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Completeness Theorems for Non-Cryptographic
Fault-Tolerant Distributed Computation

(Extended Abstract)
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Abstiract

Every function of n inputs can be efficiently computed
by a complete network of » processors in such a way
that:

1. ¥ no faults occur, no set of size ¢ < n/2 of players
gets any additional information (other than the
function value},

2. Even if Byzantine faults are allowed, no set of
size ¢ < n/3 can either disrupt the computation
or get additional information.

Furthermore, the above bounds on ¢ are tight!

Introduction

The rapid development of distributed systems raised
the natural question of what tasks can be performed
by themn (especially when faults occur). A large body
of literature over the past ten years addressed this
question. There are two approaches to this question,
depending on whether a limit on the computational
power of processors is assumed or not.

The cryptographic approach, inaugurated by Diffie
and Hellman [DH], assumes the players are computa-
tionally bounded, and further assumes the existence
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of certain {one-way) functions, that can be computed
but not inverted by the player.

This simple assumption was postulated in [DH] in
order to achieve the basic task of secure message ex-
change between two of the processors, but furned out
to be universal! In subsequent years ingemious pro-
tocols based on the same assumption were given for
increasingly harder tasks such as contract signing, se-
cret exchange, joint coin flipping, voting and playing
Poker. These results culminated, through the defini-
tion of zero-knowledge proofs [GMR], their existence
for NP-complete problems [GMW1] in completeness
theorems for two-party [Y1] and multi-party [GMW2]
cryptographic distributed computation. In particu-
lar the results of Goldreich, Micali and Wigdesrson
in [GMW2] were the main inspiration to our work.,
They show, that if (non-uniform) one way functions
exist then every (probabilistic) function of n inputs
can be computed by n computationally bounded pro-
cessors in such a way that: (1) If no faults occur,
no subset of the players can compute any additional
information, and (2) Even if Byzantine faulis are al-
lowed, no set of size t < n/2 can either disrupt the
computation or compute additional information.

‘The non-Cryptographic {or information-theoretic)
approach does not limit the computational power of
the processors. Here, the notion of privacy is much
stronger - for a piece of data to be unknown to a set of
players it does not suffice that they cannot compute
it within a certain time bound from what they know,
but simply that it cannot be computed at all!

To facilitate the basic primitive of secret message
exchange between a pair of players, we have secure
channels. (For an excellent source of results and prob-
lems in the case no secure channels exist, see [BL]).
Unlike the cryptographic case, very little was known
about the capabilities of this model. Two main basic
problems were studied and solved (in the synchronous
case): Byzantine agreement [LPS,DS,...] and collec-
tive coin flipping [Y2].
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This paper provides a full understanding of the
power and limits of this model, by proving a few com-
pleteness theorems. Comparing these resulis to the
cryptographic case of [GMW?2], one gets the impres-
sion that one-way functions are “more powerful” than
secure channels. This should not be surprising, if one
considers the case of n = 2. Clearly, here a secure
channel is useless, and indeed two (non-fanlty) play-
ers can compute the OR function of their bits using
cryptography, while the reader can convince herself
(it will be proven later) that any protocol will leak
information in the information-theoretic sense. The
lower bounds we provide show that the same phe-
nomenon is true for any value of n. A similar situation
arises in the Byzantine case where, using cryptogra-
phy one can allow £ < n/2 faulty players, but in the
non-Cryptographic case one must have ¢ < n/3.

As happened in the cryptographic case, the proto-
cols are based on a new method for computing with
shared secrets. Our constructions are based on Alge-
braic Coding Theory, particularly the use of general-
ized BCH codes.

It is important to stress here that our main proto-
cols require only a polynomial amount of work from
the players. {In fact, they are efficient enough to be
practical!). Putiing no bound on the computational
power serves only to allow the most stringent defi-
nition of privacy and the most liberal definition of
faultiness, both of which we can handle.

Essentially the same results we obtain here were
independently discovered by Chaum, Crepeau and
Damgard [CCD]. We briefly point out the small dif-
ferences of this work from ours. The simple case of no
faults is almost identical. Their solution in the case of
Byzantine faults is elementary and requires no error
correcting codes, The error correction is achieved us-
ing a clever scheme of zero knowledge proofs. This
has two consequences: They have to allow an ex-
ponentially small error probability for both correct-
ness and privacy (we can guarantee them with no er-
rors), and the frequent zero knowledge proofs increase
the complexity of their protocols. In the solution of
[CCD] the simulation is of Boolean operations while
our solution allows direct sirnulation of arithmetic op-
erations in large finite fields. Thus, for example, com-
puting the product of two n bit numbers using [CCD]
calls for O(log n) communication rounds. This can be
done in (1) rounds using our solution.

We mention that the above results already found
application in the new, constant expected number of
rounds protocol for Byzantine agreement of Feldman
and Micali [FM].

We proceed to define the model, state the results
and prove them. In the full paper we mention gener-

alizations and cxtensions of our results to cther tasks
(playing games rather than computing functions), to
other model parameters (synchrony, communication
networks) and other complexity measures (number of
rounds).

Definitions and Results

For this abstract, we define the model and state the
results on an intuitive level. Since even the formal
definition of the notions of privacy and resiliency are
nonirivial, we give them explicitly in an appendix.

The model of compuiation is a complete syn-

chronous network of n processors. The pairwise com-
munication channels between players are secure, i.e.
they cannot be read or tempered with by other play-
ers. In one round of computation each of the play-
ers can do an arbitrary amount of local computation,
send a message to each of the players, and read all
messages that were sent to it at this round.
- We shall be interested in the computational power
of this model when imposing privacy and fault tol-
erance requirements. For simplicity, we restrict our-
selves to the computation of (probabilistic) functions
f from n inputs to n outputs. We assume that player
¢ holds the i-th input at the start of computation, and
should obtain the i-th output at the end, but nothing
else.

A protocol for computing a funciion is a specifica-
tion of n programs, one for each of the players. We
distinguish two kinds of faults: “Gossip” and “Byzan-
tine”. In the first, faulty processors send messages
according to their predetermined programs, but try
to learn as much as they can by sharing the mforma-
tionthey received. In the second, they can use totally
different programs, collaborating to acquire more in-
formation of even sabotage the computation.

A protocol is t-privaie if any set of at most ¢ players
cannot compute after the protocol more then they
could jointly compute solely from their set of private
inputs and outputs.

A protocol is f-resilient if no set of ¢ or less play-
ers can influence the correciness of the outputs of the
remaining players. For this to make sense, the func-
tion definition should be extended {o specify what it
is if some players neglect to give their inpuis or are
caught cheating {see appendix}.

We can now state the main results of this paper.

Theorem 1: For every (probabdilistic) function [
and t < nf2 there exisls a t-private protocol.

Theorem 2: There are functions for which there
are no n/2-private protocols.




Theorem 3: For ewvery probabilistic funclion and
every t < nf3 there exisis a protocel that is both i-
resilient and t-privaie.

Theorem 4: There are functions for which there
is no nf3-resilient protocol.

Proof of Theorem 1

Let Py,..., Pu_1 be aset of players, and let n > 2¢+1.
Let F be the function which this set of players wants
to compute f-privately, where each player holds some
input variables to the function F. Let £ be some fixed
finite field F, with [E] > n. Without loss of general-
ity we may assume that all inputs are elements from
FE and that F is some polynomial (in the input vari-
ables) over F, and that we are given some arithmetic
circuit computing {F}, using the operations +, % and
constants from E.

To simplify our explanation we divide the compu-
tation into three stages.

Stage I: The input stage, where each player will en-
ter his input variables to the computation using
a secret sharing procedure.

Stage II: The computation stage, where the players
will simulate the circuit computing F, gate by
gate, keeping the value of each computed gate as
secret shared by all players.

Stage III: The final stage, where the secret shares
of the final value of F' are revealed to one or all
of the players.

Stages I and IIT are very simple and we describe
them below, and delay the details of the computation
stage to the next section.

The input stage

Let &g,..., 0,1 be some n distinct non zero points
in our field F. (This is why we need |E| > n.} Each
player holding some input s € F, introduces the input
to the computation by selecting ¢ random elements
a; € B, fori=1,...,1, setting

fle)=s+az+ -+ a2

and sending to each player P; the value 8; = f(o;).

As in Shamir’s [Sh] secret sharing scheme, the se-
quence {Sg, ..., §,..1) is a sequence of {-wise indepen-
dent random variables uniformly distributed over F|
thus the value of the input is completely independent
from the shares {s;} that are given to any set of ¢
player that does not include the player holding the
secret.

The final stage

To keep the f-privacy condition, we will make sure
that the set of messages received by any set of ¢ play-
ers will be completely independent from all the in-
puts. During the whole computation each gate which
evaluates to some s € F, will be “evaluated” by the
piayers by sharing the secret value of s using a com-
pletely independent frons all the inputs, random poly-
nomial f{z) of degree ¢, with the only restriction that
f(0) = s. In particular at the end of the computation
we will have the value of F shared among the play-
ers in 3 similar manner. If we want to let just one
player know the output value, all the players send
their shares to that particular player. This player
can compute the interpolation polynomial f(z) and
use its free coefficient as the result.

Note that there is a one-to-one correspondence be-
tween the set of all shares and the coefficients of the
polynomial f(z). Since all the coefficients of f(z), ex-
cept for its free coefficient, are uniforin random vari-
ables that are independent of the inputs, the set of
all shares does not contain any information about the
inputs that does not follow from the value of f(0).

The Computation Stage

Let a,8 € E be two secrets that are shared using the
polynomials f(z), g(z) respectively, and let ¢ € F,
¢ # 0 be some constant. It is encugh to show how
one can “compute” ¢.a, a+ b, and a - b.

The two linear operations are simple and for their
evaluation we do not need any communication be-
tween the players. This is because if f(z) and g{z) en-
code a.and b, then the polynomials A{2) = ¢- f(z} and
k{(z) = f(z)+g(z) encode ¢-a, a+b respectively. Thus
to compute for example a + b, each player P; holding
F{ey), and g{o;) can compute k{w;) = fag) + g(o).
Likewise, since ¢ is a known constant &; can compute
h{a;) = ¢- f(e;). Furthermore, h{z) is random if only
f(z) was, and k{z) is random if only one of f(z) or
g(z) was.

As a corollary we immediately have

Lemma: {Linear Functional) For any ¢, (t <n — 1),
and any linear functional

F(zo,...,#n1) =apro+ -+ apn_ 12,1

where each F; has input z; and the o; are known
constants, can be computed Z-privately.

From the lemma we have




Corollary: (Matrix Multiplication) Let A be a con-
stant n x n matrix, and let each F; have an in-
put variable z;. Let X = («p,...,2,-1) and define
Y =(y,-..,¥n) by

Y=X- 4,

then for any ¢, ( < n—1), we can t-privately compute
the vector ¥ such that the only information given to
P; will be the value of V;, for i = 0,...,n — 1.

Proof: Matrix multiplication is just the evaluation of
n linear functionals. By the Lemma, we can compute
each linear functional ¥; independently, and reveal
the outcome only to P;.

The multiplication step

The multiplication step is only a bit harder. Let a
and b be encoded by f{z) and g{z) as above. We now
agsume that n > 24 + 1. Note that the free coefficient
of the polynomial h(z) = f(z)g(z) is a - b. There are
two problems with using A(z) to encode the product
of a times §. The first, and obvious one, is that the
degree of h(z) is 2t instead of t. While this poses
no problem with interpolating h{xz) from its n pieces
since i > 26+ 1,1t is clear that further multiplications
will raise the degree, and once the degree passes n,
we will not have enough points for the interpolation.
The second problem is more subtle. A{z) is not a
random polynomial of degree 2 (ignoring of course
the free coefficient). For example, h(z), as a product
of two polynomials, cannot be irreducible.

To overcome these two problems we will, in one
step, randomize the coefficients of h{x), and reduce its
degree while keeping the free coefficient unchanged.
We fizst describe the degree reduction procedure and
then combine it with the randomization of the coeffi-
cients.

The degree reduction step

Let
h(w) =hg+hiz 4o+ hgtx'“
and let
8 = h(a) = flou)g(a),
for i=0,...,n — 1 be the “shares” of h(z). Each P;
holds an s;. Define the truncation of h(z) to be

k(z) = ho+ hyz + - + by,

and r; = ko) fori=1,...,n—1.

Claimn: Let § = (s,...,8n-1) and R =
(70, .-.,n-1) then there is a constant n x n matrix
A such that

E=5-A

Proof: Let H be the n-vector

H=1{(hy,....he,... . h9,0,...,0)
and let K be the n-vector
K = (hg,..., h,0,...,0).
Let B = (b ;) be the n x n (Vandermonde) matrix,
where b;; = aj for 8,7 = 0,...,n — 1. Furthermore,

et P be the linear projection

P(zo,...,2a1) =(2e,...,2:,0,...,0).
We have
H.B=S
H- P=K
and
K-B=R

Since B is not singular {(because the oy-s are distinct)
we have

5. (.B“I.PB) = R
but 4 = B~1PB is some fixed constant matrix, prov-
ing our claim.

The randomization step

As noted above the coeflicients of the product poly-
nomial are not completely random, and likewise the
coefficients of its truncation k(z) may not be com-
pletely random. To randomize the coefficients, each
player ¥; randomly selects a polynomial ¢;{z) of de-
gree 2t with a zero free coeflicient, and distributes
its shares among the players. By a simple general-
ization of the argument in Shamir’s [Sh] scheme, it is
easy to see that knowing ¢ values on this polynomial
gives no information on the vector of coefficients of
the-monomials of z,2%,...,2" of g:().

Thus instead of using A{z) in our reduction we can

use
n—1

h(z) = hiz) + 3 _ qi(=)
j=0

which satisfies A{0) = h{0) but the other coefficients
of £, 1 < i < ¢, are completely random. Since each
player can evaluate his point 5 = A(a;), we can now
apply the truncation procedure using the matrix mul-
tiplication lemma to arrive at a completely random
polynomial k(z) which satisfies both degk(z) = t,
and £(0) = a - b, and k{z) is properly shared among
all the players.

Thus (omitting many well known details, see
[GMW]) we have proved

Theorem: 1: For every (probabilistic) funclion F' and
t < n/2 there exists a t-private proiocol.




Remarks:

(1) The complexity of computing F #-privately is
bounded by a polynomial (in n) factor times the
complexity of computing #.

(2) If F can be computed by an arithmetic circuit
over some field using unbounded fan-in linear
operation and bounded fan-in multiplication, in
depth d, then F can be computed t-privately in
O(d) rounds of exchange of information.

(3) In our construction we have to reduce the degree
of our polynomial only when its degree is about
to pass n—1. Thusif{ = O(n'~%), for some fixed
€ > 0, and we start with polynomials of degree ¢,
the players can simulate many steps of the com-
putation before the degree comes close to n, by
doing the computation each on their own shares,
without any communication(!). When the degree
does get close to n, we reduce the degree back to
{ in one radomizing, degree reducing step.

Two simple examples are:

a. Any Boolean function ¥:{0,1}" — {0,1}
can be represented as a multilirear polyno-
mial over the field F. Thus if { = O(n'~*)
we can compube t-privately, in paralle], all
the monomials of F' in O(1) number of
rounds and then use a big fan-in addition
to evaluate F'. This procedure may use ex-
ponentially long messages but only constant
number of rounds.

b. The Boolean Majority function has a poly-
nomial size O(log n) depth circuit, and thus
for ¢ = O{n*~*), this function can be
computed f-privately using only polynomi-
ally long messages in constant pumber of
rounds.

For completeness we state the following simple re-
sult

Theorem 2: There are funciions for which there
are no n/2 — private protocols.

Proof: It is easy to see that two players, each hold-
ing one input bit, cannot compute the OR function
of their bits, without one of them leaking some in-
formation. This immediately generalizes to prove the
theorem.

Sharing a secret with Cheaters:

Let n = 3t 4+ 1 and let Py,..., Py be aset of n
players among which we want to share a secret such
that

(A) Any set of at most ¢ players does not have any
information about the secret and

(B) It is easy to compute the secret from all its
shares even if up to ¢ pieces are wrong or missing.

The following scheme achieves both requirements:

Let F be a (finite) field with a primitive n-th root
of unity, w € FE, w™ = 1 and for all 1 < 7 < n,
wl # 1. Without loss of generality we can assume
that our secret s isin F.

Pick a random pelynomial f(z) € Elz], of degree
t such that f(0) = s. That is, set ap = s and pick
random a; € E fori=1...¢ and set

flz)= ag + a1z + - -+ @zt

Define the share of B, ¢ = 0...n—1, to be s =
f(w*). As in [Sh], the s;-s are i-wise independent ran-
dom variables that are uniformly distributed over £,
and thus our first requirement (A) is met.

Note that setting a; = 0 for ¢ > ¢ makes our secret
shares the Discrete Fourier Transform of the sequence
{ap,-..,8n-1). Let f(a:) = 8g+818 4 b Sp_ga™ L
By the well known formuia for the inverse transform

1= R
Qg = ;;f(w“’”)

and in particular flw ) =0fori=4+1,...,n — 1.
Explicitly the s; satisfy the linear equations

el

Ew"é 8 =0 for r=1,...,2L

§==0
Thus the polynomial g{z) = H?;il(x — w™ty di-
vides the polynomial f(z), which in the language
of Error Correcting Codes says that the vector s =
(s0,...,8n-1) is a codeword in the Cyclic Code of
length n generated by g(z). By our choice of g(z),
this cyclic code is the well known Generalized Reed-
Miller code. Such codes have a simple error correc-
tion procedure to correct & degg(z) = ¢ errors. See
for example [PW, page 283).

Verifying a secret

Assume that player P has distributed a secret in the
manner described above. Before entering this shared
secret into a computation we wish to verify that the




secret shares we are holding are shares of a real secret
and not some n random numbers. We want to do so
without revealing any information about the secret
or any of its shares. This is easily done using the
following Zero Knowledge proof technique. We will
later show how to verify a secret using a different
technigue that has absclutely no probability of error.
We present this Zero Knowledge technique because it
is simpler, and uses fewer rounds of communication.

Simple verification of a secret

Let fy be the original polynomial. Let fy,..., fm,

= 3n be random polynomials of degree ¢ generated
by P, and have P send to F, the values f;(w') for
j=1,...,m. Fach P; selectes a random o 3 0 from
¥ and sends it to all the other players. After reach-
ing agreement on the set of a-s the dealer broadcasts
the set of polynomials f* = Y 1. ;o fi to all play-
ers. Each player P; checks that at the point w', the
shares he received satisfy the required equations, for
all the o-s. If some P, finds an error he broadcasts his
complaint. If 41 or more player file a complaint, we
decide that the dealer is fanlty and take some default
value, say 0, to be the dealers secret, {(and pick 0 for
all the needed shares).

Claim: Let T be a set of good players that did not
complain. Let f7 be the the interpolation polynomial
through the points in T of the original polynomial f;.
Then with probability at least

1 — m2"/|E|

all the polynomials f7 are of degree 1.

Proof: Omitted.

Keeping in mind the {polynomial} complexity of
the players computation, we can certainly allow [E| >
2%"_ This makes the error probability exponentially
small. {The case of small | £] i5 similar: Using a some-
what larger m, each player, using a different set of
random polynomials, asks the dealer to reveal either

fior fo+ fi.)

Note that if n > 5¢ + 1, then our secret sharing
scheme can correct 2¢ errors. I a secret is accepted
then at most ¢ good players may have wrong values.
This together with at most ¢ more wrong values that
may coine from the bad players, gives altogether at
most 2¢ errors. Thus in this case the secret is uniquely
defined and there is a simple procedure to recover its
value using the error correcting procedure.

To handle the case of n = 3141 we must make sure
that all the pieces in the hands of the good players lie

on a polynomial of degree §. To achieve this we ask
the dealer of the secret to make public all the values
that were sent to each player who filed a complaint.
We now repeat the test, using new random a-s. Each
player now checks at his point and at all the points
that were made public, and if there is an error he files
a complaint. If by now more than ¢ -+ 1 players have
complained we all decide that the secret is bad and
take the default zero polynomial. Otherwise,

Clatim: With very high probability, all good play-
ers are on a polynomial of degree £.

Proof: Omitted.

Note that if the dealer is correct then no good
player’s value will become public during the verifica-
tion process. This together with the fact that all the
polynomials that the dealer reveals during this ver-
ification procedure are completely independent from
the secret polynomial fy, ensures that the bad play-
ers will not gain any information about the dealer’s
secret. (Detailed proof omitted).

Absolute verification of a secret

The verification procedure described above leaves an
exponentially small probability of error. In this sec-
tion we describe a secret verification procedure that
leaves no probability of errors?.

Instead of just sending the shares {s;}, the

dealer of the secret selects » random polynomials

fg(l‘), ooy Ja-a(z), with
(1) s; = fi(0) for i =0,...,

(2) zﬂ_ol w" gfz(x)

In other words, the dealer selects a random polyno-
mial f(z,y), of degree ¢t in both variables z and y,
with the only restriction that f(0,0) = s (his secret).
Then he sends the polynomials fi{z) = f(z,w') and
gi(y) = f(w',y) to player P;, fori = 0,...,n—1. The
real share is just s; = f;(0), but for the purpose of
its verification, the dealer also sends the polynomials
fi(®) and gi(y). At this point each player F; sends
sij = filw?) = f(w,w') = g;{w') to each player P;.

Note that if the dealer is correct, then when a
good player P; is looking at the sequence §S; =
(807,81 4,--.,8n-1,;), then all these points should be
on his polynomial g;(y). Therefore P; can compare
the mcoming values with his own computation and
find out which values are wrong. Furthermore it is

n — 1, and

Qforr=1,...,2¢

1 Our original protocol was simplified by Paul Feldman who
independently observed that the verification procedure can be
accomplished in a constant number of commumnication rounds.




clear that in this case no good player will have to
correct any value coming from other good players.

On the other hand we have

Lemma: If no correct player has to correct a value
given by a correct player, then there is a polynomial of
degree £ that passes through the interpolation points
of all the correct players.

Proof: Simple algebra. Omitted.

To make sure that the condition of this lernma is
satisfied, each player F; broadcasts a request to make
the coordinates (i,7) he had to correct public. If
P; detects more than { wrong incoming values, or
had to correct his own value, the dealer is clearly
faulty. In such a case P; broadcasts a request fo
make both fi;(z) and g;(y) public. At this point the
dealer broadcasts the (supposedly true) values s; ; at
all these pownts, and the polyncmials that were to
be made public. Note that making f; and g; public
makes all the s;,; and s;; public for 0 < & < n, for
that particular 7.

Now if some player F; observes that some new pub-
lic s;; contradicts the polynomials he is holding, or
finds ocut the the public information already contra-
dicts itself, he broadcasts a request to make all his in-
formation public. Here once more, the dealer makes
public all the requested information, Finally, each B
checks all the public and private information he re-
ceived from the dealer. If P; finds any inconsistencies
he broadcasts a complaint by asking all his private
information to be made public.

If at this point ¢ + 1 or more players have asked
to make their information public, the dealer is clearly
faulty and all the players pick the default zero poly-
norntal as the dealer’s polynomial. Likewise, if the
dealer did not answer all the broadcasted requests he
is declared faulty. On the other hand, if £ or less
players have complaint, then there are at least ¢ + 1
good players who are satisfied. These uniquely de-
fine the polynomial f(z,y) and they conform with all
the information that was made public. In this case
the complaining players take the public information
as their share.

Note that if the dealer has distributed a correct se-
cret then no piece of information of any good player
was revealed during the verification process. If how-
ever the dealer was bad, we do not have to protect
the privacy of his information, and the verification
procedure ensures us that all the good players values
lie on some polynomial of degree .

Some more tools

Before going into the computation stage, we need two
more tools

(I) Generating (and verifying) a random polynomial
of degree 2¢, with a zero free coefficient.

(II) Allowing a dealer to distribute three secrets, a,
b, and ¢, and verifying that ¢ = a - b.

Both of these are not needed when n > 41 + 1, but
are required to handle the n = 3¢ 4 1 case.

(I} Generating polynomials of degree 2¢
Let each player P; distribute ¢ random (including the
free coefficient) polynomials g;:{z), £ = 1,...,1, of
degree 1. Define f;{z) by

¢
fi{z) = Erﬂk - 9ik

k=1

and let the players evaluate from their points on the
g: x-s their corresponding point on fi{z).

After we have verified that indeed degg; ; < ¢, it
is clear that degfi(x) < 2¢, and f;(0) = 0. (It is also
clear that the vector of coefficients of the monomials
of 2, i==1,...,¢, in f;(z) are uniformly distributed
and are completely independent from the information
held by any set of at most ¢ players that does not
include P;.}

Finally, as our random polynomial we take

i@ =3 hile).

i=0

(I} Verifying that c=a -}

Let the player P distribute a and b using the
polynomials A(z) and B{z) respectively. We want
P to also distribute a random polynomial encoding
¢=a-b, in such a way that the players can all verify
that indeed ¢ = a - b. Let

D{z) = A(z)-B(z) =c+c1z + ... + c®

and let
D!(x) = T‘t,O -+ 7’1,1&3 + von + rt,t—ull’tml + CQg.’Et
Dia(z) = w0t reg st
+earo1 — rep1]et
Dl(x) = 7l’]i.,O"F --~+T’1vt._12:t'"1+

1
+ler — Tia = Ttml,2 ™ oo = T24_1]%

where the r;; are random elements from E. P se-
lects the D;(z) and distributes their shares to all the




players. After verifying that A(z), B(z) and all the
Di(z) are of degree ¢, define

C(z) = D(z) - z =t . Di(z).
i=1

and verify that C(2) is also of degree ¢t. From the
construction of C(z) it is clear that C(z) is a randomn
polynomial of degree t with the only restriction that
C{0)=a-b

Proof of Theorem 3

We separate again the computation to its Input,
Computation and Final stages. At the input stage,
we let each player enter his inputs to the computa-
tion using our secret sharing scheme, while verifying
that each secret shared is indeed some polynomial of
degree £. The secret verification assures that the in-
puts of any Byzantine player is well defined, but does
not ensure that it is in the domain of our function.
For exaraple, in a 0-1 vote, we must verify that the
mput is § or 1. We defer this type of verification to
the comaputation stage.

The final stage is exactly the same as in the proof of
Theorem 1. When we have simulated the circuit, and
the players are holding the pieces of a properly shared
secret, encoding the final output, they send all the
pieces to one or all the players. As at most ¢ pieces
are wrong, each player can use the error correcting
procedure and recover the result.

The computation stage - Byzantine
case

Let a and b be properly encoded by f(z) and g(z)
respectively, where by “properly encoded” we mesn
that all the pileces of the good players are on some
polynomial of degree ¢. Since f(x) and g(&) are prop-
erly encoded the polynomials f(z)+g(z), and e f{&),
properly encode a-+8, and c.a, for any constant ¢ € E.
The same argument of Theorem 1 implies that we can
do the computation of any linear operation with no
comnmunication at all.

Here again, the multiplication step is more in-
volved. To repeat the procedure of theorem 1, using
the degree reduction step, via the Matrix Multiplica-
tion Lemma, we must make sure the all the players
use, as input to this procedure, their correct point on
the product polynomial &{z) = f(z)g(x). To guaran-
tee that this indeed happens, we use the Error Cor-
recting Codes again.

Let a; = f(w?), b; = g{w') and ¢; = h{w') = a; - b;
be the points of F; on these polynomials. We ask each

F; to pick a random polynomial of degree ¢, A;(x),
such that a; = 4;{0), and use this polynomial to dis-
tribute a; as a secret to all the players. Similarly,
F; distributes b; using B;{z). We also ask P; to dis-
tribute ¢; using the polynomial C;(z), while verifying
that A;(x), Bi(z), Ci(z) are all of degree ¢, and that
Ci(0) = A:(0)B;(0).

We want to verify that the free coefficients of the
polynomials Ci{z) are all points on the product poly-
nomial &(z). It is enocugh to verify that all the free
coeflicient of the A;(x), and B;(z) are on f(z) and
@{z) respectively. We do this as follows.

The free coefficient of the 4;(z)-s are a code word
with at most ¢ errors. By our assumption, all the
Ai(z) are properly distributed. We can therefore use
them to compute any linear functional. In particular,
using the same A;(z)-s we can compute the polyno-
mials

n—-1
Se(z) =y Wt Ai(z)
i=0

for r=1,...,2¢. At this point all the players reveal
their points on the polynomials S,.{z), enabling all
the players to recover the value of s, = S.(0), for
r=1,...,2t.

Note that if all the A;{(G) are correct (i.e. on a
polynomial of degree ?) then s, = 0 for all . Thus
the computed value of the s, are just a function of
the errors introduced by the Byzantine players. In
particular, this implies that the value of the s, does
not reveal any information that is held in the hands
of the good players!

Since at most ¢ of the 4;(0) can be wrong, the
value of the s.-8, the so called Syndrome Vector, is
the only information needed by the error correction
procedure to detect which coordinates A;{z) encode
a wrong 4;(0), and give the correct value. Therefore,
if some s, # 0, all the players compute the wrong
coordinates, the correct value of f(w'), and use the
constant polynomial with this value, instead of A;{(z).

In a similar way we can check and correct the B;{(z).
We can, therefore, also check (and correct) the Ci(z),
so we are sure that all the inputs o the linear com-
putation we have to do in the degree reduction pro-
cedure are correct.

Note that much of this is not needed when n >
4 +1, because then we can still correct up to ¢ errors
on polynomials of degree 2f. In this case we can do
the error correction on the points of k(2) directly.

As in the proof of Theorem 1, we have,

Theorem 3: For every probabilistic funciion and
every t < n/3 there exists a protocol thal is both t —
resilient and t-privale.
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For completeness we state,

Theorem 4: There are funclions for which there
is ne nf3 — resilient protocol.

Proof: Follows immediately from the lower bound for
Byzantine Agreement in this model. We note that
even if we allow broadcast as a primitive operation,
theorem 4 remains true. This is because we can ex-
hibit functions for three players that cannot be com-
puted resiliently, when one player is bad. This gener-
alizes immediately to n/3.

Remark: All the remarks following the statement
of theorem 1 apply also to theorem 3.
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Appendix

Formal Notation

Let F be a field. Let I/ == F'™ dencte the standard n-
dimensional vector space over F' and M, (F) the ring
of n x n matrices over F.

Let R be a random variable with distribution D
over F. Then R* (R*) denotes k (finitely many) in-
dependent draws from D.

Comment: Unless otherwise specified, F will be fi-
nite, and £} the uniform distribution over ¥,

The Basic Model:

Fix n > 0 and a field F. Intuitively, an (n, F) -
network is a complete synchronous network of n
probabilistic machines (players) Py, Py, ..., Py_1. At
every round, each player can send one message (el-
ement of F) to each other player, receive a message
from each other player, and perform arbitrary com-
putation.

If we assume for convenience that players send mes-
sages 1o themselves too, a round of communication is
neatly described by a matrix M € M,(F), where
each P; sent the *» row of M, and receives the it"
column of M. (This formalizes the security of private
channels).

Formally, a T round {r, F) — network is a set of
players {F,, P, ..., P,_1}. Each P; is a tuple

-H =< Qis Q§ﬂ)x &,55 >

where (); is a set of states, qgm the initial state, R; is
a random variable over F' {distributed like R) and

i [T x Qs x F™ x Ry — Qs x F™

is a transition function that given a round number,
state, previous round input and private coin tosses
computes the next state and this round’s output.

A profocol is simply é =< 6p,81,...,6,1 >, the
transition functions prescribing to each player what
to do in each round.

A run M of a protocol é& is a sequence
(My, My, ..., My}, M; € M,(F) of matrices describ-
ing the communication in rounds j = 1,2,...,7.
Note that 3f is a random variable, depending on
{qgﬂ)}, the initial states, and {R}}, (= R*), the ran-
dom draws from D).




