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Simulations Among Concurrent-Write PRAMs'
Faith E. Fich,” Prabhakar Ragde,” and Avi Wigderson®

Abstract.  This paper is concerned with the relative power of the two most popular concurrent-write
models of parallel computation, the PRIORITY PRAM [G], and the COMMON PRAM [K].
Improving the trivial and seemingly optimal O{log n) simulation, we show that one step of a
PRIORITY machine can be simulated by O(log n/(log log n)) steps of a COMMON machine with
the same number of processors (and more memory). We further prove that this is optimal, if processor
communication is restricted in a natural way.

Key Words. Parallel random access machines, Write-conflict resolution, Lower bounds.

L. Introduction. A model of parallel computation that has gained prominence
in the theoretical literature is the CRCW PRAM (concurrent-read concurrent-
write parallel random access machine). The power of this machine makes it a
desirable model for the purposes of algorithm design (see, for example, [Ga],
{SV], and [TV]); but this power also makes it difficult to prove lower bounds
that do not follow directly from sequential considerations. In addition, several
different models of CRCW PRAM have been defined, and the question of their
relative power remains open. In what follows we hope to shed some light on this
question, and to demonstrate interesting techniques for proving lower bounds
on parallel machine models.

A CRCW PRAM consists of a set of n processors P,, P, ..., P,, together with
a shared memory. Each processor is a random access machine with a local
memory. The processors are synchronized; one step of computation consists of
three phases. In the first phase each processor may perform local computation.
In the second phase each processor may choose a cell of shared memory to write
into; all processors write simultaneously. In the third phase each processor may
read one shared memory cell. Any number of processors may simultaneously
read from or write into the same shared memory cell. For the purposes of lower
bounds, we allow an arbitrary amount of local computation in the first phase.

Models that allow simultaneous writes must specify a write-conflict resolution
scheme. Two models that have appeared in the literature are the COMMON
model and the PRIORITY model. In the COMMON model, write conflicts are
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cell simultaneously, the processor that succeeds is the
[G]. Without loss of generality we can assume that priority is given to the

model is important, we place it after the model name in parentheses (e.g.,
PRIORITY (m)).

Ku¢era [K] showed that COMMON with »n?
PRIORITY with n processors in constant time. Howe
techniques do not appear to be strong enough to separ

each has the same number of processors and the same nu
cells, It is trivial to simulate one step of PRIORITY(m) by O(log n) steps of
COMMON(m) by using a technique similar to binary
Section 2. This method was proved optimal in [FMRW] when m = O(n' ) for
fixed £ > 0. In the same paper an {)(log log log n) separation was shown between
PRIORITY(OO) and COMMON(OO), by looking at the problem of element distinct-
ness. This was improved to Q(Vlog n) [RSSW]. These proofs imply the existence
of a rapidly growing function mq(n) such that the separation also holds between
PRIORITY(m) and COMMON(m) for m = my(n). No separation is known for
other values of m, when the two models have the same n
(Some separations for models with differing numbers of memory cells can be
found in [FRW1])

processors can simulate
ver, existing lower-bound
ate these two models when

mber of shared-memory

search, as explained in

ing the amount of shared memory available to the stmulating machine. More
precisely, we show how to simulate one step of PRIORITY(m) by O(log n/(log
log n)) steps of COMMON(nm). In particular, this
separation between PRIORITY(o0) and COMMON(OO)
rather than the previously conjectured O(log n). Such problems as element
distinctness and set equality thus have sublogar

COMMON(OO), since they can be solved in constant time on PRIORITY(OO).

In simulating an algorithm designed for P

the two models do not differ in this respect. To simulz

PRIORITY requires the following problem to be solved

LEFTMOST WRITERS
Each processor P(=i<n)hasa valuex, (0= x, < m)in its local memory.

Before:

After:

{x;=0il P, does not write at this phase; otherwis
of the cell that P, wishes to write into.)

Each processor P, with X; # 0 will be in one of
“not-leftmost™. P. will be in state “leftmost™

processor of lowest index among those with the

demonstrates that the
is O(log n/(log log nj),

ithmic algorithms on

RIORITY on COMMON, each

€ X, represents the index

the states “leftmost” or
if and only if it is the
same value of x,,
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Once the problem is solved, a processor P, will write if and only if it has the
value “leftmost,” thus resolving the write conflict in the manner that a PRIORITY
machine would.

A natural way of solving this problem is to have each processor work only on

working on the same problem. We calil such a problem a “prisoner” problem.
The analogy is with prisoners in cells; each prisoner knows what cell he is in,

memory can be dedicated to each subproblem, and al| subproblems can be solved
simultaneously and independent]y. To any one processor P, the processors work-
ing on diflerent subproblems will appear “dead,” as they will not participate in
the same computation as P. This leads to the foltowing problem definition:

LeFTMosT Prisoner
Before: Each processor has one of the values *“live" or “dead” in its local memory.
Processors with the value “dead” do not participate in the computation,.
After: Each live processor P, will be in one of the States “leftmost™ or “not-
leftmost.” P, will be in state “leftmost™ if and only if it is the live processor
of lowest index.

Then the simulation problem can be solved by solving m simultaneous leftmost
prisoner problems, one for each cell of shared memory in the simulated machine.
This is a logical division of labor, and requires no overhead for processor
allocation.

log n)) steps of COMMON(nm). In Section 3 we prove that the leftmost prisoner
problem requires Q(log n/(log log 1)) steps to solve on the COMMON model,
regardless of the number of cells of shared memory. Our simulation is thus
optimal among “prisoner-style™ simulations, in which processors are forbidden
lo communicate with those attempting to write into different cells. We do not
know any method of proving a lower bound for general simulations, but conjecture
that the upper bound given here is tight. In [FRW2] evidence is presented that
allowing communication between processors working on different subproblems
does not help in the COMMON model,; however, the same paper also shows
that interproblem communication does help for a model whose power lies between
COMMON and PRIORITY.

This work adds to the growing body of knowledge about techniques for lower
bounds on these powerful models. Other related results may be found in [B],
[FRW1], [LY], [MW], [R], and [Vw].

2. An Upper Bound for Leftmost Prisoner. We initially assume that all memory
cells are initialized to 0. Binary search can be used to solve the leftmost prisoner
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problem in O(log n) steps using only one shared memory cell. At the first step,
any live processor whose index is at most |n/2] writes the value 1 into the cell,
If the value 1 appears, then the live processor of lowest index is among
P, .. P2y I not, thenitis among Py a3y, - - -, P,. In this fashion the range
within which the live processor of lowest index lies can be cut by a factor of 2
at each step. This procedure is easily shown to be optimal if only one cell is
used. If memory is not initialized, all processors can keep a count of the step
number, and write that value instead of the value 1 in the above procedure.

Let us fix the number of steps used to solve the problem at ¢, and consider the
largest number of processors for which we can specify a t-step algorithm. The
previous procedure solved a problem for 2’ processors, using one cell of shared
memory. We can increase the number of processors by using more cells of shared
memory. Whenever we describe processor actions, it is understood that those
actions are taken only if the processor is live.

THEOREM 1. A leftmost prisoner problem for (t+1)! processors can be solved in
t steps on COMMON(m,), where m, = Z:ii (r+1)1/it<s(e~2)(t+1)!. Here, ¢
represents the base of the natural logarithm.

CoroLLARY. Leftmost prisoner on COMMON((e—2)n) can be solved in
O(log n/(loglog n)) steps.

Proor. The proof of Theorem 1 is by induction on t. We can easily solve a
2-processor problem in one step, using one shared memory cell. In the write
phase, P, writes the value 1 into the cell; in the read phase, P, reads the cell. P,
is the live processor of lowest index if and only if it is alive; P, is the live processor
of lowest index if and only if it is alive and it reads 0.

Now assume that we have algorithm A which solves a problem for f! processors
in t—1 steps, using m, ; memory cells. Given (f+1)! processors and m, cells,
divide the processors into 7+ 1 equal groups, where the ith group consists of
processors P, 4, through P, inclusive. Since m,=(t+1)m, ,+1, we may
divide the memory into t+1 blocks of size m,_,, with one extra cell remaining
{(say M,). Each group of processors is assigned one block of memory cells.

Each group will use 1 —1 of its read-write phases to solve leftmost prisoner
within the group, using algorithm A and their own block of memory. The
remaining read and write phase will be used to interact with other groups, through
the cell M,. The key to this efficient simulation is in the scheduling of these
interactions.

In the write phase of the ith step, every processor in group i writes the value
1 into M,. (Recall that only live processors are participating.} This informs any
processor in a group of higher index that it is not the live processor of lowest
index. In the read phase of the ith step, every processor in group i + 1 reads M,
thereby ascertaining whether or not there is a live processor in a group of lower
index. Each group is busy with M, for at most one read phase and the next write
nhace
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AlThe end of steps, a processor in group 1 is the live processor of lowest
index if and only if it is the live processor of lowest index within its group. A
processor in group i > 1 is the live processor of lowest index if and only if it has
read the value 0 from M, (indicating that no processors in lower groups were
live) and it is the live processor of lowest index within its group. This proves
Theorem 1. 0O

3. A Lower Bound for Leftmost Prisoner. In this section we will show that the
upper bound given in the corollary to Theorem 1 is optimal to within a constant
factor. We demonstrate a lower bound for leftmost prisoner that holds regardless
of the number of cells of shared memory available. Suppose we are given an
algorithm that solves leftmost prisoner for n processors in t steps. We will go
through a series of simplifications that reduce the problem of bounding f as a
function of n to a question involving a simple combinatorial structure. First, we
consider a related problem.

DeTecTioON
Before: Each processorhas one of the values ““live’ or ““dead’ in its local memory;
processors with the value “‘dead” do not participate in the algorithm.
After: Every live processor will be in one of the states “‘alone’ or “‘not-alone”;
there exists a live processor in state “‘not-alone” if and only if there are
at least two live processors.

Note that the detection problem does not define a function. An algorithm for
detection will ensure that, for every input in which more than one processor is
live, some live processor will be in the state ‘‘not-alone.” The statement of the
problem does not specify which of the live processors should be in that state, or
what state any of the other live processors should be in.

Detection is a problem which captures the difficulty of prisoner problems on
COMMON. The intuition behind this is that when a processor in the COMMON
model writes into a cell, it has no way of finding out which other processors (if
any) wrote into that cell at the same time, as they must have written the same
value. To solve the detection problem, some processor must read a value that it
knows it did not write.

It will be convenient, in what follows, to consider a step of computation to
consist of read, compute, and write phases, in that order; this increases the length
of an algorithm by at most one step. We can then convert the given leftmost
prisoner algorithm to an algorithm that solves the detection problem on a
COMMON model with read-compute-write ordering in t + 1 steps; simply relabel
state “‘not-leftmost’ to be state “‘not-alone.” If the leftmost prisoner algorithm
is valid, then any processor that is in state “‘not-leftmost” at the end of that
algorithm has detected a live processor of lower index.

We can assume without loss of generality that any detection algorithm is
oblivious: that is, that the sequence of cells accessed by any one processor does

warmt Aomamd ~Am Ay i mnfarmmatismnt that the mroacecenr A1d nat have at the ctart ~f
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the computation. This is true because as soon as a processor reads a value that |
it did not write at a previous step, it can enter the state “not-alone” and halt.

By at most doubling the length of the algorithm, we may also assume that the
algorithm is singleminded; that is, each processor accesses exactly one cell at
each step. Each step *“P,: read from cell i, write to cell j is converted to ‘“‘read
from cell i, write [the same value back] into cell i, read from cell j [and ignore
the value read], write into cell j." If a processor does not read or write at some
step, then we modify it to access a cell that does not appear in the program of
any other processor.

Thus the program of any processor can be viewed as a sequence of integers
representing cells accessed at steps 1, 2, etc. Let us say that a set of such sequences
has the difference property if for any two sequences « and 3, there exist positions
J and k, where k > j, such that o, # 8, but either o, = B, or «, = ;. In this case,
we say that j and k are witnesses to the difference of @ and S.

@

Lemma 1. The set of access sequences of processors in an oblivious singleminded il 3)
algorithm for the detection problem has the difference property.

ProoF.  Suppose two processors P, and P; had access sequences that did not
satisly the difference property. Then, at each time step, P, and P, cither access
the same cell, or each accesses a cell that the other processor will not access at
a subsequent time step. Consider the situation where all processors are dead
except P, and P. P, if alive, will not be able to tell if P. is alive or dead, and
thus cannot correctly choose a final state. P, has the same problem. Thus the
algorithm is faulty. 0

We have shown that a leftmost prisoner algorithm for n processors in f steps
leads to a set of n sequences of length 21+ 2 with the diflerence property. Since
we wish to place an upper bound on n in terms of 1, it suffices to bound the size
of any such set of sequences. The bound that we will derive will hold for sets of
sequences having the property that no sequence contains a repeated integer. The
following technical lemma ensures that we can make this assumption. ‘

LemMma 2. Given a set S of sequences of length t with the difference property, there
is a set S' of sequences of length t such that no sequence in S' contains a repeated

integer, and |S|=]S'|.

Proo¥r. The proof of Lemma 2 is achieved by transforming S into S’ with the
required property. We will construct S|, S,, ..., S, such that |5,/ =S|, each S, has
the difference property, and no sequence in S, contains a repetition when truncated
after position i. We can let S, =S. Given S,, we construct S,,, as follows: let R
be the set of integers that occur for the second time in some sequence of S, at
position i+ 1. For each re R, choose a new integer r' that does not appear in
any sequence and, for each sequence o in S, replace the second and all subsequent
occurrences of r in a by occurrences of r'. This defines S,,,.
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E. Itis clear that S,,, has no repetitions in any sequence truncated after position
;(H 1. We m.ust show that S,,, has the difference property. Let o’ and B’ be two
,se.quences in S.,, and let @ and B be the corresponding sequences in S,. We
4 will see that witnesses exist to the difference of ' and B'. There must’exisl
3 'itness.es d and ¢ (d > ¢) to the difference of a and B. Assume without loss of
‘. generality that «, # 3, and «, =B, =r. Since the transformation never makes
E snequal quantities equal, o/ # 8. Keep in mind that the only differences between

’ .
- a and o’ (or between 8 and B) arise as a result of repetitions in those sequences.
E There are four cases:

2 (1) al=a, and B, =,. Then, clearly, ¢ and d are witnesses to the difference

of @' and B'.

, , .
a.# a, and. Bu# By Since @, =B, =r, these will both be changed by the
transformation to r’, and so a.=By. Thus ¢ and d are still witnesses to the
difference of a’ and B’
aﬁv'éfr(. but B =8, Then @, must have been a repetition. Let a be the
position of the first occurrence of the integer r in a. We can prove that
positions d and a are witnesses to the difference of o’ and B’. Since first
occurrences are not affected, a), = r. It cannot be the case that 8, = r, otherwise
ﬁ,, would have been a repetition and would have changed in the transforma-
tion. Thus a, # B,. Also, a/, = r =Ba =B, and we conclude that @, =B
as required. a
a.=a, but B, # B,. Then Ba was a repetition. Let a be the position of the
first occurrence of the integer r in B. As before, B.,=B.=r We know that
a cannot equal ¢, because B.=r and a, =r but a.# B0 a> e, then we
know that o/ # B/ and a. =B, asrequired. So positions a and ¢ are witnesses
to the difference of ' and B’ If ¢>a, then a, must be different from r, for
otherwise a, would be a repetition and would have been affected bv.the
transfqr_mation. Since B, =r, we conclude a,#B.,. Also, B!, =r= af: and
$0 positions ¢ and a are witnesses to the difference of B,

Letting S"= S, finishes the proof. ]

l!‘ no sequence contains a repeated integer, then the difference property has a
: .5|mpler formulatl'on: for every pair of sequences, there exists an integer appearing
in both, but at different positions in each.

1 li,EMTS/\, 3.1 If Sis a set of length-1 sequences with the difference property
 then |5 =t ) h

i .PROOF. We may assume, by Lemma 2, that no sequence in S contains a repeated
;- .mteger. Let E be the set of integers that are entries in the sequences of S, that
i, E={o;|aeS 1=j<} Let U= {1,2,...,1}" thatis, the set of tuples in(iexcd
p by E with entries between 1 and 1. Clearly, |U| = ¢'*!,

.One way of looking at a tuple we U/ is as a specification of where integers
§ might appear in a sequence; v is a possible location for the integer i. For B¢ §
let U(B) be the set of all tuples u for which this specification is consistent with’
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the sequence B. That is, U(B) ={ue Ulfor all e e E, either ¢ does not 'occur in
B, or B, =e}. U(B) is well defined, since we have assumed that any integer e
occurs at most once in . . ‘

Note that in any tuple ue U(B), it is the case that ug =j for j= l,.2, Lot
but that the remaining |E]—1 entries in u can take on any |VL?|!lfe’ since th;
corresponding element in E does notappearin 3. Thus | Ufﬁ)| = for' allBeS.

Also note that, for two distinct sequences « and g8 in S, there <':x1sts sombe
integer i appearing in both, but at different locations. Say a, = B, =1 and aié )
Then forall ue U(a), u, = a,and forall ue U(B), u; = b. Thus U(a)NU(B)=d¢.

Then, since U contains the disjoint union U 4.5 U(B),

M= U=

U U(B)‘ =S|
BcS
]

Hence ' =|S|.

Using Lemma 3 we can finally prove the following theorem, which is the main
result of this section.

THEOREM 2. Leftmost prisoner for n processors requires Q(log n/(log log n))

steps.

PrOOE. Since a leftmost prisoner for n processors running in f stéps leadzs,g)
a set of n sequences of length 21 +2 with the difference property, n= (2t+2) o
Thus 1 = Q(log n/(log log n)), as required. In faq, our argument that a detectloln
algorithm corresponds to a set of sequences with the dlffer.ence prope;ty only
requires that one or two processors be live. Thus leftmost prisoner has the same

i i i : at most
complexity even if the number of live processors is guaranteed to be

O

two.

We conclude by remarking that this proof can be extende‘d [R]to Sh,O\jv that
leftmost prisoner has complexity @(log n/(loglog n)) even il at least n pro-
cessors are guaranteed to be alive, for any £ > 0.
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