versions
 are straightfor�
ward from the corresponding original work�

Theorem ��� �Speedup Theorem �BM���
�

AM�b�m
 � AM�b� � poly�m
� dm��e
 � AM��b �m
O�m�� �
 �

Theorem ��� �AM emulation of IP �GS���
� IP�b�m
 � AM�poly�b� n
� m 
�
�

Theorem ��� ��BHZ���
� If coNP � AM�b� �
� then �� � 	��poly�n� b

�
In particular� if coNP � AM� then the polynomial�time hierarchy collapses
to PH � �� � 	��

Above and throughout the paper� �i�t�n

 �resp�� 	i�t�n


 denotes the class
of problems accepted by t�n
�time alternating Turing machines with i alterna�

tions beginning with an existential �resp�� universal
 quanti	er� Thus� �i
def
�

�i�poly�n

 and	i
def
�	i�poly�n

 comprise the i

th level of the polynomial�time
hierarchy�
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���� Statistical Zero Knowledge 
SZK�� We will also consider SZK�
the class of problems possessing statistical zero�knowledge interactive proofs�
Rather than reviewing the de	nition of SZK here� we will use a recent charac�
terization of SZK in terms of complete problems� For random variables X and
Y � let !�X� Y 
 denote their statistical di�erence �or variation distance� i�e��
!�X� Y 
 � maxS jPr �X � S��Pr �Y � S� j� which equals �

�
�Pz jPr �X � z��

Pr �Y � z� j
� We consider distributions �or random variables
 speci	ed by
�
sampling�
 circuits� that is� a circuit with m input gates and n output gates
can be viewed as a sampling algorithm for the distribution on f�� �gn that is
induced on the output gates by evaluating the circuit on m random input bits�
Statistical Difference is the promise problem SD � �SDY �SDN
� where

SDY � f�X� Y 
 � !�X� Y 
 � ���g
SDN � f�X� Y 
 � !�X� Y 
 � ���g �

Recall that X and Y represent probability distributions speci	ed by corre�
sponding sampling circuits �i�e�� circuits C� and C� such that evaluating C�

�resp�� C�
 on the uniform distribution yields a random variable distributed
as X �resp�� Y 

� More generally� for any � � � � � � �� we will consider
variants SD���� where the thresholds of ��� and ��� are replaced with � and
� respectively�

Theorem ��� �Complete Problem for SZK �SV���
� For any constants � �
�� � � � �� the problem SD��� is complete for SZK� That is� SD��� is in
SZK� and every problem in SZK is reducible to SD��� via a polynomial�time
�many�one
 reduction�

Thus� instead of placing certain problems in the class SZK �resp�� showing
that SZK has certain interactive proofs
� we may reduce these problems to SD
�resp�� show that SD has such an interactive proof
� Indeed� we use the fact
that SZK is closed under many�one reductions �SV����

Other results used� The following results about SZK are also relevant to
us�

Theorem ��	 ��For��� AH���
� SZK � AM � coAM�

Theorem ��
 ��Oka���
� SZK is closed under complement�
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Theorem ��� ��SV���
� SZK � IP����n������
�

���� Probabilistically Checkable Proofs 
PCP�� As stated in the intro�
duction� some of our results can be viewed in terms of probabilistically checkable
proofs� Loosely speaking� a probabilistically checkable proof system consists of
a probabilistic polynomial�time veri	er having access to an oracle which repre�
sents a proof in redundant form� Typically� the veri	er accesses only few of the
oracle bits� and these bit positions are determined by the outcome of the veri�
	er�s coin tosses� For completeness and soundness bounds c and s� it is required
that the veri	er accepts any yes instance x with probability at least c�jxj
 �i�e��
when given access to an adequate oracle
� whereas it accepts any no instance
x with probability at most s�jxj
 no matter which oracle is used� Whenever
this holds and if the veri	er uses at most r�jxj
 random bits and makes at
most q�jxj
 boolean queries� we say that the problem is in PCPc�s�r� q
� For
logarithmically bounded q� we will also say that the problem has amortized
query complexity q

log��c�s�
� and denote the class of problems having amortized

query complexity q �and randomness complexity r
 by PCP�r� q
� �For further
discussion of these notions� see �BGS����
 It will be interesting to contrast our
results with the following known results�

Theorem ���� �Sec� ���� in �BGS���
�

�i� PCPc�s�poly�n
� �
 � AM� for any functions c� s�

�ii� PCP�O�logn
� �� �
 � P� for every constant � � ��

We also consider free�bit complexity of PCP systems� Loosely speaking� here
one distinguishes queries for which the veri	er compares the answer against a
value determined by previously obtained answers� from queries in which the ver�
i	er only records the answer for future usage� The latter queries are called free
�as the 
acceptable answers� to them are not determined
� By FPCPc�s�r� f

we denote the class of problems having a PCPc�s�r� q
�system in which at most
f � q queries are free� �Actually� the de	nition of free�bit complexity also
requires polynomial�time reconstruction of the �f acceptable answers�


Theorem ���� �Sec� ���� in �BGS���
� FPCP��s�poly�n
� �
 � coNP� for any
function s � ��

�� Formal Statement of Results

We improve over Theorem ���� and address most of the open problems sug�
gested in �GH��� Sec� ��� Our main results are listed below�
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���� On provers that send only one bit� For one bit of prover�to�veri	er
communication� we obtain a collapse to SZK�

Theorem ���� For every pair of constants c� s such that � � c� � s � c�� � ��
IPc�s��
 � SZK�

Viewed in terms of PCP systems� this says that PCPc�s�poly�n
� �
 � SZK�
for any � � c� � s � c�� � �� For this range of c and s� the latter improves
over the bound provided by Part i of Theorem ����� Combining Theorems ���
and ���� we get�

Corollary ���� For every c� s as in Theorem ���� IPc�s��
 is closed under
complement�

Theorem ��� can be generalized to non�constant completeness and soundness
bounds as follows�

Theorem ���� For every constant 	 � �� and every pair of functions c� s such
that c�n
��� � s�n
� IPc�s��
 � SZK� In fact� this holds even for non�constant
	 � "��� logn
�

���� On provers that send only one message� We are sometimes able to
reduce proof systems with a laconic prover that sends a single message to the
above case �of provers that send only one bit
�

Theorem ���� For every b � b�n
 � O�logn
� c � c�n
� and s � s�n
 satisfy�
ing s � ��b��� IPc�s�b� �
 � IPc�s���
 where s

� � ��exp ��O �s�b���� s��b
�
��
�

Applying Theorem ���� this gives�

Corollary ���� IPc�s�b� �
 � SZK� provided the following conditions hold�

�i� b � O�logn
 and s � ��b���

�ii� s�b���� s��b
� � O�logn
�

�iii� c � �� exp ��
s�b���� s��b
�
�
� where 
 is a universal constant�

�Condition �ii
 guarantees that � � s� � exp��O�s�b��� � s��b
�

 is at least
�� poly�n
� and Condition �iii
 guarantees that c� � s��
 In particular� the
above conditions are satis	ed in the following two cases�

�� b � O�logn
� s � O���b
 � �� "��
 and c � �� o��
�
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�� b � � log� log� n� s � ��� "��

 � ��b��� and c � �� exp�����b��

�
Viewed in terms of PCP systems� the above results refer to a generalization of
PCP in which non�boolean queries are allowed� Speci	cally� the above results
refer to a PCP system in which a single query is made and is answered by
a b�bit long string� The amortized query complexity of such a scheme may
be viewed as b

log��c�s�
� and so the setting in Item � asserts that ��query PCP

with polynomial randomness� constant �or even double�logarithmic
 answer
size� perfect completeness� and amortized query complexity below � is in SZK�
This is slightly related to Part ii of Theorem ���� that refers to amortized
query complexity below � but in a di�erent PCP model �which� on one hand�
allows many Boolean queries and arbitrary completeness bound� but on the
other hand allows only logarithmic randomness
�

���� On provers that send a bounded number of bits� For more bits of
communication� we 	rst obtain the following result for interactive proofs with
perfect completeness �denoted by IP�
�

Theorem ���� IP��b
 � coNTIME��b�poly�n

� In particular� IP��O�logn

 �
coNP�

In the general case �i�e�� with imperfect completeness
� we prove�

Theorem ��	� IP�b�m
 � coAM��b � poly�mm� n
� O�m

� In particular�
IP�O�logn
� m
 � coAM�poly�n
� O�m

� for m � O�logn� log logn
�

The above theorems provide 	rst evidence that NP�complete problems cannot
have interactive proof systems in which the prover sends very few bits� Further
evidence toward this claim is obtained by applying Theorems ��� and ����

Corollary ��
� IP�b�m
 � coAM�poly��b� mm� n
m� �
� In particular� IP�O�logn
� O��

 �
coAM and IP�polylogn
 � cogAM�

Corollary ���� NP 	� IP�O�logn
� O��

 unless the polynomial�time hier�

archy collapses �to �� � 	��� NP 	� IP�polylogn
 unless �� � e	��

Above� cogAM and e	� denote the quasipolynomial�time ��
polylog n
 analogues

of coAM and 	��

���� On provers that send a bounded number of messages� Finally�
we mention our result on message complexity� �A more precise statement is
contained in Section ��




On Interactive Proofs with a Laconic Prover ��

Theorem ����� Let m�n
 � n� logn be any 	nice
 growing function and sup�
pose that�SAT �� AM��o�n�� �
� ThenAM�poly�n
� m�n

 	� AM�poly�n
� o�m�n

�

Theorem ���� asserts that a stronger round�reduction than the one provided by
the Speedup Theorem of �BM��� �i�e�� Theorem ���
 is unlikely� unless one can
present an unexpectedly�short two�message proof for non�satis	ability� Note
that� by Theorem ���� it is irrelevant whether we use IP or AM in Theo�
rem �����

�� On Extremely Laconic Provers �Saying Only One Bit�

In this section� we prove Theorem ��� �i�e�� relate IP��
 and SZK
� The proof
is based on the following lemma� along with previous results�

Lemma ���� For every two constants c� s� every problem in IPc�s��
 reduces to
SDc�s�

Recall that SDc�s is the promise problem Statistical Difference �as de	ned
in Section ���
�

Proof� Let �P� V 
 be an interactive proof for some problem so that the
prover sends a single bit during the entire interaction� Thus� on input x and
internal coin tosses r� the veri	er 	rst sends a message� denoted y � Vx�r
� the
prover answers with a bit� denoted � � f�� �g� and the veri	er decides whether
to accept or reject by evaluating the predicate Vx�r� �
 � f�� �g�
To demonstrate the main idea� we consider 	rst the natural case in which

for every pair �x� r
 there exists exactly one � such that Vx�r� �
 � �� �Note
that otherwise the interaction on input x and veri	er�s internal coin tosses r is
redundant� because the veri	er�s 	nal decision is una�ected by it�
 Actually�
the lemma is proved by reducing the general case to this special case �see
Claim ���
 and treating the special case �Claim ���
�

The special case � unique 
acceptable� answers� A proof system is
said to have unique answers if for every pair �x� r
 there exists a single � such
that Vx�r� �
 � ��

Claim ���� If a problem has an IPc�s��
 proof system with unique answers�
then it reduces to SD�c����s���

Note that the hypothesis can be satis	ed only if s � ����
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Proof� Let �x�r
 denote the unique � satisfying Vx�r� �
 � �� The prover�s
ability to convince the veri	er is related to the amount of information regarding
�x�r
 that is revealed by Vx�r
� For example� if for some x and random r� the
value of �x�r
 is determined by Vx�r
 then the prover can convince the veri	er to
accept x with probability � �by replying with �x�r

� If� on the other hand� for
some x and random r� the value of �x�r
 is statistically independent of Vx�r

�and unbiased
� then there is no way for the prover to convince the veri	er
to accept x with probability higher than ���� This suggests the reduction

x 
� �C�
x� C

�
x
� where C

�
x�r


def
� �Vx�r
� �x�r

 and C

�
x�r


def
� �Vx�r
� �x�r

� where

b denotes the complement of a bit b�

Now we relate the statistical di�erence between the distributions sampled
by C�

x and C�
x to the maximum acceptance probability of the veri	er� Since

the 	rst components of C�
x and C�

x are distributed identically� their statistical
di�erence is exactly the average over the 	rst component Vx�r
 of the statistical
di�erence between the second components conditioned on Vx�r
� That is�

!�C�
x� C

�
x
 � E

y�Vx
�! ��xjy� �xjy
� �

where �xjy denotes the distribution of �x�r
 when r is uniformly distributed
among fr� � Vx�r�
 � yg� For any y and b � f�� �g� let qbjy denote the probability
that �xjy � b� Then� for any 	xed y� ! ��xjy� �xjy
 � jq�jy � q�jyj � �qy � ��
where qy

def
� maxb�f���gfqbjyg � �

�
� So� we have�

!�C�
x� C

�
x
 � E

y�Vx
��qy � �� �

On the other hand� the optimal prover strategy in �P� V 
 is� upon receiving y�
respond with b that maximizes qbjy� When the prover follows this strategy� we
have

Pr�V accepts x� � E
y�Vx

�qy� �

Putting the last two equations together� we conclude that !�C�
x� C

�
x
 � � �

Pr�V accepts x�� �� �Recall that under the hypothesis of the special case� for
every x the prover may convince the veri	er to accept x with probability at
least ��� �and so such a proof system must have soundness bound at least
���
�
 Thus if the proof system has completeness and soundness bounds c
and s� respectively� then the reduction maps instances to pairs having distance
bounds �c� � and �s� �� respectively� This establishes Claim ����
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Remark ���� The result of Claim ��� can be reversed in the sense that SD�c����s�� �
IPc�s��
� Speci
cally� consider the interactive proof system for SD��� in which
the veri
er selects at random a single sample from one of the two distributions
and asks the prover to guess which of the distributions this sample came from�
If the distributions are at distance 	 then the prover succeeds with probability
�
�
 �

�
� Thus� applying this proof system to SD�c����s��� we obtain completeness

and soundness bounds �
�
 �c��

�
� c and �

�
 �s��

�
� s� respectively�

The general case� We now proceed to deal with the general case in which
there may exist pairs �x� r
 so that either both ��s or none of them satisfy
Vx�r� �
 � �� We do so by reducing the general case to the special case�

Claim ���� If a problem is in IPc�s��
� then it has an IP���c�������s�����
 proof
system with unique answers�

Clearly� Lemma ��� follows by combining Claims ��� and ����

Proof� Let �P� V 
 be a general IPc�s proof system� Consider the following
modi	ed veri	er strategy� denoted V ��

�� Generate coin tosses r for the original veri	er V �

�� Depending on the number j of possible prover responses � for which
Vx�r� �
 � �� proceed as follows�

Case j � �� Send the prover a special 
respond with �� message� and
accept if and only if the prover responds with ��

Case j � �� Randomly do one of the following �each with probability
���
�

� Send the prover y � Vx�r
 and accept if and only if the prover
responds with the unique � such that Vx�r� �
 � ��

� Send the prover a special 
respond with �� message� and ac�
cept if and only if the prover responds with ��

Case j � �� Choose a random bit �� Send the prover a special 
guess
my bit� message� and accept if and only if the prover responds with
��

For all possible choices of the coin tosses of V �� there is exactly one prover
response that will make V � accept� Hence V � satis	es the conditions of the
special case� To establish Claim ���� we show that if an optimal prover makes
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V accept with probability 	� then an optimal prover makes V � accept with
probability ��  	
��� To see this� observe that an optimal prover strategy P �

for V � consists of always responding 
�� to the special messages� and otherwise
responding as an optimal prover P for V � It can be veri	ed by inspection that�
conditioned on each value of j� if P makes V accept with probability 	j� then P

�

makes V � accept with probability �� 	j
��� �That is� 	j is the probability that
V accepts when interacting with an optimal prover� conditioned on V selecting
a random r for which there are j accepting answers �i�e�� j � jf� � Vx�r� �
 �
�gj
� Indeed� 	� � �� 	� � �� and 	� � ����

Combining Claims ��� and ���� the lemma �i�e�� Lemma ���
 follows� Specif�
ically� by Claim ���� any problem in IPc�s��
 has a unique�answer ���bit
 in�
teractive proof with completeness and soundness bounds c� � ��  c
�� and
s� � ��  s
��� respectively� By Claim ���� the latter interactive proof sys�
tem implies that the problem is reducible to SD�c�����s��� � SDc�s �since
�c� � � � ��  c
� � � c and �s� � � � ��  s
� � � s
�

Proof of Theorem ���� Let c and s satisfy the conditions in Theorem ���
�which asserts that IPc�s��
 equals SZK
� The inclusion of IPc�s��
 in SZK
follows by combining Lemma ��� and Theorem ���� That is� IPc�s��
 reduces
to SDc�s� which �for � � c� � s � �
 resides in SZK�
The opposite inclusion �i�e�� of SZK in IPc�s��

 follows from Theorem ����
Speci	cally� recall that c � � and s � c��� and let � � � be such that c � � �
and s � �c��
  �� For any problem in SZK� consider a veri	er that executes
the IP����n������
 proof system of Theorem ��� with probability c  � � �
and otherwise rejects without any interaction� This yields a proof system with
completeness �c  �
 � �� � ��n
 � c �for su�ciently large n
� and soundness
�c �
 � ����
 � s�
To generalize the above to non�constant completeness and soundness bounds

and prove Theorem ���� we use the following transformation�

Lemma ��� �Polarization Lemma �SV���
� There is an algorithm that takes as
input a quintuple �X� Y� �� �� k
� where X and Y are random variables speci
ed
by circuits and �� � �� and outputs a pair of random variables �X �� Y �
 such
that�

!�X� Y 
 � � 
 !�X �� Y �
 � �� ��k
!�X� Y 
 � � 
 !�X �� Y �
 � ��k�

The running time of the algorithm is polynomial in the description of X and
Y as well as in the k � exp���	
���� �
� where 	 � log �

log�
� � � ��
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Proof of Theorem ���� Let c� s be as in the theorem and consider any
problem � in IPc�s��
� The proof of Lemma ��� shows how from any instance
x of �� we can construct in polynomial time a pair of random variables �X� Y 

whose statistical di�erence is at least c�jxj
 �resp�� at most s�jxj

 when x
is a yes instance �resp�� no instance
� Applying the Polarization Lemma to
�X� Y 
 with � � c�jxj
� � � s�jxj
� and k � �� gives a reduction from �
to SD�������� which is in SZK� This reduction is computable in polynomial
time because ���� � �
 � ���c � s
 � poly�jxj
 �by the de	nition of IP
 and
exp���	
 � poly�jxj
 since 	 � "��� log jxj
 �by hypothesis
�

On the limitations regarding c and s� The c� � s constraint in Theo�
rem ��� is due to the analogous constraint in Theorem ��� �which in turn stems
from the limitation in Lemma ���
� Recall that� for every � � � � � � ��
every problem in SZK reduces to SD��� �cf� �SV���
� However� it is not known
whether SD��� is in SZK for every � � � � � � � �rather than for every
� � �� � � � � as in Theorem ���
� In fact� the latter is an intriguing open
problem� and we establish its equivalence to a question regarding IPc�s��
 �for
arbitrary � � c � s � c�� � �
�

Theorem ���� The following hypotheses are equivalent�

�i� For all �� � such that � � � � � � �� SD��� is in SZK�

�ii� For all constants c� s such that � � c � s � c�� � �� IPc�s��
 � SZK�

Recall that SZK � IPc�s��
� for every c� s such that � � c � s � c�� � ��
�Note that this was actually established in the above proof of Theorem ����
since the actual conditions used were c � � and s � c���


Proof� The direction �i

�ii
 is proven in the same way as Theorem ����
except that we now use Hypothesis �i
 instead of Theorem ���� Speci	cally�
IPc�s��
 reduces to SD

c�s �for every c� s by Lemma ���
� and Hypothesis �i

asserts that the latter resides in SZK�
The direction �ii

�i
 is proven by recalling that SD��� is in IP�����������������

�see �SV��� and Remark ���
� which by Hypothesis �ii
 is contained in SZK
�since ��  �
�� � ��  �
�� � ��  �
�� holds for any � � � � � � �
�

Finally� we remark that the condition s � c�� in Theorem ��� �or� more gener�
ally� for SZK � IPc�s��

 seems necessary becuase of the following result�

Proposition ��	 �cf�� �Vad��� Prop ������
� For every c� s such that s � c���
IPc�s��
 � BPP�



�� Goldreich� Vadhan � Wigderson

�� On Laconic Provers That Send One Message

In this section� we prove Theorem ���� which reduces ��message proof systems
with a laconic prover to proof systems in which the prover sends only one bit�
Let �P� V 
 be an IPc�s�b� �
 proof system� with s � ��b��� As in Section �� we
may assume that on input x and internal coin tosses r� the veri	er 	rst sends a
message y � Vx�r
� the prover answers with a string z � f�� �gb� and the veri	er
decides whether to accept or reject by evaluating the predicate Vx�r� z
 � f�� �g�
We obtain a new proof system �P �� V �
 by randomly 
hashing� the prover�s
responses to one bit�

Construction ��� �Modi	ed Proof System �P �� V �

� On input x� the par�
ties behave as follows�

�i� V �� Choose r uniformly� and let y � Vx�r
� Choose a random function
h � f�� �gb � f�� �g� Send y and h to P ��

�ii� P �� Let z � P �x� y
� and � � h�z
� Send � to V ��

�iii� V �� Accept if there exists a w � f�� �gb such that h�w
 � � and Vx�r� w
 �
��

Clearly� the prover�to�veri	er communication of �P �� V �
 is one bit� and the
veri	er�s program can be implemented poly�n
 � �b� Also� it is clear that the
modi	ed prover can convince the modi	ed veri	er to accept any input with
probability that is lower bounded by the corresponding probability in the orig�
inal proof system� Our focus is thus on analyzing the soundness of the modi	ed
proof system�
The basic intuition is that the impossibility of determining a good prover

answer for the veri	er�s message y in �P� V 
 means that it is hard to predict
the hash�value of such a good answer �under a random hash function
� This
intuition is very clear in case the original system has unique acceptable answers�
but it holds also in general� Speci	cally� consider a typical message y� and two
random ri�s that may lead to it �i�e�� y � Vx�ri

� Assuming that x is a
no�instance� in case of unique acceptable answers� it is likely that the �unique

good answer for r� di�ers from the �unique
 good answer for r�� and furthermore
�with probability ���
 these di�erent good answers have di�erent hash�values
under a random hash function� This contributes to the rejection probability
of V ��x
� In the general case� when x is a no�instance� it is unlikely that the
set of good answers for r� has a non�empty intersection with the set of good
answer for r� �or else P could make V accept
� Furthermore� with positive
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probability �which is exponential in the cardinality of these sets
� a random hash
function maps the two sets to di�erent values� which contributes to the rejection
probability of V ��x
� Lastly� the expected cardinality of these sets can be upper�
bounded �by s�b� due to the soundness of V 
� The actual analysis follows� where
we 	rst handle the �easy
 special case of unique acceptable answers�


��� Acceptance probabilities � unique answers� Even more than in
Section �� it is illuminating to 	rst analyze the natural special case of unique
answers� That is� we assume that for every pair �x� r
 there exists exactly one
z such that Vx�r� z
 � �� We refer to the proof system �P �� V �
 as derived by
Construction ����

Claim ���� If �P� V 
 has unique answers� then �P �� V �
 has completeness c� �
��  c
�� and soundness s� � ��  

p
s
��� Moreover� �P �� V �
 also has unique

answers�

Note that c� � c and � � s� � ��s
�
� On the other hand� s� � c� if and only if

s � c��

Proof� We start by establishing the completeness bound� letting x be an
arbitrary yes�instance� Note that whenever z succeeds in making V accept� it
is the case that b � h�z
 succeeds in making V � accept� �That is� if V accepts
z on coins r then V � accepts b � h�z
 on coins �r� h
� for any h�
 On the other
hand� if V does not accept z on coins r� then V � accepts b � h�z
 on coins �r� h

with probability ��� for a uniformly chosen h� Speci	cally� V � accepts b � h�z

on coins �r� h
 if the unique w 	� z that is accepted by V on coins r satis	es

h�w
 � h�z
� Thus� V � accepts P ��V �
x�r� h



def
� h�P �Vx�r


 with probability

Prr�Vx�r� P �Vx�r


 � ��  
�

�
� Prr�Vx�r� P �Vx�r


 	� ��

�
�

�
� ��  Prr�Vx�r� P �Vx�r


 � ��


� �  c

�
�

This establishes the claimed completeness bound� �We comment that unique�
ness of the acceptable answer was not important above� what we actually need
and use is that for every r there exists a w such that Vx�r� w
 � ��

Establishing the soundness bound is �as usual
 more involved� We 	x an

arbitrary no�instance x �which we will hereafter drop from the notation
� For a
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V message y and a P response z� let qzjy denote the probability that V accepts
the prover response z given that V �s message is y� That is�

qzjy
def
�
jfr � V �r
 � y and V �r� z
 � �gj

jfr � V �r
 � ygj �

The optimal prover strategy �for convincing V 
 is to respond with z that
maximizes the above probability� and this strategy succeeds with probability
qy � maxzfqzjyg� By the soundness �of V 
� we have Ey�qy� � s� where here and
below the distribution of y is as induced by Vx �when applied to a random r
�
Similarly� for a V � message �y� h
 and a P � response � � f�� �g� let q��jy�h

denote the probability that V � accepts the prover response � given that V � sent
�y� h
� Using the unique answers hypothesis� observe that the prover response
� makes V � accept i� the response � makes V � reject� Thus� q��jy�h � ��q��jy�h� It
follows that the optimal strategy �for convincing V �
 succeeds with probability

q�y�h � maxfq��jy�h� q��jy�hg �
�

�
 

����q��jy�h � ��
���� �

We will now relate s� � Ey�h�q
�
y�h� to Ey�qy� � s� Using the unique answers

hypothesis� note that q��jy�h �
P

z�h����� qzjy �
P

z qzjy � 
z�h
� where 
z�h
 is a
random variable �de	ned over the space of h�s
 indicating the event h�z
 � ��
Over the choice of the totally random function h� the 
z�s are independent
random variables� each with expectation ��� and variance ���� Thus�

E
h

�
q��jy�h

�
� E

h

�X
z

qzjy � 
z�h

�
�
X
z

qzjy � �
�
�
�

�
�

and

����

Varh

h
q��jy�h

i
� Varh

�P
z qzjy � 
z�h


�
�
P

z q
�
zjy � ��

� maxzfqzjyg
�

�Pz qzjy �
qy
�
�

Combining ����
 with the fact that E�X
� � E�X�
 for every random variable
X� we get

E
y�h

�����q��jy�h � ��
����	� � E

y�h

�����q��jy�h � ��
�����
�
� E

y

h
Var
h

�
q��jy�h

�i � E
y

hqy
�

i
� s

�
�

This implies that

s� � E
y�h
�q�y�h� �

�

�
 E

y�h

�����q��jy�h � ��
����	 � �  

p
s

�
�

and the claim follows�
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Remark ���� When s � ���� the soundness bound stated above can be im�
proved to ��  

p
�� �s��� s

��� This is obtained by replacing ����
 with

Varh�q
�
�jy�h� �

�
�

P
z q

�
zjy � �q�y  �� � qy


�
��� and obtaining s� � Ey�h�q
�
y�h� �

�
�
 Ey�Varh�q

�
�jy�h��

����

Remark ���� The above analysis only requires the values of the hash function
h to be pairwise independent� so V � can restrict its choice of h to any pairwise
independent family �e�g�� inner product modulo � with a random vector
� This
can eliminate the exponential dependence on b in the running�time of V � if the
original protocol has the property that the unique accepting prover response
can be computed from V �s coin tosses r in polynomial time� As pointed out
by an anonymous referee� the modi
ed construction corresponds to having P �

send the value of a random location in the Hadamard encoding of the unique
acceptable answer� whereas Construction ��� corresponds to using the Long�
Code �of �BGS�����

Combining Claims ��� and ���� we get

Corollary ���� For constants c � s� if a problem has an IPc�s�O�logn
� �


proof system with unique answers� then it reduces to SDc�
p
s� Hence� if c� � s

then this problem is in SZK�

By Remark ���� the above extends also to IPc�s�poly�n
� �
 proof system with
unique answers� provided that the unique accepting prover response can be
computed in polynomial�time �from the common input and V �s coin tosses
�

Proof� By Claim ���� for c� � ��  c
�� and s� � ��  
p
s
��� the problem

has an IPc��s���� �
 proof system with unique answers� By Claim ���� any such

problem reduces to SD�c�����s���� Recalling that ��c���� �s���
 � �c�ps
� the
	rst claim follows� The second claim follows by Theorem ����

Remark ��	� We note that the unique answers property has a 	zero�knowledge

�avor� Speci
cally� consider a simulator that executes the veri
er strategy and
uses the unique accepting answer as the simulated prover message� The statisti�
cal di�erence between this simulation and the �honest� veri
er�s view is at most
the completeness error ��c� If the completeness error is negligible� membership
in SZK follows immediately� Thus� what is interesting about Corollary ��� is
that it applies even when the completeness error is constant�
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The PCP perspective� Observe that IP�b� �
 systems with unique answers
correspond to PCP systems with zero free�bit complexity in which a single
�non�Boolean
 query is made and is answered by a b�bit string� Viewed in these
terms� Corollary ��� asserts that� for c� � s� PCPc�s schemes with zero free�bit
complexity in which a single �non�Boolean
 query is made �and is answered by a
logarithmically�long bit string
 exist only for problems in SZK� This is slightly
related to Theorem ���� that refers to arbitrary PCP��s schemes with free�bit
complexity zero �which are placed in coNP
� Note that the hypotheses of the
two results are incomparable� here we allow arbitrary c � s��� but require a
single �non�Boolean
 query� whereas Theorem ���� requires c � � but allows
an arbitrary number of �Boolean
 queries�

Generalized Statistical Di�erence� We consider the followingmany�distribution
version of Statistical Difference� For random variables X�� ���� Xt� de	ne
����


D�X�� ���� Xt

def
�
�

t
�
X
x

maxfPr�X� � x��Pr�X� � x�� ����Pr�Xt � x�g �
�
�

t
� �

	
�

For t � �� the functionD is related to the statistical di�erence between the two
distributions� !�X� Y 
 � � �D�X� Y 
 � � �i�e�� D�X� Y 
 � ��  !�X� Y 

��
�
Furthermore� D�X�� ���� Xt
 is the acceptance probability of the veri	er in the
following interactive proof system� executed on common input X�� ���� Xt�

�� The veri	er selects uniformly i � �t�� generates a sample x from Xi �i�e��
x� Xi
� and sends x to the prover�

�� The prover tries to guess i� that is� the optimal prover responds with j
such that Pr�Xj � x� � maxfPr�X� � x��Pr�X� � x�� ����Pr�Xt � x�g�

�� The veri	er accepts if and only if i � j�

Note that the above �IP�log� t� �

 interactive proof system has unique an�
swers� Thus applying Corollary ��� it follows that� for �� � �� the problem
of distinguishing between the case that D�X�� ���� Xt
 � � from the case that
D�X�� ���� Xt
 � � is in SZK� That is� for �� � �� the promise problem
GSD��� � �GSD�

Y �GSD
�
N
 is in SZK� where

GSD�
Y � f�X�� ���� Xt
 � D�X�� ���� Xt
 � �g

GSD
�
N � f�X�� ���� Xt
 � D�X�� ���� Xt
 � �g �



On Interactive Proofs with a Laconic Prover ��


��� Acceptance probabilities � general case� The following lemma
establishes the bounds claimed in Theorem ���� Again� we refer to the proof
system �P �� V �
 as derived by Construction ��� �from a proof system �P� V 

having completeness and soundness bounds c and s� which �like b
 may be
functions of n
�

Lemma ���� The proof system �P �� V �
 has completeness c� � c and soundness
s� � �� exp��O�s�b���� s��b
�

� provided s � ��b���

Proof� The completeness bound is established similarly to the way this
was done in the unique answer case� It still holds �here
 that whenever z �
P �x� y
 succeeds in making V accept �which happens probability at least c
�
the answer � � h�z
 succeeds in making V � accept� However� since we are not
guaranteed here that for every r there exists a w that is acceptable by Vx �i�e�
that Vx�r� w
 � �
� we cannot bene	t from the cases in which V does not accept
z �but does accept w
� Thus� we get a completeness bound of c �rather than
�c �
��
�

For the analysis of the soundness bound� we adopt some of the notation
used in the unique answers case� that is� qzjy� qy � maxzfqzjyg� q��jy�h and
q�y�h � maxfq��jy�h� q��jy�hg are as in Claim ���� Unlike the unique answers case� it
is no longer true that q�y�h � ��� jq��jy�h����j� because it may be the case that
both �or neither
 of the answers � and � make V � accept� Instead� let Ry denote
the set of coin tosses �of V 
 leading to message y� and let Ar � f�� �gb denote
the set of P responses making V accept on coin tosses r� �For a set S � f�� �gb�
we let h�S
 denote the image of S under h� i�e�� h�S


def
� fh�s
 � s � Sg�
 Then�

for any � � f�� �g �and any y and h
�

q��jy�h � Pr
r�Ry

�� � h�Ar
� �

since V � accepts � if there exists an element of h����
 that would make V
accept �i�e�� is in Ry
� Observe that for any 	xed y and h

maxfq��jy�h� q��jy�hg � max



Pr
r�Ry

�� � h�Ar
� � Pr
r�Ry

�� � h�Ar
�

�
� Pr

r��r��Ry

�� � h�Ar�
 or � � h�Ar�
�

� �� Pr
r��r��Ry

�� �� h�Ar�
 and � �� h�Ar�
�
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Thus� we can bound the soundness of �P �� V �
 as follows�

s� � E
y�h
�q�y�h�

� E
y�h

�
maxfq��jy�h� q��jy�hg

�
� �� Pr

y�h�r��r��Ry

�� �� h�Ar�
 and � �� h�Ar�
�

Since h is a total function �from f�� �gb to f�� �g
� the sets Ar� and Ar� must be
disjoint in order for both � �� h�Ar�
 and � �� h�Ar�
 �since otherwise h�Ar� �
Ar�
 � f�� �g is non�empty and must contain either � or �
� Furthermore� if
Ar� and Ar� are disjoint� then the probability �over the choice of h
 that both
� �� h�Ar�
 and � �� h�Ar�
 occurs is exactly �

�jAr� j � ��jAr� j � ���jAr� j�jAr� j��
Thus� for any bound B� we get

s� � �� Pr
y�h�r��r��Ry

�� �� h�Ar�
 and � �� h�Ar�
������


� ��
�bX
i	�

Pr
y�r��r��Ry

�Ar� � Ar� � � and jAr� j jAr�j � i� � ��i

� �� Pr
y�r��r��Ry

�Ar� � Ar� � � and jAr�j jAr� j � B� � ��B�����


Thus� we now lower bound the probability� that Ar� and Ar� are disjoint and
not too large�

Claim ����� Let 	 � �� �s��b
��� � �� Then

Pr
y�r��r��Ry

�
Ar� � Ar� � � and jAr� j jAr� j �

�s�b

	�

	
� 	�

�
�

Observe that s � ��b�� guarantees that 	 � �� Combining Claim ���� with the
bound �on s�
 provided by �����
� implies that the soundness error of �P �� V �

is at most

�����
 ��
�
	�

�



� �� �s�b

��

Using 	 � �� �s��b
��� � "��� s��b
� we get �	���
 ��� �s�b

�� � ��O�s�b����s��b����
and Lemma ��� follows� Thus� we proceed with the proof of Claim �����
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For a 	xed y and any z� Prr�Ry �z � Ar� � qzjy � qy �by de	nition
� and
Prr��r��Ry �z � Ar� � Ar�� � q�zjy � q�y � Thus�

Pr
r��r�

�Ar� � Ar� 	� �� � Pr
r��r�

�jAr� � Ar� j � ��
� E

r��r�
�jAr� � Ar� j�

�
X
z

Pr
r��r��Ry

�z � Ar� � Ar� �

� �b � q�y�
Since Ey�qy� � s� we have Pry�qy � s���� 	
� � 	� Thus�

Pr
y�r��r��Ry

�Ar� � Ar� � �� � Pr
y

�
qy � s

�� 	

	
� Pr
y�r��r��Ry

�
Ar� � Ar� � �

����qy � s

�� 	

	
� 	 �

�
��

�
s

�� 	


�

� �b
�

� 	�

where the last equality merely uses 	 � ���s��b
���� Turning to the complement
of the second event� we see that

Pr
y�r��r��Ry

�
jAr�j jAr� j �

�s�b

	�

	
� 	�

�s�b
� E
y�r��r��Ry

�jAr�j jAr�j�

�
	�

�s�b
�
X

z�f���gb

�
Pr

y�r��Ry

�z � Ar� �  Pr
y�r��Ry

�z � Ar� �




� 	�

�s�b
� �b � �s � 	�

�
�

where the last inequality is due to the soundness of V �which implies� as a very
restricted case� that any 	xed prover strategy z is accepted with probability at
most s
� This establishes Claim ����� and thereby Lemma ����

Proof of Theorem ���
 For b � O�logn
� given an IPc�s�b� �
 proof sys�
tem �P� V 
� we modify it into an IPc��s���� �
 proof system �P �� V �
 as in Con�
struction ���� By Lemma ��� �using s � ��b��
� we have c� � c and s� �
�� exp��O�s�b���� s��b
�

 as required by Theorem ����
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	� On Laconic Provers with Perfect Completeness

In this section� we prove Theorem ����

Theorem �Theorem ���� restated
� If a problem � has an interactive proof
system with perfect completeness in which the prover�to�veri
er communication
is at most b��
 bits then � � coNTIME��b�n� � poly�n

�

Proof� We take a slightly unusual look at the interactive proof system for
�� viewing it as a 
progressively 	nite game� between two players P � and V ��
Player P � corresponds to the usual prover strategy and its aim is to make the
original veri	er accept the common input� Player V � is a 
cheating veri	er�
and its aim is to produce an interaction that looks legal and still makes the
original veri	er reject the common input�
To make this precise� let b � b�n
 be the bound on the prover�to�veri	er

communication in the original interactive proof �on inputs of length n
� and let
m � m�n
 be the number of messages exchanged� Without loss of generality� we
may assume that V sends all its coin tosses in the last message� A transcript is a
sequence ofm strings� corresponding to �possible
 messages exchanged between
P and V � We call a transcript t consistent �for x
 if every veri	er message in
t is the message V would have sent given input x� the previous messages in t�
and the coin tosses speci	ed by the last message in t� We call a consistent t
rejecting if V would reject at the end of such an interaction�
Now� the game between P �

x and V
�
x has the same structure as the interaction

between P and V on input x� a total of m messages are exchanged and P �
x

is allowed to send at most b bits� The game between P �
x and V �

x yields a
transcript t� We say that V �

x wins if t is consistent and rejecting� and that P �
x

wins otherwise� We stress that V �
x need not emulate the original veri	er nor is

it necessarily implemented in probabilistic polynomial time�
The above constitutes a 
perfect information 	nite game in extensive form�

�also known as a 
progressively 	nite game�
 and Zermelo�s Theorem �cf��
�Tuc��� Sec� �����
 says that exactly one of the two players has a winning
strategy # that is� a �deterministic
 strategy that will guarantee its victory no
matter how the other player acts�
Using the perfect completeness condition� we infer that if the common input

x is a yes instance �of �
 then there exists a winning strategy for P �
x � �This is

because the optimal prover for the original interactive proof wins whenever V �
x

plays in a manner consistent with some sequence of coin tosses for the original
veri	er� and it wins by de	nition if the V �

x plays inconsistently with any such
sequence�
 On the other hand� by the soundness condition� if the common
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input is a no instance then there exists no winning strategy for P �
x � �This is

because in this case no prover strategy can convince the original veri	er with
probability ��
 By Zermelo�s Theorem� it follows that whenever the common
input is a no instance �of �
 there exists a winning strategy for V �

x �
Thus� a proof that x is a no instance �of �
 consists of a winning strategy

for V �
x � Such strategy is a function mapping partial transcripts of P

�
x messages

to the next V �
x message� Thus� such a strategy is fully speci	ed by a function

from �b
i	�f�� �gi to f�� �gpoly�n�� and has description length poly�n
 ��b�n���� To

verify that such a function constitutes a winning strategy for V �
x � one merely

tries all possible deterministic strategies for P �
x �i�e�� all possible b�n
�bit long

strings
� The theorem follows�

Remark ���� As pointed out by an anonymous referee� Theorem ��� can be
proven without reference to game theory� however we feel that the game theo�
retic proof is more insightful� The alternative proof is based on considering the
quanti
ed boolean formula that represents the �perfect completeness� accep�
tance criterion of the original proof system� Next� one observes that negating
this formula yields a sequence of polynomially�many Boolean quanti
ers with
at most b universal quanti
ers� Thus� a proof that x is a no�instance consists of
an adequate sequence of �b assignments to all existentially�quanti
ed variables�
where the simplest way of formulating the notion of an adequate sequence is
via a b�move game �or a tree of depth b��


� On General Laconic Provers

In this section� we prove Theorem ��� �i�e�� IP�b�m
 � coAM��b�poly�mm� n
� O�m


�
That is� for any problem that has a laconic interactive proof� we will construct
an interactive proof of few rounds for its complement�

Conventions� Let �P� V 
 be an interactive proof for � so that� on common
input x� the prover sends a total of at most b�jxj
 bits� and the total number
of messages exchanged �in both directions
 is at most m�jxj
� To simplify the
following exposition� we denote by n � n�jxj
 the number of coins tossed by V
on common input x �so n � poly�jxj

� We adopt several of the conventions
from Section �� Speci	cally� we assume� without loss of generality� that the
last message is by V and it consists of V �s entire sequence of coins� Recall
that a transcript t of a possible �P� V 
 interaction is called consistent �for x
 if
every veri	er message in t is the message V would have sent given input x� the
previous messages in t� and the coin tosses speci	ed by the last message in t�
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More generally� we say that a transcript pre�x � is consistent if there exists a
sequence of veri	er coin tosses that would give rise to all the veri	er messages
contained in �� We call a full transcript t rejecting if it is consistent and V
would reject at the end of such an interaction�

For simplicity of exposition� we assume that the length of the next prover
message is determined by the transcipt of the interaction so far�

Without loss of generality� we may assume that P is an optimal prover with
respect to V � that is� for every x and every pre	x � of a possible transcript �even
with suboptimal prover moves
� P responds so as to maximize the acceptance
probability of V �

The Rejecting Sets� Our aim is to devise anO�m
�message interactive proof
system for � �i�e�� the complement of �
� Following the ideas of Goldwasser
and Sipser �GS���� for any possible pre	x of a �P� V 
�interaction� we consider
the set of veri	er coins that are consistent with this pre	x and make V reject
when interacting with P � For yes instances of � �i�e�� no instances of �
� these
sets are typically large� whereas for no instances of � �i�e�� yes instances of �

they are typically small�

We devise an interactive proof for proving that such sets are large� As we
shall see below� we need to show that the sets corresponding to all �i�e�� �b

possible prover moves are large� �This is in contrast to �GS���� where it was only
necessary to consider sets corresponding to the optimal prover moves� This is
because the aim in �GS��� was to prove �via a public�coin protocol
 membership
in � itself� and so the sets considered there corresponded to veri	er coins that
are consistent with a given pre	x and make V accept when interacting with
P �


Speci	cally� for any 	xed common input x and any possible pre	x � of an
�P� V 
�interaction� let rejx��
 denote the set of veri	er coins that are consistent
with � and make V reject when interacting with P � Note that these sets
rejx��
 depend on the prover strategy P � there may be several di�erent optimal
prover strategies� and each may cause the veri	er to accept on di�erent coin
tosses� However� it is important to note that the size of rejx��
 is the same
no matter which optimal prover strategy P is used�

We now discuss some basic properties of these 
rejecting sets�� Recall that�
when interacting with the optimal prover P � the veri	er V rejects a yes instance
�resp�� no instance
 of � with probability at most �

�
�resp�� at least �

�

� Letting

� denote the empty pre	x� it follows that� depending on x�s membership in ��
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we have�

yes instance of �� jrejx��
j � �

�
� �n�����


no instance of �� jrejx��
j � �

�
� �n�����


For any possible prover move � following a pre	x � it holds that jrejx��
j �
jrejx���
j with equality holding for at least one � �i�e�� the � chosen by an
optimal P to be its next move
� Thus�

����
 prover move� jrejx��
j � min
�
fjrejx���
jg�

For the next veri	er move following a pre	x � it holds that rejx��
 �
��rejx���
� Thus�

����
 veri�er move� jrejx��
j �
X
�

jrejx���
j�

���� Motivation to the protocol� Fixing a common input x �supposedly
a yes instance of �
� our goal is to prove that jrejx��
j � �

�
� �n� This is done

recursively following the round structure of �P� V 
� Suppose that we currently
need to prove that jrejx��
j � N � We consider three cases�

Case �� � is a full transcript� In this case� it is easy to generate the set
rejx��
 �which is either an empty or a singleton set
 and to compare its
size to N �

�Recall that by our conventions� the last veri	er message consists of the
outcomes of all the coins the veri	er has tossed during the interaction�
Thus� the latter sequence is easily extracted from �� and one can easily
determine whether or not � is rejecting�


Case �� the next message is by P � Speci	cally� suppose that the next mes�
sage is �a prover message
 of length �� Then� by Equation ����
� we just
prove recursively that jrejx���
j � N for every � � f�� �g��
This means branching in parallel to �� recursive proofs� yielding a total
branching factor of �b �in all rounds
� Indeed� here is where the bound
on the total number of bits sent by P is used�
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Case �� the next message is by V � In case the next message is a veri	er
message� by Equation ����
 we need to prove that

P
� jrejx���
j � N �

Note that the number of possible veri	er messages may be huge �i�e��
exponential in n
� and thus we cannot a�ord to examine each term in
the sum� Instead� we let the prover supply a succinct representation of
a sequence fN�g such that

P
�N� � N and jrejx���
j � N� for every

�� This succinct representation should allow the new veri	er to verify
that both conditions hold� The veri	cation will use parallel executions of
a constant�round sampling protocol as well as poly�m
 parallel recursive
calls �i�e�� to verify jrejx���
j � N� for poly�m
�many ��s
�

This means branching in parallel to poly�m
 recursive proofs� yielding a
total branching factor of poly�m
m�� � mO�m� �in all rounds
�

Further details regarding the implementation of Case � are indeed in place�
As a warm�up� suppose that all non�empty rejx���
�s are of the same size�
In such a case� the prover can state this size� denoted N �� and prove that
there are at least N�N � non�empty rejx���
�s each having size N �� Intuitively�
the prover can prove this claim by employing a �standard
 set lower�bound
protocol �cf� �BM��� GS��� AH���
� Such a protocol has constant number of
rounds� and produces a � for which the prover has to recursively prove that
jrejx���
j � N �� Unfortunately� things are not that simple� because it is
not necessarily the case that all non�empty rejx���
�s are of the same size�
Consequently� a more re	ned approach seems to be necessary�
The way Goldwasser and Sipser �GS��� dealt with this di�culty �i�e�� that

not all the sets are the same size
 was to group the sets into clusters according
to their approximate size� say� the ith cluster contains all sets of size between
�i and �i��� Since there are only n such clusters� at least one of them must
account for at least a ��n fraction of the total sum� and we can recursively
proceed with just that one cluster using the approach above� Clearly� such
an approach incurs at least a factor n loss of accuracy with each round� To
compensate for this loss� �GS��� 	rst reduced the error of the proof system
dramatically �to increase the gap in the set sizes that is guaranteed between
yes and no instances
� However� we cannot a�ord such an error reduction
because it blows up the prover�to�veri	er communication�
Wishing to avoid the corresponding cost� we do not apply any error re�

duction on the interactive proof �P� V 
� but rather use it directly� Instead of
focusing on one cluster �i�e�� the 
heaviest� one
� we simultaneously consider
all clusters� Towards the recursive calls� we select a sample of poly�m
�many
clusters �according to their weights
 and generate poly�m
�many elements in
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each selected cluster� Loosely speaking� in the recursive calls� we shall verify
that each of these elements is indeed in the corresponding cluster�

To summarize� the succinct representation used in implementing Case �
consists of a sequence of sizes of the corresponding clusters� where we use a
more re	ned clustering than �GS���� that is� the ith cluster contains all sets of
size between ��  �
i and ��  �
i��� where � � $���m
� In other words� we
are clustering all �j�s having jrejx���j
j � �� �
i into the ith cluster� and the
prover only provides the number of such �j�s� Letting ci be the claimed size of
the ith cluster� we need to verify that

P
i ci � �� �
i � N � and check recursively

that these claimed sizes are essentially correct� The latter check is performed
by selecting a weighted sample of clusters and sampling elements from each
selected cluster�

The fact that we select a sample of clusters rather than working on all
of them allows the complexity of our protocol to relate to poly�m
m rather
than to nm� �Recall that n � poly�jxj
� whereas m may be very small �e�g��
m � log log jxj
�

The analysis of our protocol relies on a delicate combinatorial lemma re�

garding the clustering of sets by their size �Lemma ��� below
� rather than on
much simpler versions that are quite straightforward�

���� The actual protocol� Recall that the size of jrejx��
j depends on
whether x is a yes instance or a no instance of �� and that the ratio between

these two cases is at least a factor of �� Let �
def
� ����m��� � �  ��O�m
� We

start the protocol with the aim to prove that jrejx��
j � �
�
� �n �which indeed

holds in case x � �yes
� whereas in case x � �no the size of rejx��
 is o�
by a factor of �m��� We hope that after i � �� ���� m iterations� the relevant
sets in case x � �no will be o� by a factor of �m���i� The discrepancy will
be easily detectable at the end of the last iteration� �In the description that
follows� � � ��  �
��


Our protocol utilizes a constant�round �public�coin
 protocol for sampling in
arbitrary sets� The protocol is invoked so to enable a probabilistic polynomial�
time player �called the veri�er
 to sample in a set� which is implicitly de	ned
via some common input� and this player will be assisted by a computationally
unbounded player �called the prover
 that the 	rst player does not trust� The
	rst player will be given an integer� denoted N � that is supposed to be a valid
lower�bound on the size of the set� denoted S� The names given above to the
two parties 	t the standard conventions regarding interactive proofs as well
as 	t our application �in which the high�level veri	er will play the role of the
veri	er in the sampling protocol
� The sampling protocol satis	es the following
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two properties�

�� If both players are honest� agree to sample a set S � f�� �gn� and the
veri	er has a valid lower bound on jSj� then� with overwhelmingly high
probability� the veri	er will output an element of S�

�� If both players agree to sample a set S � f�� �gn� and the �honest
 veri	er
has a �possibly invalid
 lower bound N on jSj �i�e�� possibly jSj � N
�

then no matter how the prover behaves� with probability at least �� jSj
N
�

�
poly�n�

� the veri	er will not output an element of S�

�In fact� for any S � � S� the probability that the output is in S � is at
most jS�j

N
 �

poly�n�
�


Protocols satisfying the above properties are implicit in the literature �cf�� �BM���
GS��� AH���
� For sake of self�containment� we present such a protocol in Ap�
pendix A�

Construction 	�� �main and recursive protocols
� The common input to the
main protocol is a string x �supposedly in �yes
� Let b � b�jxj
� m � m�jxj
�
n � n�jxj
 and � be as above� Let � � ��$�m
 and t � n� log�� �
 � $�n��
�

Main protocol� Invoke the recursive protocol �P� V 
 on input �x� �� �
�
� �n
�

The veri
er accepts if and only if V returns true�

�Motivation� If x � �yes then jrejx��
j � �
�
� �n
�

Recursive protocol �P� V 
� On input �x� ��N
� depending on �� perform one
of the following�

Case of full transcript� In this case� � is a full transcript of �P� V 
�
If � is a consistent transcript that makes V reject and N � � then
the veri
er V returns true� Otherwise� �i�e�� N 	� � or � does not
make V reject
� the veri
er V returns false� �Note that the higher
level never invokes the protocol with N � ��


Case of next move by P � In this case� the next message w�r�t� � is
a message by P � Let us denote the length of this message by ��
Here the parties invoke �� parallel executions of �P � V 
� with inputs
�x� ���N
� corresponding to all possible � � f�� �g�� The veri
er V
returns true if and only if all these executions return true�

Case of next move by V � In this case� the next message w�r�t� � is a
veri
er message�
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�i� Prover�s initial message� The prover P computes s�� ���� st such
that si � jCij� where the message class Ci is de
ned as follows�

����
 Ci
def
� f� � jrejx���
j � ��  �
ig�

The prover P sends s�� ���� st to V �
�Motivation� Ci � Ci�� and thus si should be greater or equal
to si��� Similarly�

Pt
i	� jCi n Ci��j � ��  �
i�� � jrejx��
j� and

thus
Pt

i	��si � si��
 � ��  �
i�� should be greater than N �


�ii� Veri	er�s initial checks� If si � si��� for some i� then the veri
er
V aborts with output false� If

Pt
i	��si� si��
 � �� �
i�� � N

then the veri
er V aborts with output false�

�iii� Veri	er�s selection of classes� The veri
er randomly selects a
sequence of w � poly�m
 indices i�� i�� ���� iw�� such that i� �
� and for each j � � the index ij is selected independently
according to the following distribution I that assigns i � �t�
probability proportional to ��  �
isi� That is�

����
 Pr�I � i� �
��  �
isiPt
k	���  �
ksk

�

�iv� Sampling in �the selected
 classes� In parallel� for all j � �� �� ���� w�
�� the parties run a sampling protocol to obtain w samples �sup�
posedly
 in Cij � where the veri
er enters sij as input to this
sampling protocol� All invocations are with deviation parame�
ter ���� and probability parameter ��b

�

�see Appendix A
� De�
note the w� samples obtained by ��j�k
j�k� where �j�k is the kth

sample generated supposedly in Cij �
�Motivation� If �j�k is indeed in Cij then jrejx���j�k
j � ��  
�
ij �


�v� Recursive calls� The parties invoke W
def
� w� parallel executions

of �P � V 
� with corresponding inputs �x� ��j�k� ��  �
ij 
� The
veri
er V returns true if and only if all these executions return
true�

Since the body of the recursive protocol �i�e�� without the recursive calls
 can be
implemented by a constant�round �public�coin
 protocol� our main protocol has
O�m
 messages �and is of the public�coin type
� The total number of bottom�
level recursive calls invoked by the main protocol is �b �Wm � �b �mO�m�� and
so the overall complexity is �b �mO�m� � poly�n�m� ���
 � �b �mO�m� � poly�n
�
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Motivation to the analysis� Assuming that the sampling protocol works
perfectly �in case both parties are honest
� it follows that x � �yes is always
accepted by V � �Unfortunately� the sampling protocol does carry a small prob�
ability of error� and so the actual analysis of this case is also postponed to
the next subsection�
 On the other hand� if x � �no and P wishes not to
fail V �s initial checks �of Step ii
� then P must provide many over�estimated
si�s in each recursive call in which it is asked to prove an over�estimated size
bound� Furthermore� the probability mass of these over�estimated si�s �w�r�t�
the distribution in ����

 is at least ��O�m
� and so some over�estimated si will
be selected w�h�p� �in Step iii
� �The di�erent treatment of s� is due to some
technicality�
 For each such over�estimated si� taking a large sample is likely to
yield a � for which �� �
i is also an over�estimation� Thus� an over�estimation
for some claim at some recursive level is propagated to next recursive level�
Needless to say� the above is merely a very rough sketch� the actual analysis is
provided in the next subsection�

���� Analysis� The following lemma plays a key role in our analysis�

Lemma 	�
� Let S � f�� �gn be a nonempty set� � � �� t � n� log��  �
� and
fS�g be a partition of S� For every integer i� de
ne

����
 Ci
def
� f� � jS�j � ��  �
ig

Indeed� Ci is de
ned also for i � �� and in this case it equals C�� Then�

�i� There exist s� � s� � � � � � st � st�� � � such that si � jCij for all
i � �� ���� t and

tX
i	�

�si � si��
 � ��  �
i�� � jSj�

Furthermore� setting si � jCij� for all i�s� will do�
�ii� Let �� � � and � � N � Suppose that s� � s� � � � � � st � st�� � � and

that

�����

tX

i	�

�si � si��
 � ��  �
i�� �
��  �
���

��� ��
�
� jSj �

Let I be the probability distribution on �t� that assigns i � �t� probability
mass proportional to ��  �
isi �as in Equation ���
� Then either jC��j �
��� ��
 � s� or

Pr
i�I

�jCi��j � ��� ��
 � si� � ���
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We apply Lemma ��� with S � rejx��
 and S� � rejx���
� Part i implies that
if jrejx��
j � N and the prover sets the si�s as directed by the protocol �i�e��
to equal the jCij�s de	ned in ����

 then the veri	er does not abort in Step ii�
Furthermore� with overwhelmingly high probability� the recursive calls will be
invoked with valid lower�bound claims �i�e�� jrejx���j�k
j � ��  �
ij 
� On the

other hand� Part ii asserts that if ������

������� � jrejx��
j � N and the veri	er does
not abort in Step ii� then in Step iii the veri	er is likely to select an index in

I
def
� fi � jCi��j � ��� ��
 �sig� where the jCij�s are as in ����
� Speci	cally� either
� � I in which case i� is always in I or each ij hits I with probability at least
�� �which will be set to equal ��O�m

� Loosely speaking� for each ij � I� with
probability at least ��� each sample � that is generated with size parameter sij
is not in Cij��� that is� with probability at least �

�� jrejx���
j � ��  �
ij��� in
contrast to the recursive call that uses a size lower�bound of �� �
ij � Thus� in

such a case� we started with an over�estimate factor of ��������

������� �
���

������� ��� �
��
and invoke a recursive call with an over�estimate factor of ��  �
�� But before
applying Lemma ���� let us establish its correctness�

Proof� First� we note that

�����

��X

i	��
�jCij � jCi��j
 � ��  �
i � jSj �

tX
i	�

�jCij � jCi��j
 � ��  �
i���

because ��  �
i � jS�j � ��  �
i�� for every � � Ci n Ci��� Thus� Part i
follows by setting si � jCij� for i � �� ���� t�
Part ii is established by the following claim and an application of Markov�s

inequality �i�e�� for X � jCi��j�si� which is non�negative� it holds that Pr�X �
�� ��� � E�X����� ��
 � �� ��
�

Claim 	���� Suppose that �����
 holds and jC��j � ��� ��
 � s�� Then

E
i�I

� jCi��j
si

	
� ��� ��
��

To prove this claim� we 	rst expand the expectation�

E
i�I

� jCi��j
si

	
�

tX
i	�

��  �
i � siPt
k	���  �
k � sk

� jCi��j
si

�

Pt
i	���  �
i � jCi��jPt

i	���  �
i � si
�
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We rewrite both the numerator and denominator using the following identity�
which holds for any sequence of numbers x�� ���� xt and xt�� � ��

tX
i	�

��  �
i � xi � �  �

�
�
�
�x�  

tX
i	�

�xi � xi��
 � ��  �
i

�
�

This gives�

�����
 E
i�I

� jCi��j
si

	
�
�jC��j 

Pt
i	��jCi��j � jCi����j
 � ��  �
i

�s�  
Pt

i	��si � si��
 � ��  �
i
�

We upper�bound the numerator as follows�

�jC��j 
tX

i	�

�jCi��j � jCi����j
 � ��  �
i

� �jC��j ��  �
� � jSj
� ���� ��
� � s�  ��  �
� � jSj

� ���� ��
� � s�  ��� ��
� �
tX

i	�

�si � si��
 � ��  �
i

where the 	rst inequality is due to �����
� the second inequality is due to the
claim�s second hypothesis �i�e�� jC��j � �����
 �s� � �����
� �s�
� and the third
inequality is due to the claim�s 	rst hypothesis �i�e�� �����

� Substituting this
upper�bound into �����
 establishes Claim ���� and thereby Lemma ����

Proof of Theorem ��	� Construction ��� yields a �public�coin
 protocol
which satis	es the complexity bounds asserted in Theorem ��� �i�e�� it ex�
changes O�m
 messages and the total complexity is at most �b � poly�n�mm

�
It is left to show that this protocol constitutes an interactive proof system for
�� This fact is established in the following two claims�

Claim 	��� �completeness
� If x � �yes and the prover plays as directed�
then V accepts with probability at least ����

Proof� We will show �below
 that� with probability at least ���� all recursive
calls are with inputs �x� ��N
 satisfying jrejx��
j � N � Applying Part i of
Lemma ��� with S � rejx��
 and S� � rejx���
� it then follows that �when
the prover sets the si�s as directed by the protocol
 the veri	er does not abort
in Step ii �because

Pt
i	��si� si��
 � �� �
i�� � jrejx��
j � N
� Furthermore�
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in this case� all the bottom�level recursive calls are with inputs �x� ��N
 that
satisfy jrejx��
j � N � � �because N � � in each call
� and since such � fully
speci	es V �s coins it must be that jrejx��
j � � � N �because for such a full
transcript � it must be that jrejx��
j � �
� Thus� all the bottom�level calls
return true� and thus all recursive calls return true�

We now show that� with probability at least ���� all calls at each level of
the recursion are with inputs �x� ��N
 satisfying jrejx��
j � N � This is shown
by induction on the recursion level� using the fact that the number of recursive
calls �in each level
 is less than ��m
O�b�� The basis of the induction holds
because at the top level the input is �x� �� �

�
� �n
 and jrejx��
j � �

�
� �n holds

�since x � �yes
� For the induction step we show that if jrejx��
j � N for
some recursive execution with input �x� ��N
� then� for each recursive call that
is directly invoked by the former execution� with probability at least �� ��b� �
the input �x� ��� N �
 associated with the recursive call satis	es jrejx���
j � N ��
Thus� if the induction hypothesis holds for some level� then� with probability
at least �� ��m
O�b� � ��b� � �� �

�m
� it holds also for the next level�

We consider two cases� In case the next message is by P � we have jrejx���
j �
N for every possible � �by ����

� and so the recursive calls �x� ���N
 satisfy
the condition� In case the next message is by V � it holds that the si�s sent by
P satisfy si � jCij� where the Ci�s are as in ����
� Thus� for every ij selected in
Step iii� it holds that jCij j � sij � Thus� each invocation of the sampling proto�
col in Step iv� is likely to return a sample in the corresponding Cij � speci	cally

�by Part i of Lemma A��
� with probability at least �� ��b� � the sampled �j�k
is in Cij � In this case� the resulting recursive call with input �x� ��j�k� �� �
ij 

satis	es jrejx���j�k
j � ��  �
ij �

Claim 	��� �soundness
� If x � �no then� no matter how the prover plays�
the veri
er V accepts with probability at most ��� �provided � � ��cm for a
su�ciently large constant c��

Proof� Wemay assume� without loss of generality� that in each recursive call
the prover supplies a list of si�s that pass the veri	er�s initial check �of Step ii
�
We will show� by induction on the recursion depth d � �� �� ���� m� that with
high probability� one of the recursive calls at level d is with an input �x� ��N

that satis	es jrejx��
j � ��  �
�d���m��� � N � Thus� the last recursion level
has a call an input �x� ��N
 that satis	es jrejx��
j � ��  �
�� �N � If N � �
then such a call returns false� causing the veri	er to reject �i�e�� return false

to the main protocol
� Otherwise� it must be that N � � and rejx��
 � ��
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which means that � is not a consistent rejecting transcript� and so this call also
returns false� Thus� we may focus on proving the above inductive claim�
The induction basis holds because it refers to the main protocol�s call to the

recursive protocol� a call that is with input �x� �� �
�
��n
 that satis	es jrejx��
j �

�
�
� �n � ��  �
���m��� � �

�
� �n �since x � �no and � � ��cm
� Speci	cally� we

may use � � �ln �
���m �
 so that ��  �
�m�� � � holds�
We now turn to the induction step� We assume that there is a level d

recursive�call with input �x� ��N
 that satis	es jrejx��
j � �� �
�d���m��� �N �
We will show that� with probability at least � � ��poly�m� � � � ���m� this
level d recursive�call invokes a level d  � call with an input �x� ��� N �
 that
satis	es jrejx���
j � ��  �
��d������m��� � N �� We consider two cases� In case
the next message is by P � for some �� we have jrejx���
j � jrejx��
j �
��  �
�d���m��� � N � ��  �
��d������m��� � N �where the equality is due to
����

� and so the recursive calls �x� ���N
 satisfy the condition�
The more involved case is when the next message is by V � Using the

hypothesis that the list of si�s �supplied by the prover
 passes the veri	er�s
initial check �of Step ii
� we may invoke Part ii of Lemma ��� with S � rejx��
�

�

S� � rejx���
� �
� � ��� �so that ��� ��
�� � � �
 and � � ��m �
� �d� �

�so that ��  �
��m�����d � ��  �
������ � ��
�
� For Ci�s as in ����
 and

I
def
� fi � jCi��j � �� � ��
 � sig� it follows that either i� � � � I or for every

j � �� ���� w� �� the index ij selected in Step iii is in I with probability at least
��� Thus� with probability at least � � �� poly�m�� one of the ij�s �possibly i�

selected in Step iii is in I� For the rest of the argument� let us 	x a j such that
ij � I� By the de	nition of I and Ci� it follows that

jf� � jrejx���
j � ��  �
ij��gj � jCij��j � ��� ��
 � sij �
Thus� in each of the w corresponding invocations of the sampling protocol �in
Step iv
� with probability at least �� � � � �

�

� "���m
� we generate � 	� Cij���

this follows by using Part sampling�lem�� of Lemma A��� with N � sij and

S � � Cij��� and observing that �� jS�j
N

� �� �and that the deviation parameter
equals ����
� It follows that �in each of these w invocations
� with probability
at least "���m
� the generated � is such that

jrejx���
j � ��  �
ij�� � ��  �
����m�����d��� � ��  �
ij �

Thus� with probability at least ���� poly�m�� one of the �j�k�s generated in Step iv
satis	es jrejx���j�k
j � ��  �
��d������m��� � ��  �
ij � which implies that the

�Lemma ��� requires that S �
 �� but if rejx
�� 
 � then rejx
��j�k� 
 �� for all recursive
calls� and the induction step trivially holds�
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corresponding recursive call is with input �x� ��j�k� ��  �
ij 
 that satis	es the
induction claim� This establishes the induction step� and the claim follows�

�� A Message Complexity Hierarchy

In this section� we give evidence that the Speedup Theorem �Thm� ���
 cannot
be improved� To do so� for every 
nice� function m�
� we give a problem that
has an interactive proof with m messages but is unlikely to have an interactive
proof with o�m
 messages�
First� we formalize what we mean by a 
nice� function� For a function

f � N � N � let f���n
 be the least m such that f�m
 � n� We say that f is
nice if �a
 f�n
 and f���n
 are computable in time poly�n
 �b
 f is monotone
increasing �not necessarily strict
� and �c
 f�f���n

 � O�n
� Note that these
conditions are satis	ed by functions such as logn� logc n� n�� and n�
The problems we consider are variants of �SAT� which was shown to be

in IP in �LFKN���� Recall that the decisional version of the counting problem
�SAT is

�SAT
def
� f��� k
 � � has at most k satisfying assignmentsg�

For a nice function v � N � N satisfying v�n
 � n� we de	ne

�SATv
def
� f��� k
 � �SAT � � has at most v�j�j
 variablesg�

By re	ning the standard proof system for �SAT� we have�

Theorem 
�� �re	ning �LFKN��� Sha���
� For every nice function v�n
�

�SATv � AM�poly�n
� m
 � where m�n
 � v�n
� log� n�

Proof Sketch� We begin by sketching what the standard interactive proof
for �SAT �e�g�� as presented in �Sip��� Gol��� Vad���
 gives for an instance
of �SATv� The common input is a pair ��� k
� where � is of length n and has
v � v�n
 variables� The prover sends the veri	er the number k� of satisfying
assignments of �� and the veri	er checks that k� � k� Then� the prover and
veri	er extend � � f�� �gv � f�� �g to a polynomial %� � Fv � F of degree at
most n over some su�ciently large 	nite 	eld F and the problem is reduced to
proving a statement of the form�

����

X

x��f���g

X
x��f���g

� � �
X

xv�f���g
%��x�� � � � � xv
 � k��
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In each round of the protocol� one variable of %� is 
eliminated�� More precisely�
in the ith round� the prover sends the veri	er a univariate polynomial

pi�x

def
�

X
xi���f���g

� � �
X

xv�f���g
%����� � � � � �i��� x� xi��� � � � � xv
�

where ��� � � � � �i�� are elements of the 	eld determined by earlier rounds of the
protocol� Then the veri	er checks that pi��
  pi��
 � pi����i��
� and chooses
�i uniformly from F� �p� is de	ned to be constant polynomial k

�� and at the
end� the veri	er checks that pv��v
 � %����� � � � � �v
�

To reduce the message complexity of the proof system� we instead work with

� � $�logn
 variables at a time� like done in �BFLS��� AS���� Let H be any
canonical subset of F of size ��� and let � � ���� � � � � ��
 be a bijection from H
to f�� �g�� By interpolation� each �i can be extended to a degree jHj � poly�n

polynomial %�i � F � F which agrees with �i on H� Consider the polynomial
f � Fv�� � F de	ned by

f
�
y�� � � � � yv��

�
� %�

�
%���y�
� � � � � %���y�
� � � � � %���yv��
� � � � � %���yv��


�
�

Two key points are that f is still of degree poly�n
 �because %� and the %�i�s
have degree poly�n

 and that f is just as easy to evaluate as %�� Now proving
Equation ��� becomes equivalent to proving

����

X
y��H

X
y��H

� � �
X

yv���H
f�y�� � � � � yv��
 � k��

This can be done in almost exactly the same way as before� eliminating one
variable at a time� except that instead of checking pi��
  pi��
 � pi����i��
�
the veri	er must check that

P
��H pi��
 � pi����i��
� The representation of

the pi�s and the evaluation of this sum are still feasible because the degree of
f is poly�n
 and H is of size poly�n
� The analysis of the new proof system is
identical to that of the original� with a slight loss in the soundness due to the
fact that the degree of f is larger than that of %��
Now we observe that it is unlikely that �SATv has a proof system with

substantially less rounds� because this would yield shorter than expected �two�
message
 proofs for non�satis	ability�

Proposition 
��� Let v be any nice function satisfying ��logn
 � v�n
 � n�
If �SAT �� AM��o�n�� �
� then for every m � N � N such that m�n
 �
o�v�n
� log� n
�

�SATv �� IP�poly�n
� m
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Proof� Suppose �SATv � IP�poly�n
� m
� where m�n
 � o�v�n
� logn
�
Combining Theorems ��� and ���� we have

�SATv � IP �poly�n
� m


� AM �poly�n
� m �


� AM
�
poly�n
O�m�� �

�
� AM

�
�O�m�logn�� �

�
� AM

�
�o�v�� �

�
�

Now we can obtain a proof system for �SAT by padding� Given an instance
��� k
 of �SAT of length n� if we pad it to length N � v���n
� then it has
at most n � v�N
 variables� So we can view it as an N �bit long instance
of �SATv and execute the above AM��

o�v�N��� �
 proof system on it� This
gives a ��message proof system for �SAT that on instances of length n has
bit complexity

poly�N� �o�v�N��
 � �o�v�N�� � �o�n��

where the 	rst equality is because v�N
 � ��logN
� and the second because
N � v���n
�

Proof of Theorem ����
 Combining Theorem ��� and Proposition ���
�and assuming �SAT �� AM��o�n�� �

� we have for every nice and super�
logarithmic v � N � N �such that v�n
 � n


�SATv � AM�poly�n
� m
 nAM�poly�n
� o�m



where m�n
 � v�n
� log� n� Theorem ���� follows�

�� Directions for Further Work

There are clearly several places where quantitative improvements to our results
would be desirable� As discussed in Section �� it would be very interesting to
remove the c� � s constraint in Theorem ��� �or to give evidence that it is
necessary
� The constraints on the completeness and soundness in our results
for general ��message proof systems �in Section �
 are even more severe� and do
not stem solely from constraints in previous results about SZK� Another place
where it is not clear that our bounds are quantitatively optimal involves the
complexity bounds in our results for general IP�b
� Speci	cally� it is unclear
whether the mm complexity in Theorem ��� and the additional exponent of
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m incurred in Corollary ��� are necessary� �In fact� removing the mm from
Theorems ��� and ��� was stated as an open problem in �GH����


Another direction for further work is to unify these results with those which
bound the complexity of interactive proofs with low knowledge complexity� As
mentioned in Section ���� those works are incomparable to ours� For example�
the results of �PT��� require that the error probabilities are exponentially small
in the knowledge complexity� and the results of �SV��� only apply to knowledge
complexity in the 
hint sense� �which is not bounded by the prover�to�veri	er
communication
� Can one give evidence that NP does not have interactive
proofs of low knowledge complexity k �in the usual sense
 where the error
probabilities are larger than ��k� The strongest imaginable statement of this
form would say that interactive proofs with logarithmic knowledge complexity
and constant error probabilities capture exactly SZK� such a result would
simultaneously subsume all of our results and those mentioned above�
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A� Sampling Sets of Known Cardinality

The following protocol is a variant of known protocols for sampling NP�sets
of known cardinality� �By sampling an NP�set� we actually mean sampling a

slice� of such a set� that is� for some n � N � the slice is a subset S� of f�� �gn�
speci	ed by a string � � f�� �gpoly�n�� where the set f��� x
 � x � S�g is an NP�
set�
 In fact� we will present a two�party protocol for sampling in arbitrary sets�
while ignoring the issue of verifying membership in the set� In correspondence
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with common applications as well as with the respective computing powers of
the parties� we call the parties veri�er and prover� Indeed� the veri	er strategy
presented below is implementable in probabilistic polynomial�time� whereas
this is not necessarily the case for the prover�
Standard sampling protocol utilize a family of pairwise independent hash

functions �cf�� �BM��� GS��� AH���
� In order to obtain improved performance
�in Item i of Lemma A�� below
� we use in our protocol hash functions that
are �k�wise independent� More precisely� a set of hash functions Hn�� is �k�wise
independent if� for every �k distinct preimages �in f�� �gn
� the correspond�
ing images� under a function uniformly selected in Hn��� are independent and
uniformly distributed in the range �f�� �g�
� One e�cient construction of such
hash functions is obtained by considering the set of all �k�� degree univariate
polynomials over GF ��n
 � f�� �gn� and taking the ��bit pre	x of the value of
such polynomials �on an evaluation point
�

Construction A�� �a sampling protocol
� The common input is an integer

n� a string � � f�� �gpoly�n� specifying a set S
def
� S� � f�� �gn� and an integer

N which is supposed to equal jSj�
Error parameters� a deviation error � � � and a probability error 	 � ��

Protocol� The parties set k � log����	
 and �
def
� blog����N��k�
c� Thus�

���N � �k�

��
�

Assuming that � � �� we denote by Hn�� a family of e�cient �k�wise
independent hashing functions� Otherwise �i�e�� for � � ��� we rede
ne

�
def
� � and let Hn�� be the singleton set containing the function h mapping

f�� �gn to the all�zero string �and so satisfying h�����
 � f�� �gn
�
�i� The veri
er uniformly selects h � Hn��� and sends it to the prover�

�ii� Upon receiving h � Hn��� the prover responds with a list of t
def
� ���

�
 � N
��

strings in S � h�����
� Denote the list sent to the veri
er
y�� ���� yt�

�iii� The veri
er performs a super
cial examination of the list and pro�
duces a corresponding output� That is�

�a� Reject illegal lists� The veri
er checks that all the yi�s are dis�
tinct� and that h�yi
 � �

� for every i � �� ���� t� If any of these
conditions is not satis
ed� the veri
er outputs a special error
symbol� denoted ��
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�b� Act on legal lists� Assuming that the above conditions hold� the
veri
er selects uniformly i � f�� ���� tg� and outputs yi�

The above protocol exchanges two messages� and the messages being sent have
length poly�n

�
� log���	

� The veri	er is of the public�coin type and can be

implemented in probabilistic polynomial�time� Clearly� the veri	er�s output is
either an n�bit long string or the error symbol �� A cheating prover may easily
cause the veri	er to always output �� but this means that the veri	er detects
that the prover is cheating� In case S is a slice of an NP�set� the protocol can be
augmented with NP�witnesses� and the veri	er may avoid outputting elements
not in S �and output � whenever such an element is presented to it
� As we
shall show� the essential feature of the above protocol is that the prover cannot
restrict the output to a too small set �see Item ii below
�

Lemma A�� �analysis of the sampling protocol
� Suppose that 	 � � � ���
and that the veri
er follows the prescribed program�

�i� If N � jSj and the prover follows the prescribed program then� with
probability at least �� 	� the veri
er outputs an element of S�

�ii� For every set S � � f�� �gn and every N � �n� no matter what the prover
does� the probability that the veri
er output resides in S � is at most
jS�j
N
 ���

Proof� We start with Part i� and ignore the case � � � �which is obvious
�

In case � � �� we de	ne ��� random variables �x such that �x
def
� � if h�x
 � ��

and �x
def
� � otherwise� Clearly� for every x � S� it holds that E��x
 � Pr��x �

�� � ���� and the �x�s are �k�wise independent� Denoting �x
def
� �x � ��� and

employing standard analysis �using jSj � ����
 we get

Prh

�����Px�S �x
jSj � ���

���� � � � ���
	

�
E
h�P

x�S �x
��ki

����� � jSj
�k

�
E
hP

x��			�x�k�S
Q�k

i	� �xi

i
��k � ����
�k � jSj�k

�
jSjk � k�k � ����
k
��k � ����
�k � jSj�k

�

�
k� � ��
�� � jSj


k

�
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Using jSj � N and �k� � �� � ��N � ��N �where the 	rst inequality is due to
� � log����N��k�

� we get�

Prh
��� jfx � S � h�x
 � ��gj � ��� �N �� � � � ��� �N� �

�
k� � ��
�� � jSj


k

� ��k � 	 �

Thus� with probability at least �� 	� the cardinality of the set S � h�����
 is
at least t � ��� �
 � ��� �N �and at most ��  �
 � ��� �N
� Part i follows�
We now turn to Part ii� Suppose that jS �j � � �N �otherwise� if jS �j � � �N �

we may augment S � with �N �jS �j elements of f�� �gn nS �
� Applying a similar
argument as above to the set S �� we conclude that with probability at least

��
�

k����
���jS�j

�k
� the set h�����
 contains at most �� �
 � ��� � jS �j members of S ��

Then� using �� � jS �j � ��N � �k� � ��� it follows that with probability at least
�� 	�

jS � � h�����
j � ��  �
 � ��� � jS �j
�

�  �

�� �
� jS

�j
N

� t

where the equality is due to t � �� � �
 � ��� � N � Thus� the probability that
the output resides in the set S � is bounded by 	 ���

��� � jS
�j

N
� where the 	rst term

accounts for the probability that t� def� jS � � h�����
j is greater than ���
��� � jS

�j
N
� t�

and the second term is an upper bound on t�

t
�which holds otherwise
� Using

	 � � � ��� and recalling that the original S � was possibly augmented so that
jS �j � �N � the probability that the output resides in S � is upper�bounded by

	  
�  �

�� �
� max�jS

�j � � �N

N

� � ��  ��
 �max
� jS �j
N

� �



� ��  

jS �j
N

and the lemma follows�

B� Some Comments regarding Theorem ���

Recall that Theorem ��� is equivalent to the following two claims�

AM�b�m
 � AM�b� � poly�m
� dm��e
 ��B��


AM�b�m
 � AM��b �m
O�m�� �
 ��B��
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As stated in the main text� �B��
 is implicit in the work of Babai andMoran �BM����
However� �B��
 does not follow by merely applying �B��
 for dlog�me times �un�
less m is a constant
� because such a sequence of applications does not allow
to keep track of the computational complexity of the veri	er� The problem
is that �B��
 does not assert that the computational complexity of the new
veri	er is polynomial in the computational complexity of the original veri	er
�but rather that if the latter is polynomial in n  b then the former is poly�
nomial in n  b� � n  b� � poly�m

� Indeed� by going into the original proof
of �B��
� one may verify that the computational complexity of the new veri	er
is polynomially related to that of the original veri	er� because the new veri	er
just manipulates the new messages� derives one set of original messages and
applies the original veri	er to it� Still� it seems nicer �and more convincing
 to
present a direct proof of �B��
� This is done by 
unraveling�the recursion� and

optimizing� things a little �as done below
�

We assume that the reader is familiar with the terminology of public�coin
�a�k�a Arthur�Merlin
 interactive proofs� where the veri	er is called Arthur
and the prover is called Merlin� By possibly using padding� we may assume�
without loss of generality� that all Arthur�s messages are of the same length n�
Starting with an AM�b�m
 system� we modify it so that each Merlin message
has length exactly b� �This increases the total number of bits sent by the prover
by a factor ofm� but we do not care�
 Let us denote a generic message of Arthur
by � � f�� �gn� and a generic message of Merlin�s by � � f�� �gb�
For sake of perspective and as a warm�up� we start �see Section B��
 by

presenting the main idea of the Babai&Moran transformation �BM���� and recall
�in Section B��
 how it is applied in order to cut the number of rounds by half
and establish �B��
� However� one may skip these preliminaries and proceed
directly to Section B��� where we prove �B��
�

B��� The basic switch 
fromMA to AM�� We start by recalling the main
idea underlying the transformation of Babai and Moran �BM���� An Arthur&
Merlin proof system can be viewed as a game between an honest Arthur and
Merlin that alternate in taking moves such that Arthur takes random moves
and Merlin takes optimal ones with respect to a 	xed predicate that is evaluated
on the full transcript of the game�s execution� The value of the game is de	ned
as the expected value of an execution of the game �when played against an
optimal Merlin
�

The basic idea is to transform an MA�game �i�e�� a two�move game in which
Merlin moves 	rst and Arthur follows
 into an AM�game �in which Arthur
moves 	rst and Merlin follows
� That is� in the original game Merlin 	rst sends
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� � f�� �gb� Arthur responds with a random � � f�� �gn� and the value of
the game is de	ned given by v��� �
� Then� �for t to be speci	ed
 we switch
the order of moves by letting Arthur 	rst send a random sequence ���� ���� �t
 �
f�� �gtn� then Merlin responds with an � � f�� �gb and the value is de	ned as the
average of the values v��� �i
� over i � �� ���� t� Using t � O�b
� this guarantees
that for every � � f�� �gb with very high probability �i�e�� probability at least
����b��
� the value of the modi	ed game �i�e�� �

t

Pt
i	� v��� �

i
 for random �i�s

approximates the value of the original game �i�e�� E���� �

 up to an additive
constant� Thus�

Pr
���			��t

�
�� � f�� �gb �

������t
tX

i	�

v��� �i
� E
�
��� �


����� � �

�

�
� �b � ��b�� �

�

�
�

This immediately implies that the class MA is contained in the class AM� A
similar reasoning can be applied to longer games �by considering the value of the
residual game after two moves
 implies that the class A�MA
j is contained in
the class AAM�MA
j�� � A�MA
j��� This implies AM�poly� O��

 � AM
and� more generally� AM�poly� b O��

 � AM�poly� b
 �for any b � �
�

B��� Concurrent switches in mid�game 
�MAMA�r to �AMMA�r �
�AM �rA�� Sequential applications of the 
MA�to�AM switch� allow to reduce
the number of rounds by any additive constant� In order to cut the number of
rounds by a constant� one may apply the 
MA�to�AM switch� concurrently to
disjoint segments of the game� That is� suppose that the original game proceeds
in r stages� where the ith stage �i � �r�
 is as follows�
�� Merlin selects ��i�� � f�� �gb�
�� Arthur responds with a random ��i�� � f�� �gn�
�� Merlin selects ��i � f�� �gb�
�� Arthur responds with a random ��i � f�� �gn�

The value of the corresponding execution of the game is de	ned as v���� ��� ���
��� ���� ��r��� ��r��� ��r� ��r
� For t � poly�r
 � b� we transform the above game
into the following corresponding r�stage game� where the ith stage �i � �r�
 is
as follows�

�� Arthur selects a random sequence ���
�i��� ���� �

t
�i��
 � f�� �gtn�

�� Merlin responds with a single ��i�� � f�� �gb�
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�� Merlin further selects and sends a sequence ���
�i� ���� �

t
�i
 � f�� �gtb�

�� Arthur responds with a random ci � �t� and a random ��i � f�� �gn�
The value of the corresponding execution of the game is de	ned as v���� �

c�
� � �

c�
� �

��� ���� ��r��� �
cr
�r��� �

cr
�r� ��r
� Observe that� starting from a game of the form

�MA
�r � �MAMA
r� we have obtained a game of the form �AMMA
r �
A�MA
r�
Each of the r switches is analyzed by 	rst considering a random choice of

Arthur�s 	rst move and the average over its choices of ci � �t� in its second
move� Speci	cally� for �� � ���� ��� ��� ��� ���� ���i������ ���i������ ���i���� ���i���
�

v
����i��� ��i��� ��i� ��i� ���� ��r��� ��r��� ��r� ��r

def
� v���� ��i��� ��i��� ��i� ��i� ���� ��r��� ��r��� ��r� ��r
 �

v���

def
� max

��i��



E

��i��

�
max
��i



E
��i
�v���� ��i��� ��i��� ��i� ��i
�

�	�
�

That is� v���
 is the value of the game conditioned on the �i� � 	rst messages
having transcript ��� The key observation is that for any �� and every ��i���
with probability at least � � �����r
 � ��b over the choice random sequence
���

�i��� ���� �
t
�i��
 � f�� �gtn� we have

�

t
�

tX
j	�

max
�j
�i



E
��i

�
v���� ��i��� �

j
�i��� �

j
�i� ��i


��
� E

��i��

�
max
��i



E
��i
�v���� ��i��� ��i��� ��i� ��i
�

�	
� �

��r
�

Applying the same reasoning to each possible ��i�� � f�� �gb� we conclude that
with probability at least �� �����r
 over the choice of the �j

�i��s�

max
��i������i�			��

t
�i

f E
ci���i

�v���� ��i��� �
ci
�i��� �

ci
�i� ��i
�g � v���
� �

��r
�

In the actual analysis we consider p
def
� poly�r
 parallel executions of each of

the games� and de	ne the value of each parallel game to be the average of the
values of the corresponding copies�� One may show that each of the r switches

�This part of the analysis is di�erent from the analysis in �BM���� In �BM��� one �rst
reduces the error probability of the original game 
also by parallel executions�� and argues
that each of the residual values to be considered is very likely to be very close to either � or
�� Here by considering the value of the average of p copies� we can relate the likely value of
this average to its expected value�



�� Goldreich� Vadhan � Wigderson

approximately maintains the value of the original game� That is� for every
i � �� ���� r� consider the value of the �p�parallel
 game obtained by performing
only the 	rst i switches� Denote these �p�parallel
 games by G�� ���� Gr� and
note that G� is the �p�parallel version of the
 original �MAMA
r game� and Gr

is the resulting �p�parallel
 A�MA
r game� For every i � �� ���� r� we consider
the di�erence between the value of Gi�� and the value of Gi� For any 	xed
transcript of the 	rst i � � stages� with probability at least � � �����r
 the
values of the residual executions of Gi�� and Gi di�er by at most �� �����r
�
Thus� with probability at least ����� the value of a random execution of Gr is
within ��� of the �expected
 value of G� �which equals the expected value of
the original game
�

B��� A direct approach 
to placing �AM
r in AM�� Think of the orig�
inal �r  ��message �MA
rM game as a tree of depth r with nodes being
labeled by Merlin moves �each in f�� �gb
 and edges being labeled by Arthur
moves �each in f�� �gn
� Thus� the tree has ��n
r leaves� Each Merlin strategy
corresponds to a di�erent node�labeling of the tree� whereas the edge labels
are 	xed� Such a vertex�labeling assigns Boolean values to the leaves �in corre�
spondence to A�s decision
� and by this to all internal nodes such that the value
of an internal node is the average of the value of its �n children� The value of
a speci	c Merlin strategy is just the value of the root under the corresponding
vertex�labeling�
Following �GH���� we consider selecting a random subtree of the above tree

so that for each internal node we select at random t � poly�r
 � b children�
Again� each speci	c Merlin strategy used as vertex�labeling �of the random
sub�tree
 de	nes a value of the root� a value that corresponds to a new game
in which Arthur�s moves are restricted to this subtree� We shall prove that�
with high probability over the choice of the random subtree� for each speci	c
Merlin strategy �i�e�� a labeling of all vertices in the full tree
� the value of the
subtree approximates the value of the full tree� This leads to the following new
���message
 AM game�

�� Arthur selects and sends Merlin a random subtree�

�� Merlin provides a labeling of the vertices in this subtree�

Arthur computes the value of the root of the subtree� under the vertex�labeling
�provided by Merlin
� and decides accordingly� Note that all complexities �i�e��
the number of bits sent by Merlin as well as the computational complexity
of the new Arthur
 are related to the size of the subtree� which equals tr �
�poly�r
 � b
r � bO�r� �since b � r
�
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Analysis� We consider hybrid tree distributions in which the 	rst i top levels
are as in a random subtree� and the bottom r � i levels are as in the full tree
�i�e�� span all ��n
r�i leaves
� The zero hybrid �i�e�� i � �
 corresponds to the
full tree� and the rth hybrid is a random subtree� We will show that for every
i � �� ���� r � �� with probability � � �����r
� for every vertex�labeling �i�e��
Merlin strategy
 of levels �� ���� i and the best possible Merlin strategy for levels
i �� ���� r� the �random
 value of the i �st hybrid approximates the value of the
ith hybrid up to an additive term of ����r� It follows that� with probability at
least ���� the value of a random subtree �under the best labeling
 approximates
the value of the full tree �under the best labeling
 up to an additive term of
����

Consider any 	xed tree T of the ith hybrid� and the random i  �st hybrid
trees obtained by selecting a sample of t vertices out of the �n children of each
level i node v in T � �Recall� The root is zero level� and the leaves are at level r�

For each vertex�labeling of levels �� ���� i� we consider the best possible Merlin
strategy for levels i �� ���� r� Such strategy assigns values to all vertices of level
r� ���� i  � of T � and the value of any level i node vertex is merely the average
of the value of its children� Speci	cally� the value at a leaf is determined by
the path to the leaf �which correspond to the edge labels
 and by the labels of
the vertices on this path� where the 	rst i � vertex�labels are determined by
the 	xed labeling of levels �� ���� i� and the labels of vertices at levels i �� ���� r
are determined by the optimal Merlin moves� The values of all other internal
nodes are determined recursively as the average of the values of their children�
where nodes at levels i  �� ���� r � � have �n children �as in the original tree
�
nodes at level i have t random children� and nodes at levels �� ���� i� �� have t
children as determined by T �

Our aim is to prove that� with high probability over the choice of children
for the ith level nodes� the value of each of these nodes under any labeling of
the vertices in levels �� ���� i is approximately the average of the values of all its
�n children� Thus� the i �st hybrid approximates the ith hybrid�

Fixing any level i node vertex� denoted v� and any vertex�labeling for levels
�� ���� i� we consider the value of v in the random �i  �st
 hybrid tree �which
extends T 
� Actually� we only 	x the vertex�labeling of v and its ancestors�
because only these labels a�ect the value of the vertices in the subtree rooted
at v� For each such labeling� with probability at least �� ����t���� the average
value of t random children of v approximates the average value of all �n children
of v up to an additive � � ����r� Since there are at most ��i���b � �rb possible
labelings to the vertices along this path� with probability �� �rb � ����t�r��� for
every vertex�labeling of levels �� ���� i� the value of v in T is within ����r of its
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value in a random i  �st hybrid tree obtained from T �by sampling its level
i  � nodes
� In case the above holds� we call v a good vertex� otherwise we
call it bad� that is� v is good with probability at least �� �rb � ����t�r��� Using
t � Cr���b r log t log ��r
 for a su�ciently large constant C �e�g�� t � $�r�b

�
we conclude that each level i vertex is bad with probability at most �br�t�Cr

�

�
��r log� t�log� ��r � t�r���r� Thus� with probability at least � � �����r
� all
vertices of the ith level are good� This means that� with probability at least
� � �����r
� for every vertex�labeling of levels �� ���� i� the values of all level
i nodes in the i  �st hybrid tree obtained from T is within ����r of their
corresponding values in T �
Considering all possible T �s and doing the same for all neighboring hybrid

pairs it follows that �as claimed above
� with probability at least ���� the value
of a random subtree �under the best labeling
 approximates the value of the
full tree �under the best labeling
 up to an additive term of ���� Hence we
obtain AM�b� �r
 � AM�tr � b� �
� and �B��
 follows �since t � O�r�b
 � bO���
�
�If one cares then AM�b� �r
 � AM�br�� �O�r
�r� �
�
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