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Abstract

Gil, J., W. Steiger and A. Wigderson, Geometric medians, Discrete Mathematics 108 (1992)
37-51.

We discuss several generalizations of the notion of median to points in R?. They arise in
Computational Geometry and in Statistics. These notions are compared with respect to some of
their mathematical properties. We also consider computational aspects. The issue of computa-
tional complexity raises several intriguing questions.

1. Introduction and summary

Suppose we are given a set § = {ay,...,a,} of reals, define the rank of a; by
pla)={a;: a;<a;}| and its depth by 6&(a)=min(p(a;),n+1— p(a;)). The
ranking problem is to find p for a given a; € S and the selection problem is to find
an a; € S with a given rank k. Sorting may be regarded as complete ranking or as
complete selection; once S has been sorted we know the rank of each element, as
well as an element of each rank. Finally we recall that a median of S is an element
of rank |(n +1)/2] and note that it has maximal depth. We write m(S) for the
median and 8* for its depth, and note that

(1

1s6*sv+1}.

2
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The left-hand side is attained when the a, have at most two different values. The
right-hand side is attained when all elements are distinct, and this must be
considered the general situation. Clearly the depth function is invariant under
linear transformations.

In studying the complexity of these tasks it is usual to consider the number of
comparisons needed for the worst case input. In this comparison model it is
familiar that ranking has complexity n — 1, that selection has complexity @(n), and
sorting ©(n log n). Thus, it is not necessary to know the ranks of all elements in
order to assert that a certain one, say a;, has a certain rank, say k. Interestingly,
this fact was only established in 1973 [2]; previously, it had not been known
whether sorting provided the fastest way to find, e.g., the median.

In this paper we consider analogues of these comparison tasks in the case
where the inputs are points in RY. The greatest interest will be focused on
selection and especially on analogues of the median. Such problems arise
naturally in multivariate statistical analysis and in many problems in computa-
tional geometry. Each of the notions we will consider is based upon a different
generalization of the idea of depth of a point. From now on, S ={a,, a,, . . ., a,}
denotes n points in RY. We consider

(1) Peel depth. Let C'(S) < S denote the subset of points which are vertices of
C(S), the convex hull of S. Define the sequence

S=S13S23"'Dsz+l=¢! SI:#g (2)

by S;.1 =S\C'(S;). Points a; € C'(S;) are the points of peel depth i and we write
nt(a;) = i. The points in S, have maximal depth and form the peel median of S. We
write m,, for the peel median and x* =1 for its depth.

(2) Tukey depth. Given x e RY, ||x||=1, the directional depth of g, in the
direction x is defined by 8,(a;) = 8(x - a,); this is the usual depth applied to the
orthogonal projection of S onto the line tx, t € R. The Tukey depth of a point is
then defined to be

t(a;) =min[d.(a;): x € RY, |Ix|| = 1], 3

the minimum of its directional depths. Again, a median m, is a point of maximal
depth, say k, and we write ¥ =k for the depth of the median. This depth was
proposed by Tukey at the International Congress of Mathematicians held in
Vancouver [19]. It was rediscovered independently by computational geometers,
for example see [6].

(3) Simplicial depth. Let F be a probability distribution on R? and let

p(x)="Prob[{x} = C(z(, z5, . . ., z4. )],

where C denotes the convex hull of the d +1 points, chosen independently
according to F. A point m € R? is a simplicial median of F if p(m) = p(x) for all
xeR“1fS={ay,...,a,} is asample of n points from F, the sample estimate of
m is the point g, € S which is strictly contained in the largest number of d + 1
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simplices. Specifically the simplicial depth of a; is
o(a)=1+2 [{a} = C(a;, ap, - - - 4, )] (4)

the sum is over all subsets of S of size d + 1 and [ is the indicator function. A
median is a point m,, in S of maximal depth. This depth will be denoted by o*.
This notion was recently proposed by Liu [14]. We mention a cruder version that
arose in the study of ¢, namely the box depth defined by

B(a;) =1+ 2 I[{a;} = Box(a;,, a;)}; (5)

the sum is over all distinct pairs of points in S and ‘Box(u, v)’ denotes the set of
points in R¢ whose coordinates are between the corresponding coordinates of u
and v. The box median is a point mg in § of maximal depth. This depth will be
denoted by g*.

Simple examples show that these depth measures are quite different. We will
briefly compare them in the next section, where we also study some other
mathematical properties, like invariance. We also consider the breakdown point
[7), an interesting property of a computational procedure. Specifically, let T be a
mapping from sets of points in R¢ to a point in R” and let P={p,, ..., p;} R¢
be a ‘polluting’ set. We say ‘T breaks down at § for pollution of size s’ if

sup(||T(S) —T(SUP)|}) ==, (6)

the sup taken over all polluting sets P of size s. Let 5" be the smallest amount of
pollution for which T breaks down at S;ie.,

s" = min(s: sup(||T(S) — T(S U P)||) = =),

the sup again over all P of size s. The breakdown point of T at § is the fraction

’

e(T, S)= (7)

n+s'’
The poorest behaviour is when the breakdown point is 1/(n + 1), for example
when T computes the arithmetic mean of § ¢ R; le.,

1 n
T($)=— 2}1 a;.

The addition of only a single polluting point can cause arbitrarily large changes in
T(S). In contrast, the usual median has breakdown point 1. In the next section
we will study the breakdown point for the different generalizations of median
under consideration.

Section 3 is devoted to computational questions. We will use the uniform cost
RAM as the model of computation. Each arithmetic operation and comparison
will be assigned the same unit cost. With all the generalizations of the median
there is the interesting question regarding lower bounds on the computational
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complexity. It is not known whether it is necesssary to find the depth of every
point in order to assert that a certain point has maximal depth.

2. Comparisons and properties

We first remark that all four notions given meaningful generalizations of the
median in the sense that each collapses to the usual median when d = 1: The peel
depth is the usual linear depth because the min and max comprise C'(S)). In the
case of Tukey depth, 7(a;) = 8(a;) because there is only one direction in R. When
d=1 a simplex is a pair a;, a;,, so o(a;) counts the number of such pairs
containing a;, namely o(g;) = (j — 1)(n — j) when 8(a;) = j. This shows that é and
o order the points in exactly the same way.

For d>1 the depth measures may give very different orderings. It is
straightforward to construct examples in which some point u has a small peel
depth but a large simplicial depth while another point v has a large peel depth but
a small simplical depth. Similar constructions reverse the depth orderings of peel
and Tukey depths. Here is a simple example of n points in R* which has points u,
v with o(u) much less than o(v) while 7(u) is much greater than 7(v). Point
u=(0,0) and v = (1, 1). Choose n’ points on the line x = 1 with y-coordinates at
least 2, choose n‘ points on the line y =1 with x-coordinates at least 2, and
choose n“ points on the line y = x with x-coordinates at most —1, a, t<1. The
remaining O(n) points are placed in the unit square, half above y = x and half
below. Clearly o(u)=n**", o(v)=n""% t(u)=n" and t(v)=n'. Therefore if
we take t/2=a <},

U(u)_ 1-3a 4 o
ow " 1

while

) _

t(v)

The ordinary depth measure 9§ is clearly invariant under any linear transforma-
tion of the input data. It would be desirable to retain this property for
multidimensional generalizations. Because convexity and simplicial containment
are preserved under linear transformations, it is clear that both the peel and
simplicial depths are invariant: if A is a d by d matrix of full rank and b € RY, the
points in AS + b have the same depths under o and = as those in S. It is also clear
that for a given direction x € R, the directional depths can be altered by linear
transformations of the points. This makes it easy to construct examples where 1 is
not invariant. The same is true for 8 which, because it depends on the coordinate
system, is not invariant.
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2.1. Medians’ depths

Now, analogous to (1), we consider the range of variation of the depth of each
of the medians. If the points of S are in convex position, each point will have
depth one, in each of the depth measures except the box depth. On the other
hand if S is |n/(d +1)| nested simplices a median will have depth [n/(d + 1)]
and so the inequality

n
1lsg*rs|—
=7 <L1+1l ®

is sharp.
It is clear that

®

1st*<

n+1]
|

This is sharp in R?. Just take (0, 0) and 2k + 1 points evenly spaced on the unit
circle and note that the origin has depth k + 1. In general we can place 2k +d — 1
points on the unit sphere in R?in such a way that every hyperplane containing the
origin has at least k points in each open halfspace (Gale’s theorem [10]). Again
the origin has Tukey depth k +1=[n — (d —2)]/2. It is also interesting to note
that there is always a point x, not necessarily in S, which, if added to § would
have 7(x)=0O(n). Helly’s theorem implies the existence of a centerpoint for S.
This is a point x such that every hyperplane containing it, has at least n/(d + 1)
points of S on each side (see, e.g. [8]) so 7(x) = l(n + 1)/(d+1)].

Obviously o* cannot exceed the number of distinct d + 1-simplices in R
Boros and Fiiredi (and others, see e.g. [3]) showed in fact that

1 n
0" =5 (d+ 1) +0(n%)

and when d =2 the constant ; is best possible. For the planar case they also
established the existence of a point x covered by § of the triangles formed by the
points of S and again the constant 3 is best possible. Finally, a theorem of Barany
[1] generalizes the latter result by showing the existence of a point covered by a
constant fraction of all d + 1-simplices, namely

o= i (e )

In all dimensions B* <n?/2, the number of boxes defined by the points of S. A
distinctive property of the box median is that it always has quadratic depth.

Lemma 1. There is a positive constant c(d) < 1 such that for every set S = R with
n points, B* =c(d)n’.
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Proof. First we give a simple argument for d =2, assuming the points are in 22
general position. There are horizontal lines k,, h, that separate the plane into
three strips with at least X = |n/3| points of S in each. There are also two vertical

ec
lines vy, v, with the same property and now we have nine regions R; where in ;zt ‘
each row and column there are at least k points of S. For each i, at least one R; poir
must have a maximal number (=n/9) points of S and these cannot all occur in the the
same column, or that strip would have more than & points (the other possibility is (24
that the maximal R;; are not unique but in this case they may be taken in at least 1.1
two columns). If the maximal R, line up along a diagonal we are finished. Thi
Otherwise repeat the same decomposition for the three maximal R;. It is easy to ITe
see that least three subregions, each of size at least n /81, are ordered up-right or give
up-left. This proves that at least n/81 points @, € S are each in at least (n/81)% dov
boxes so ¢(2)=1/3". [Noga Alon (pers. com.) can show that c(2) <i; clearly bre
there is a set where §*/n” is about 1]. s0,
Given a diagonal é=(l,e,,...,¢,), e,=+1, of the cube K,= asy
{(xi, ..., x) <1}, x, y € R? are ordered along € if x —y has the same sign wa
pattern as €. We just proved the d =2 case of the following statement: there is a of 1
constant a(d)>1 and disjoint subsets A, B, C =S = R? each of size at least T
n/a(d), so that for all triples x € A, y € B, z€ C, x, y and, ¥, z are ordered along pol
one of the 2~ diagonals of the unit cube. To advance the induction from d =t to Tul
d=t+1, consider the first t coordinates of each point in S = R'*!. We have a f—
diagonal € =(1, e,, ..., ¢,) of K, and subsets A, B, C of size at least n/a(t), such cau
that if x € A, y € B, z € C, the first r coordinates of x —y and y — z have the same me
sign pattern as €. Now apply the previous two dimensional argument to the points line
in A, B, C projected orthogonally onto the plane spanned by € and the ¢+ 1st

coordinate vector. This gives subsets A’, B’, C', of AUBUC of size at least qu
n/(27a(d)) whose elements are ordered like &' = (¢, e,11) € R'*". Finally we note

ng

that a(d) =32 and c(d) 2a"%(d). O : I
poi

the

If the points in § were generated independently, each according to the Ac
distribution F on R?, the depth of the median is then a random variable and it is ot
interesting to consider its expected value. Unfortunately very little is known. In pol
the case of the peel median we need to know the expected number of peels. an
Although the expected size of |C’(S,)| has been studied in some detail ([17,18)) it (A
is not clear how to utilize this information because the successive peels are highly A
dependent. For example if F is the uniform distribution on the ball in R then the ocK
expected number of hull vertices is O(n‘“~""“*1) (see [17]). If the S, in (1), i =2 bre

were also uniformly distributed in a ball, this observation could be repeated and
would imply that E(x*) = O(n*“*"logn). On the other hand it is not even 3
known whether E(7*) = o(n) or if it is bounded. The situation may be simpler in )
the case of the other two medians. If F is uniform on the ball in R¢,

E(t*)=n/2+o(n) and E(c*) = O(n’*"). fo
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2.2. Breakdown points

We conclude this section by examining the breakdown point of the various
medians. It is easy to break down the peel median when x* is small. For example
let S consist of A=(0,1), B=(0, -1}, C=(1,0), O=(0,0), and n — 4 other
points with negative x-coordinates, on the circle x? + y?=1. Clearly the origin is
the median and zx* =2. Now add polluting points D =(2+3¢ 1) and E=
(2+2t, %), t>1. This has points O, C, E with depth 2 and all others with depth
1. Finally add polluting point F in triangle AOCE and with x-coordinate 2 + 1.
This point is the new peel median. We have caused breakdown because, as in (6),
|O—F||—> > as t—~ and €(m,, §)=<3/(n+3). A similar construction in R?
gives breakdown with d + 1 polluting points. The peel median does not break
down as easily when s* is large. One can argue that s’ = x* is necessary for
breakdown and this implies that the breakdown point is at least 7£*/(2n). Even
so, the median may be quite deep, say mx*=n/logn and still have an
asymptotically zero breakdown point, in contrast with the usual median. The only
way to avoid zero breakdown is when the peel median has linear depth. In view
of the previous paragraph, this may be a most unlikely occurrence.

The situation with the Tukey median is similar. In the preceding example if we
pollute with points D = (—t,0), E = (=21, 0), and F = (-3¢, 0) then D will have
Tukey depth 3 so it must be the new median. Breakdown occurs when we let
t— » 50 €(m,, S)<3/(n + 3). As before, s = t* polluting points are necessary to
cause breakdown. Therefore e(m,-)=1t*/2n. We should expect the Tukey
median to be hard to break down. In a variety of random settings t* will be
linear.

It would seem that the box median is hard to break down, since it always has
quadratic depth. The argument after Lemma 1 implies that s’ >n/81 in the plane
and the breakdown point must be at least ;.

Finally, let us consider the simplicial median in R*. Suppose S consists of n

points on the unit circle and arg(a;) = i/(4n), i =1, ..., n. Choose a point x on
the line from the origin O =(0,0) to point @, which is also in triangles
Aa,a,a;, Najasay, . . ., Aaasa,. x is the simplicial median and has depth

o* =n — 2. Consider the point C = (2¢, w + 2/(4n) (in polar coordinates). We
pollute with points A and B in the triangle ACa,a;, both in the third quadrant,
and A a distance ¢/2 from the origin, B a distance . A creates one new triangle
(Aa,a,A) containing x and so does B (Aa,a,B), so its depth is now n. However
A is contained in 3(n — 2) triangles and is therefore the new median. Breakdown
occurs when t—>% and €(m,, S)=<2/(n+2). The simplicial median can be
broken down with o(n) polluting points even when it has quadratic depth.

3. Computational issues

There are some interesting aspects regarding the complexity of computing the
four medians. We begin by mentioning previous work that relates to the peel,




44 J. Gil et al.

Tukey, and box medians. Then we discuss the simplicial median in two and three
dimensions (there is no fast algorithm for d > 3).

For d=2 the computational issues related to the peel median are well
understood. If |C'(S,)| = k the outer peel can be computed in O(n log k) time and
this is optimal [13]. In addition Chazelle [5] has shown how to compute the entire
sequence of peels in (2) in O(n log n) time which, in view of the foregoing result,
is optimal. Since max[7(a;)] may now be found in @(n) steps, (n logn) is the
time complexity of the peel median if the depth of each point is to be computed
(this is in fact required if the points are in convex position). On the other hand, if
it were known that the points were not in convex position (the expected situation)
a more efficient algorithm for the median may be possible. A clean question is:
given S < R? with n points and m_,(S) = k > 1, what is the complexity of finding a
point in S.?

For d =3 the O(nlogn) algorithm of Preparata and Hong [15] computes
C'(S,) optimally, though it is not sensitive to the size of the output. An exercise
in [8] describes an O(n*? log n) algorithm to compute all the peels, but this must
be far from optimal, even when there are O(n) peels. Again, if the points were in
convex position ©(n log n) is the cost of the peel median.

Finally, Raimund Seidel (see [8]) has devised an algorithm for C’(S,) that runs
in time O(n'“*Y2l) and gives the whole combinatorial structure of the hull. It
may be used to compute all peels in time O(nl“*¥2!) gince there are at most
n/(d + 1) peels. On the other hand we can compute (g;) for each point using the
linear-time linear programming algorithm and assuming d is fixed. This gives the
current peel C'(S;) in quadratic time, and all depth in O(n?). There still remains
the nice lower bound question for the peel median. Does there exist an algorithm
that can compute m, faster than O(n) plus the time for an optimal algorithm to
compute x(a;) for each point?

The same question pertians to the Tukey median. The brute-force algorithm
would compute 8,(a;) for each x normal to a hyperplane containing d points of S.
In this way we get each 7(a,) in time O(n“*') and 7* in O(n“*?). Cole, Sharir,
and Yap [6] outline an O(n“) algorithm to compute all of the 7(g;), and now it is
easy to compute the median and its depth in O(n) additional steps.

The brute force algorithm for the box median would compute each B(q;) in
time O(n’d), so m,; may be obtained in time O(n’d) + O(n). A better procedure
uses a simple inductive algorithm, based on successive reduction of the
dimension, a log n factor needed for each reduction. In this way we can get the
box median in O(n(log n)~") time. For d = 2 this gives the optimal complexity to
obtain the box depth of every point, by reduction to sorting. On the other hand,
it may be possible to find the box median without computing all depths. We
observe that the above algorithm has the same cost as a familiar one for the
dominating pairs problem (see, e.g. [16]), to which the box median
reduces.
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3.1. Computing simplicial medians (d = 2)

A brute force algorithm for the simplicial median could check each possible
simplex containment, for each point, in O(n“*?). In the remainder of this section
we discuss the complexity when d < 3.

All algorithms must be evaluated in comparison to the following result.

Lemma 2. The cost of computing ¢* is Q(n log n).

The argument is via reduction to element distinctness. Given ay, . . ., 4, map a;
to the point (a;, a; + €'). The n images will be in convex position if and only if the
a; are distinct, so o* =0 is equivalent to distinctness. Still, it may be possible to
compute the median in less time, although every algorithm that computes all
o(a;) must obey the lower bound of the lemma.

First, we give an O(n?) time algorithm to compute the simplicial median in the
plane. It computes the depth of each point and then finds the maximum. The
following two observations are basic to the algorithm.

Lemma 3. Given points A, B, C and a reference point x, let A' be any point on
the ray from x through A. Then x € AABC if and only if x e AA'BC.

Lemma 4. Given points A, B, C on the unit circle € centered at the origin, let A*
be antipodal to A. Then AABC contains the origin if and only if A* is on the short
arc joining B and C.

Let a,=a, —a; have polar representation (r,, 6,). Lemma 3 says that o(a;)
may be computed by counting the number of triangles A 6,6,6,, on the unit circle
that contain the origin. Lemma 4 says we can do this by counting for each pair 6;,
6, the number of antipodal points 8, that fall in the short arc between them, and
summing over all such pairs. We abuse notation by saying 6, when we mean the
point A on € with polar angle 6,. Here is a summary of an algorithm to count,
for n points on €, the number of triangles containing the center.

algorithm Count_Triangles(6;; n)
1. Sort 8;’s anti-clockwise on €.
(a) For each 6;, compute n;, the number of 6, in [6;, 6,,,], and
N=n,+-- +n,
2. Pick the diameter D through 68, and divide € with it into upper half
(64, ..., 8,) and lower half (6,,,, ..., 6,) vertices.
3. Count all triangles with base in the upper half and having left endpoint 6.
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4. repeat
(a) Move D anti-clockwise to next 6; and update upper half set to
(6;, ..., 6,.,) and lower half set to (8,,,,,,, ..., 0,_,).

(b) Add to count the number of triangles with base in the new upper half
and left endpoint 6;.
until j = n.
5. return the count divided by 3.
end Count_Triangles

Clearly Step 1 can be done in O(n log n) time; the sorting information allows
all 6, to be placed in the correct interval [, 6;+1] in linear time. Step 2 is linear.

We argue that Step 3 may be done in O(n) time and thereafter, all the updates
of Step 4 may also be done in linear time. By Lemma 4, n, is the number of
triangles containing the origin and having base 6,6,. Similarly n, + n, is the
number with base 6,65, etc. The quantity evaluated in Step 3 is thus

T, = il (t —i)n,. (10)

It can be computed in O(n) time.
When D is rotated to 6, suppose m new points 6,,,, ..., 8,,, come into the
upper half. The quantity computed in Step 4(b) is

+m—1

L= > (t+m—in,. (11)
i=2

We can compute it in time O(m) by updating 7;. Subtract 7; from T, to see
L=Ti+m(ny+---+n)+[(m-Dn.+---+n,,]- (¢~ Dn,.

The expression in parentheses is N, — N, and takes O(1) steps. The expression in
square brackets requires O(m) steps, but each n; can only come into one such
sum so that during the course of all the n — 1 updates, the total cost of these steps
is O(n). This argument proves the following.

Lemma S. The number of triangles containing a; may be counted in time O(n),
once the 8, = arg(a; — a;) have been sorted.

Finally (see [8]) we can obtain the radial order of the other n — 1 points about
a;, for all the a; € S, in O(n?) time using duality. We map a; = (x,, y;) to the line
v =xu+y with slope x; and intercept y, and we map a line with equation
y =mx + b to the point (—m, b). In the dual of S we have the set £ of n lines
which decompose the plane into cells bounded by edges which intersect in
vertices. This dissection is the arrangement 4(¥) of the lines and may be
represented by the incidence graph $(¥). Edelsbrunner, O'Rourke, and Seidel
[9] show how to construct #(#) in O(n?) time. Once constructed, we can traverse
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part of the graph in linear time to obtain the vertices—in order of increasing
x-coordinate—formed by the intersections of line i and the other n —1 lines.
Transforming this information back to the primal gives the radial order of the
other points about a;. Therefore we have the following theorem.

Theorem 1 (Gill, Steiger, Wigderson [11]). Given S < R? with n points, m,(S)
may be computed in O(n”) steps.

This result was established independently by Khuller and Mitchell [12].

Lemma 2 also gives a lower bound on the complexity of simplicial medians if
the depth of every point is computed. We conjecture that Theorem 1 gives the
best possible upper bound if all simplicial depths are computed. The difference
between the upper and lower bounds for simplicial medians is intriguing. These
bounds match those for the general position question: given n point in R>, is it
true that no three are colinear?

3.2. Computing simplicial medians (d = 3)

The three-dimensional generalization is interesting. Here are some of the basic
ideas. In dimension d = 3, we want to count o(g;), the number of tetrahedra that
contain a;,. Take the unit sphere Z(a;) centred at a;, and write 0, for the
intersection point of %(a;) and the ray from a, through q;, i;#i. The obvious
analogue of Lemma 3 shows that we need only count tetrahedra A'6,6,6,,0,
which contain the center. The analogue of Lemma 4 says that we may do this by
counting how many spherical trianges A,8,6,6,, (the sides are short arcs on great
circles) contain how many antipidal points 6;. Each such triangular containment
is a ‘good’ tetrahedron. These triangular containments are counted via an
algorithm that generalizes the foregoing one, in which triangle containments from
points in a hemisphere are counted and then the plane defining that hemisphere is
advanced. Here is a brief description of the counting of tetrahedra containing the
origin O given n points 6, on the unit sphere %(0).

algorithm Count_Tetrahedra(6;; n)

1. Pick apointx € B, x #6,, j=1, ..., n and define the plane I1, through O,
6,, and x.
2. Renumber the 6,, j > 1 by rotation of I'l, about Ox.
Upper hemisphere points are U, =(6,, ..., 6,07, ..., 8,);

3. Centrally project %, up onto a plane A, parallel to I1,.
Compute the arrangement for the dual of 4, in A,.
4. Count o(8;) in the projection, for each 8] € %, and save as SUM.
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S. repeat
(a) Rotate IT; about Ox from 6, to 6;., and update U; to
Gu]_+] = (6j+l) LR 6(+m; l*+m+l’ LRI 9_[*)

(b) Radially project onto A; ., update arrangement, and update SUM.
until j = n.
6. return SUM divided by 2.
end Count_Tetrahedra

Clearly Step 2 may be done in time O(n log n) by projecting the 6, and O
orthogonally onto a plane with normal vector Ox and then clockwise sorting the
images about the image of O. If we have chosen x correctly the images of the 6,
and of O will be n + 1 distinct points in general position. A random choice will
certainly be good, or we could construct one in quadratic time.

The central projection from O in Step 3 preserves triangle containment: a great
circle through 6,6, projects to a straight line on Ay; spherical triangle A,6,6,6,,
containing 8 on %(0) projects to a triangle in A, containing the image of 6;.
The arrangement of the points projected into A, may be computed in time O(n®).

The count in Step 4 is based on the previous algorithm. For each 6] e U,
a(6F) counts the number of triangles A 6,66, from %, that contain it. By
Theorem 1 the quantity

SUM= > o(8}) (12)
8 eU
may be obtained in O(n?) time.

Step 5 is less straightforward. Rotate [T, from 6, to 6, and then centrally
project the points in %, onto A;. We need to count triangle containments that
were not present in A;. There are two new features; 67 and 0,,,, ..., 6,,,, have
entered and 6, and 8),,, ..., 0/, have left. For the leaving 67, there is nothing
to do. But to efficiently account for the other changes, we need to use the dual
arrangement of the points that are projected into A,. The naive approach would
compute this arrangement from scratch in O(n?) time. We can get it in amortized
linear time, using the following observation.

Lemma 6. Suppose 0, and 0;, ..., 6, are in successive upper hemispheres U,,,,
%, ... The rotational order of the images of 6;,, ..., 8;, about the image of 6} is
the same in A, and A, ..

The proof is straightforward because the great circle through 6; and 6; projects
to a straight line in A,, and in A,,,, and these lines are both in the plane defined
by the origin, 0, and 6,. The meaning of Lemma 6 is that although lines
corresponding to 67, 6;, . .., 6; may all change their positions as A,, is rotated
to A,,.,, their combinatorial structure remains fixed. Therefore the arrangement
of lines dual to the points projected into A may be obtained by simply adding 67
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and 6%, ..., 0,., and deleting 6, and 6},,,..., 6., from the arrangement
for A;. The cost in Step 5(b) is O(n) for each line added to, or deleted from, the
arrangement. Since each point leaves and enters once, these updates to the line
arrangements use a total of O(n”) time. Now that the arrangement describes the
current points in A,, we can use the previous algorithm to compute o(67) in
linear time and add it to SUM.

To complete the update of SUM in Step 5(b), we need only count the new
triangle containments of points 8/ € U,, j > 1, caused by the new points 6, € U,
and add them to SUM. The complexity is O(n*) because of the following.

Lemma 7. Suppose 6, is a given new point in A,,,,. The number of new triangle
containments 0 € \6,0,0,, 6,, 0, in A,,_,, may be counted in linear time.

Proof. As in Lemma 4 we consider points in A,,,, projected onto the unit circle
€(07) centred at 8;. Let 8, denote the point on €(8;) which is antipodal to the
given point, 6,. By Lemma 4 we need to count the number of pairs 6;, 6, which
have 6 on the short arc between them. Now, using duality in A,,,,, let £ be the
new line (dual to 6;) that we are accounting for. Let ¢y, . . ., ¢, denote the duals
of the 6, and cf, ..., c; the duals of the 0. We must count the number of
times lines ¢ intersect triangles bounded by ¢, ¢;, and c;.

Consider a particular ¢, and suppose the rank of ¢; N £ is kth among the p + 1
x-coordinates of the intersections ¢; Nc¢}. Then ¢ intersects k(p — k) triangles
bounded by ¢, ¢;, and ¢;. If we add this quantity to SUM for each of the ¢, we
will have counted all the new triangle containments involving the new line ¢. The
time taken by these updates is also O(n) because the rank of £MNc; may be
obtained from the incidence graph in constant time. 0O

Each tetrahedron containing O has been counted exactly twice. The line Ox
about which the planes are rotated is an axis of %B(0) and meets exactly two faces
of every tetrahedron containing the origin. Each of the other two faces lies in at
least one of our upper hemispheres, and will be counted exactly once as a triangle
containing the fourth, antipodal point. This explains Step 6 and concludes the
proof of Theorem 2.

Theorem 2. Given n points in R>, the simplicial depth of any point may be
counted in O(n?) time and my(S) may be found in O(n’) time.

There doesn’t seem to be any fundamental obstacle to generalizing this
approach to higher dimensions, but we have not really considered the details.




50 J. Gil et al.

4. Concluding remarks

In this paper we have considered analogues of ranking, selection, and sorting
problems for points in R”. The analogues are based on four different notions of
the depth of a point. In studying properties of these measures, and algorithms to
compute them, we have raised many questions. Perhaps the most interesting is
whether sorting (ranking every point) is the most efficient way to perform
selection (finding e.g., a median). Here are some of the other interesting
problems:

(1) What is the expectation of x*, the number of peels, under various
distributions for n points in R??

(2) What is the value of ¢(d) = inf[a(m,(S)): S « R?, |S| = n]/n* from Lemma
1?

(3) What is the breakdown point of the simplicial median when its depth is
greater than n“?

(4) What is the cost of computing all peels if d >2?

(5) The way box medians are defined suggests a notion of median for any
partial order <. Let n; be the number of pairs (a;, a,) satisfying a, <a;, <a,, and
the median, the element with maximum n;. If all relations of the partial order
were explicitly given, a brute force algorithm would solve this problem in O(n*)
time. A partial order Q is d-dimensional if it is the intersection of d total orders.
If these orders were explicitly given, the box median algorithm would apply, and
would have the same time bound. The complexity for arbitrary partial orders is
not known to us.

(6) It is interesting to seek a median analogue that is easy to compute, affine
invariant, and has high breakdown point. The box median fails with respect to
invariance. The others are hard to compute or easy to break down. Here are two
alternatives. First, define a score function by

fla)=2 lla,—ajli;

j#i

(Il the Euclidean norm for R?. A median is a point which minimizes f. This
agrees with the usual median in R. Its advantage is O(dn?) cost.

Another interesting notion is the superposition of unit vectors from q; in the
direction of each q;, i.e.,

va)= 3 24

J#i ”aiaj” '

A median would be an a; with ||v(a;)R|| < 1. This would also agree with the usual
median in R. J.E. Goodman (pers. com.) showed that such a median is unique. It
could also be computed in quadratic time in all dimensions.
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Notes added in proof. (1) J. Matousek has shown that sorting is not necessary
for the Tukey median by giving an O(n(log n)%) algorithm [J. Matousek,
‘Computing the Center of Planar Point Sets’, in Discrete and Computational
Geometry: Papers from the DIMACS Special Year, J.E. Goodman, R. Pollack
and W. Steiger, eds., American Math. Soc., 1991, pps. 221-230.]

(2) Luc Devroye can show (pers. com.) that E(x*) = ©@(n>7) if the points are a
random sample of size n from a uniform distribution on a convex body K = R*.
Imre Bérdny can show (pers. com.) that if S is a sample of n points from a
uniform distribution on a convex body Kc<cRY, E(x*) is n¥“*Y, up to
poly-logarithmic factors.
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