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RELATIONS BETWEEN CONCURRENT-WRITE
MODELS OF PARALLEL COMPUTATION*

FAITH E. FICHt, PRABHAKAR RAGDE?. anD AVI WIGDERSON}

Abstract. Shared memory models of parallel computation (e.g., parallel RAMs) that allow
simultaneous read /write access are very natural and already widely used for parallel algorithm design.
The various models differ from each other in the mechanism by which they resolve write conflicts. To
understand the effect of these communication primitives on the power of parallelism, we extensively
study the relationship between four such models that appear in the literature, and prove nontrivial
separations and simulation results among them.
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1. Introduction. Parallel computation has been the object of intensive study
in recent years. Many models of synchronous parallel computation have been pro-
posed. One important model is the CRCW PRAM (concurrent-read concurrent-write
paralle] random access machine, sometimes denoted WRAM). Not only have numer-
ous algorithms been designed for the CRCW PRAM (examples include [Ga], [KMR],
[SV], and [T'V]), but it has also been shown to be closely related to unbounded fan-in
circuits and alternating Turing machines ({CSV], [LY2]).

Specifically, a CRCW PRAM consists of a set of processors (i.e., random access

i machines) Py, P,,..., P, together with a shared memory. One step consists of three

f phases. In the read phase, every processor may read one shared memory cell. In
the compute phase, every processor may perform computation. In the write phase,
every processor may write into one shared memory cell. Any number of processors
can simultaneously read from the same memory cell, and any number may attempt
to simultaneously write into the same memory cell.

An arbitrary amount of computation will be allowed in each compute phase.
Although this is unrealistic, it enables us to concentrate on communication between
processors. For all the problems we consider, communication rather than computation
is the limiting factor. In fact, the algorithms presented in this paper actually perform
very little computation at each step. Furthermore, the powerfulness of the model
makes the lower bounds we present very strong.

A fundamental question concerning CRCW PRAM:s is how to resolve write con-
flicts. One method is to assign priorities to processors and, if more than one processor
attempts to write to the same memory cell, then the one with the highest priority will
succeed. Without loss of generality (by reordering processors), we can assume that
priorities are assigned in order of processor index, with highest priority given to the
processor of lowest index [Go]. We call this the PRIORITY model.

Other mechanisms for conflict resolution appear in the literature. In the ARBI-
TRARY model, if more than one processor attempts to write to the same memory
cell, an arbitrary one will succeed [V]. Algorithms for the ARBITRARY model must

* Received by the editors October 7, 1986; accepted for publication (in revised form) April 22,
1987. This work was supported by National Science Foundation grants MCS-8120790, MCS-8402676,
and ECS-8110684, Defense Advanced Research Projects Agency contract N0O0039-82-C-0235, an IBM
Faculty Development Award, the University of Washington Graduate School Research Fund, and a
Natural Sciences and Engineering Research Council of Canada Postgraduate Scholarship.

tDepartment of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 1A4.

{The Hebrew University, Jerusalem, Israel.

606

RELATIONS BETY

work regardless of who wins the «
model allows simultaneous writes
so are writing a common value [K

When more than one process
COLLISION model, a special colli
is given about which processors +
were trying to write. This write-c
that used by Ethernet and other

Write conflicts can also be av
exclusive-write (CREW) PRAM,
given memory cell at each time
exclusive-read exclusive-write (EI
restricted in this manner.

Any algorithm that runs on
the PRIORITY model; if an algor
write, then it will certainly work it
PRIORITY model is at least as |
ARBITRARY model is at least a:
and COLLISION models are at
CREW PRAM is at least as pows

One step of the COLLISION
TRARY model, using the same m
each processor in the ARBITRAI
in the COLLISION model wrote.
originally written. Then each pro
ten. If the index written there is
the previous write step. In this ¢
memory cell.

Our aim is to understand the
on these models have appeared i
attempts to implement them on
are of little value without knowin

Cook, Dwork, and Reischuk
powerful than the CRCW PRAL!
n-way OR function, which can t
requires {)(log n) steps using a CR
in a sorted list of distinct eleme
strictly less powerful than the CI

In this paper, we obtain sep:
tion of the number of shared men
when the number of processors is ]
one step on the PRIORITY mod
or COLLISION model if the nun
memory is allowed [Ku]. When v
equivalent. Restricting width has
a bus or a satellite relay may be

Table 1 summarizes our res
model is denoted by its name f
parentheses (e.g., COMMON(1))
the weaker machine required to s
logarithms are to the base 2. TI




© Society for Industrial and Applied Mathematics
on

URRENT-WRITE
IMPUTATION*

AND AVI WIGDERSON{

tation (e.g., parallel RAMs) that allow
widely used for parallel algorithm design.
by which they resolve write conflicts. To
the power of parallelism, we extensively
ar in the literature, and prove nontrivial

llel random access machines

been the object of intensive study
allel computation have been pro-
(concurrent-read concurrent-write
1 WRAM). Not only have numer-
1 (examples include [Ga], [KMR],
osely related to unbounded fan-in
Y2]).

of processors (i.e., random access
*mory. One step consists of three
ead one shared memory cell. In
omputation. In the write phase,
~cell. Any number of processors
], and any number may attempt

allowed in each compute phase.
trate on communication between
nication rather than computation
ed in this paper actually perform
, the powerfulness of the model

AMs is how to resolve write con-
s and, if more than one processor
one with the highest priority will
processors), we can assume that
ith highest priority given to the
ORITY model.

" in the literature. In the ARBI-
s to write to the same memory
r the ARBITRARY model must

publication (in revised form) April 22,
1 grants MCS-8120790, MCS-8402676,
y contract NO0039-82-C-0235, an IBM
raduate School Research Fund, and a
. Postgraduate Scholarship.

, Toronto, Ontario, Canada M5S 1A4.

_ 4

RELATIONS BETWEEN CONCURRENT-WRITE MODELS 607

work regardless of who wins the competition to write at each step. The COMMON
model allows simultaneous writes to the same memory cell only if all processors doing
so are writing a common value [Ku].

When more than one processor attempts to write to the same memory cell in the
COLLISION model, a special collision symbol will appear in that cell. No information
is given about which processors were involved in the collision nor what values they
were trying to write. This write-conflict resolution scheme is a synchronous version of
that used by Ethernet and other multiple access channels [Gr].

Write conflicts can also be avoided by not allowing them; in the concurrent-read
exclusive-write (CREW) PRAM, at most one processor can attempt to write to a
given memory cell at each time step [FW]. An even more restrictive model is the
exclusive-read exclusive-write (EREW) PRAM, in which both reads and writes are
restricted in this manner.

Any algorithm that runs on the ARBITRARY model will run unchanged on
the PRIORITY model; if an algorithm works regardless of who wins a competition to
write, then it will certainly work if the processor of lowest index always wins. Thus the
PRIORITY model is at least as powerful as the ARBITRARY model. Similarly, the
ARBITRARY model is at least as powerful as the COMMON model, the COMMON
and COLLISION models are at least as powerful as the CREW PRAM, and the
CREW PRAM is at least as powerful as the EREW PRAM.

One step of the COLLISION model can be simulated by two steps on the ARBI-
TRARY model, using the same number of processors and shared memory cells. First,
each processor in the ARBITRARY model writes where the corresponding processor
in the COLLISION model wrote. However, it writes its index in addition to the value
originally written. Then each processor reads from the cell to which it has just writ-
ten. If the index written there is not its own, a collision must have occurred during
the previous write step. In this case, the processor writes the collision symbol to the
memory cell.

Our aim is to understand the relative power of these models. Algorithms running
on these models have appeared in the literature, and their expositions often include
attempts to implement them on the most restrictive model possible. Such attempts
are of little value without knowing which of the inclusions described above are strict.

Cook, Dwork, and Reischuk have shown that the CREW PRAM is strictly less
powerful than the CRCW PRAM. In particular, their work [CDR] shows that the
n-way OR function, which can be computed in one step on the COMMON model,
requires {}(log n) steps using a CREW PRAM. By considering the problem of searching
in a sorted list of distinct elements, Snir [S] has shown that the EREW PRAM is
strictly less powerful than the CREW PRAM.

In this paper, we obtain separation results for the four CRCW models as a func-
tion of the number of shared memory cells m (called the communication width [VW])
when the number of processors is held fixed at n. This is an important restriction, since
one step on the PRIORITY model is easily simulated by two steps on the COMMON
or COLLISION model if the number of processors is squared and sufficient common
memory is allowed [Ku]. When width is restricted, however, the four models are not
equivalent. Restricting width has a meaning in a practical as well as theoretical sense;

a bus or a satellite relay may be considered to be a CRCW PRAM with width 1.

Table 1 summarizes our results on simulations and separations. A particular
model is denoted by its name followed by the number of shared memory cells in
parentheses (e.g.,, COMMON(1)). The time bound given is the number of steps on
the weaker machine required to simulate one step on the more powerful machine. All
logarithms are to the base 2. The results in §2 and §3 are, for the most part, easy
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adversary arguments; those in the remaining sections are harder and more revealing.
Among the results we consider particularly significant is an information-theoretic lower
bound for computation on COMMON(1) which is applicable in a more general setting
(Theorem 6). The characterization of the global state of information proven in that

theorem also allows us to prove a surprising constant time simulation of COMMON(1)
by COLLISION(1) (Theorem 10).

TABLE 1

Simulated Simulating Time Sections
Machines Machines Bounds
ARBITRARY(m) log n
PRIORITY(1) COLLISION (m) ) (l—g-—T> 2
COMMON(m) og(m +1)
ARBITRARY (m)
PRIORITY(m) COLLISION(m) O(logn) 2
COMMON(m)
ARBITRARY (¢cm
PREOOR(IT/Y)(’") COLLISION(c(m) ) 0 ( M) 2
m=in/e COMMON (cm) log(e +1)
COLLISION(m) log n
ARBITRARY(1) | 0OMMON(m) e (log(m + 1)) 3
PRIORITY (km)
ARBITRARY (km) COMMON(m) Ok log(n/km)) 4
COLLISION (km)
( klogn )
PRIORITY (km) ARBITRARY (m) log(k +1) 6
klog(n/km)
Q ( Zoe\n/xm)
log(k + 1)
log n
COLLISION(1) COMMON(m) ) 2,5
1 {(m+1)
log n
COMMON(1) COLLISION(m) | © 25
log(m + 1) (m+1)
COMMON(1)
on domain {0,1}" COLLISION(1) 1) 2

New lower bound techniques are developed to obtain the results below. We
consider this work as another step (following [S], [CDR], and [VW]) in forming a
foundation of lower bound techniques for parallel computation. Also, as our lower
bounds concern the communication between processors, we believe these techniques
may be applied to distributed (asynchronous) computation as well (e.g., in the Eth-
ernet model). Recently, results have been obtained using more powerful techniques
for models with infinite shared memory ([FMW], [MW]) and an infinite number of
processors [B]. Li and Yesha ([LY1],[LY2]) have extended many of these results to

models with the input in read-only memory (ROM) and have proved other results on
this related model.

2. Simulating PRIORITY (1) by weaker models. Let us consider how to
simulate one step of an algorithm for PRIORITY (m) on a machine with a weaker write
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conflict resolution method, but with at least as much shared memory. Each processor
in the PRIORITY(m) machine will be simulated by one processor in the simulating
machine. Likewise, the contents of each shared memory cell in the PRIORITY (m)
will appear in a specific shared memory cell. Simulation of the read phase is trivial.
However, in the write phase on the simulating machine, processors must know if they
are the processor of lowest index writing into the cell that they wish to write into. This
requires some extra computation and leads to the definition of the following problem.

m-colour MINIMIZATION.
Before: Each processor P;, for i =1,...,n, has a colour z; € {0,...,m} known only
to itself.
After: Each processor P; knows the value a;, where

_{1 if for all j < 4, 2; # z; and z; > 0,
a; = .
0 otherwise.

Thus e; = 1 if and only if P; is the processor of lowest index with colour z;
and z; # 0.

In the simulation, z; represents the memory cell into which the simulated proces-
sor P; wishes to write; z; = 0 if P; does not wish to write. Once the problem is solved,
P, will write if and only if a; = 1, thus resolving the write conflict in the fashion that
PRIORITY machine would.

Clearly, the m-colour MINIMIZATION problem takes only one step to solve on

PRIORITY (m).
THEOREM 1. On COMMON(m), the 1-colour MINIMIZATION problem can be

solved in O(Fﬁ’-ﬁﬂ) steps.

Proof. Without loss of generality, we may assume m < v fm> J/n we only
use the first \/n cells of memory. This is because with m = /n we already achieve
O(1) running time.

Throughout the algorithm, memory cells will contain only 1's and 0’s. Note that
for the 1-colour MINIMIZATION problem, z; € {0,1}. We call the processor of lowest
index whose colour is 1 the winner.

The algorithm repeatedly performs the following sequence of steps. First, all
shared memory cells are set to 0 by having processor F;, for i = 1,....m, write 0
into cell M;. The processors are divided into m + 1 nearly equal groups, where each
group contains a set of consecutively numbered processors. The first n mod (m + 1)
groups contain [25] processors and the rest contain | ;%5 |. A processor F; in the
jth group, where 1 < 7 < m, will write 1 into M; if and only if r; = 1. At this
point, if all memory cells are unchanged (i.e., contain the value 0), the winner is in
the (m + 1)st group; otherwise it is in the group corresponding to the memory cell of
lowest index containing a 1.

We note that a processor does not have to know which group contains the eventual
winner, only whether its group wins. The following subroutines are used to decide
which of the above two cases holds, in constant time.

LEFTMOST ONE IN MEMORY.
Before: Cells M;, for ¢ = 1,...,m, each contain 1 or 0.
After: M, contains 1 if and only if all M; for j < ¢ were initially 0, and M; was
initially 1.
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Procedure: Processor P; forms the ordered pair (j, k) from its name by setting 7 —
(¢modm)+1and k —4<-m(j —1). If j <k <m and M; contains 1,
P; writes 0 into M.

EMPTY MEMORY (m-way OR).
Before: Cells M;, for i =1,...,m, each contain 1 or 0.
After: M, contains 0 if and ouly if all M; were initially 0.
Procedure: Processor P; will read M; and, if it contains 1, P, writes 1 into M;.

After the LEFTMOST ONE IN MEMORY algorithm is applied, the processors in
group ¢ look at M; to see if they are in the winning group or not (depending on whether
M; contains 1 or 0, respectively). Note that this algorithm uses m? processors; the
assumption m < /n ensures that sufficient processors are available. Application of
EMPTY MEMORY will then allow the (m + 1)st group to decide if it is the winning
group or not, by looking at M.

All processors except the ones in the winning group set a; = 0 and stop; the ones
in the winning group repeat the above procedure with n replaced by the size of the
group. This continues until the size of the winning group is equal to 1; at this point,
the winner is determined.

Intuitively, the algorithm cuts the size of the winning group by a factor of m + 1
each time. More precisely, if g; is the size of the set of processors that may still be the
winner after the tth step, then

go =n and
gi—1
< j=1.
9= [m + 1]
If T > logn/log(m + 1), then gr < [Trn—rlv] < 1. Thus the algorithm takes at most

[F;‘(’ﬁ—"m] iterations. Since each iteration takes a constant number of steps, we have
the desired upper bound. O
CoroLLARY 1.1. On ARBITRARY(m) and COLLISION{m), the 1-colour MIN-

IMIZATION problem can be solved in O (Fgl%'%i) steps.

Proof. The algorithm described in the proof of Theorem 1 will run on ARBI-
TRARY(m). It will also run on COLLISION(m) provided that, before performing
LEFTMOST ONE IN MEMORY, each processor P; for i = 1,...,m, reads memory
cell M; and, if M; contains the collision symbol, writes 1 into M;. O

It follows that ARBITRARY(m), COLLISION(m), and COMMON(m) can can

simulate one step of PRIORITY(1) in O (ﬁ%j) steps. One cell of the simulating

machine (say M;) is designated as being equivalent to the single cell of PRIORITY (1).
Processor P; then sets x; = 1 if it wishes to write at that step, and sets z; = 0
otherwise. The algorithm for 1-colour MINIMIZATION is then followed, with the
following change: the value 0 is replaced by the value presently in M, and the value
1 is replaced by some other value. At the end, the winner writes into M; the value
that the corresponding processor would have written in the PRIORITY(1) algorithm.

CoroLLARY 1.2. COMMON(m), COLLISION(m), and ARBITRARY(m) can
simulate one step of PRIORITY (m) in O(logn) steps.

Proof. The write conflict resolution problemms for each of the m memory cells of the
PRIORITY machine can be treated as separate 1-colour MINIMIZATION problems
that are solved simultaneously.
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In the write conflict resolution problem for memory cell Mj, let z; = 1 if the
simulated processor P; wishes to write into memory cell M;; otherwise, let z; = 0.
This subproblem is solved via the algorithm described in Theorem 1 or Corollary 1.1,
using the single cell M;.

In the algorithm, a processor only writes ifits colour is 1. Each processor will have
colour 1 for at most one of the subproblems, namely the subproblem corresponding
to where the processor it is simulating wished to write. In fact, this is the only
subproblem that the processor can win. Thus the processor can ignore the rest of
the subproblems. Although many subproblems are being solved simultaneously, each
processor is required to participate in the solution of at most one. O

COROLLARY 1.3. If m = O(n/c), then COMMON(cm), COLLISION(cm), and
ARBITRARY (cm) can simulate one step of PRIORITY(m) in O(l—.ﬁﬂ’—l)) steps.

Proof. As in the proof of Corollary 1.2, the write conflict resolution problems
for each of the m memory cells of the PRIORITY machine can be treated as sepa-
rate 1-colour MINIMIZATION problems. Each of these m problems will be solved
simultaneously, with ¢ memory cells devoted to each problem.

Essentially, the algorithm described in Theorem 1 or Corollary 1.1 is used. How-
ever, the allocation of processors is done somewhat differently for the computation
of LEFTMOST ONE IN MEMORY and EMPTY MEMORY. The n processors are
divided into groups of ¢ consecutively numbered processors. Since m = O(n/c), each
group is responsible for the solution of a constant number of subproblems.

Unfortunately, the LEFTMOST ONE IN MEMORY algorithm requires ¢? pro-
cessors. Instead, each processor reads one of the ¢ cells of memory and then they
use the 1-colour MINIMIZATION algorithm again to decide which processor read the
lowest index cell containing the value 1. This takes a constant number of steps, since
the number of memory cells and the number of processors are the same. O

Unlike the proof of Corollary 1.2, it is not sufficient to have only those processors
that wish to write into memory cell M; participate in the solution of the 1-colour MIN-
IMIZATION problem associated with M;. There may be far fewer than ¢ processors
wanting to write into some cells. Even if there were a sufficient number of processors
wanting to write into each shared memory cell, a processor would not necessarily know
the identities of the other processors working with it. Therefore, it would not know
what to do during the execution of the LEFTMOST ONE IN MEMORY algorithm.

When m = O(n~¢) for some constant ¢ > 0, choosing ¢ = n¢ in Corollary 1.3
provides us with constant time simulations of PRIORITY (m), without increasing the
number of processors.

The following lower bound shows that the algorithm in Theorem 1 is optimal, to
within a constant factor. The proof uses a fairly simple adversary argument, which
we present in detail, as it serves as a paradigm for subsequent proofs.

THEOREM 2. The 1-colour MINIMIZATION problem requires at least %’E—;—i}ﬁl

steps to solve on ARBITRARY (m).

Consider an algorithm solving this problem. An input to the algorithm is a
specification of the values of all the colours z;. (Recall that z; € {0,1}.) We will use
an adversary argument, constructing an input on which the algorithm requires this
many steps.

The write action of a particular processor P; at step ¢ depends only on z; and
the sequence of contents (Ho, Hi,. .. ,H;_1) of the m shared memory cells. Here H;
is a specification of the contents of memory cells My, Ms, ..., M,, immediately before
step ¢ + 1. We call this sequence the history through time ¢t. Given a fixed history,

we say P; writes into M; on value v if it attempts to write to memory cell M; when

T, = 0.
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At each step we will “fix” the values of certain input variables and maintain a set
of allowable inputs. The set of allowable inputs will consist of those inputs in which
each fixed variable has the value to which it was fixed. This will be done in a manner
such that all allowable inputs will produce the same history up to that step.

The term position is used to denote the index of an input variable. A position 7
is said to be fixed to a certain value if the corresponding variable z; is fixed to that
value. If the variable z; is not fixed, the position 1 is said to be free. We will maintain
a set S of fixed positions and a set F of free positions such that SUF = {1,...,n}.
Associated with each position in S will be the value to which that position is fixed.
Furthermore, we will ensure that, for each free position in F, there will be no lower
numbered positions fixed to 1.

Suppose there are at least two free positions ¢ and j after some step T, and 7 < 7.
Consider the following two inputs: I;;, in which z; and z; are the only variables in
free positions that equal 1, and I, in which z; is the only variable in a free position
that equals 1. Both these inputs put P; in the same state at the end of step T, since
in both P; sees the same input value and the same history. But, for I}, a; = 1, and for
Lij, a; = 0. Thus P; cannot know the value a; after the T'th step. We can conclude
that, when the algorithm terminates, there is at most one free position.

Initially, § = ¢, Hy is the initial contents of memory, and the conditions stated
above are satisfied. Now suppose that, after the tth step, we have fixed a set of
positions .S so that all allowable inputs produce the same history (Ho, Hy, ..., H;)
through step t. Furthermore, for any free position in F, there is no lower numbered
position fixed to 1. Let f, denote the number of free positions remaining after step t.

We determine H;., by fixing certain free positions, as follows.

1) If position 7 is fixed before step ¢ + 1 and processor P; writes to some memory
cell M; at step ¢ + 1, then the contents of M, in H;,; can be fixed by declaring

F; to win the competition to write into M;. Notice that we do not need to fix

any additional free positions in this case.

2) For all cells M; into which some processor writes on 0 at step ¢ + 1 given history

(Hy, ..., H;), choose one processor P;, doing so, fix position 4; to 0, and declare

P;,; to win the competition to write into M; at step t + 1 for all inputs consistent

with S. This fixes the contents of M, in H;;1 to a unique value.

3) Suppose there are r memory cells not taken care of above. Processors only write
on value 1 into these remaining cells. Let f be the number of remaining free
positions. Divide these free positions into #+1 nearly equal groups; the first group

will contain the lowest [T—%J positions, the second the next [;%J positions, and

so on. The last f mod (r + 1) groups will contain [;%1 free positions. For each
such cell Mj, let P;. denote the processor of highest index writing on 1 into M;
and associate this cell with the group containing P;;. Since there are r cells and
r + 1 groups, at least one group will have no cells associated with it. Let G be
such a group and suppose that it comprises free positions k through {. The idea is
that, for each memory cell, by either forcing no processor to write to it or forcing
the highest index processor wishing to write to it to do so, we can provide no
tnformation about group G.

i) Fix all free positions with index less than k to 0. Consider any cell M;
associated with a group consisting of free positions less than k. All processors
that write into M; at step ¢ + 1 only do so on 1. However, they will have all
had their colours z; set to 0. Hence, no processor will write into these cells
at step ¢ + 1 for any allowable input and the contents of these cells in H;,4
will remain as they were in H;.
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ii) Fix all free positions with index greater than {to 1. For any cell M, associated
with a group consisting of free positions greater than [, we declare P;; to win
the competition to write into M, at step t+1 for every allowable input. This
fixes the contents of M; in Hyy; to a unique value.

4) The remaining cells have no processor writing into them on any allowable input
at step t + 1. The contents of these cells in H;41 will be the same as they were
in Ht'

Intuitively, the number of free positions is cut down by at most a factor of m + 1
at each step. More precisely, if f; is the number of free positions at time ¢, then
f>ft —(m—r)and

ft+1 = min fizmtr = Ji
L= o<rim r+1 m+1]|
Let T be the total number of steps taken by the algorithm. Since fo =n and fr <1,

it follows that T > {8tlld) 0
It has been shown [Ra] that () (ﬁ?—%ﬁ) steps are required to solve 1-colour

MINIMIZATION on ARBITRARY (m) even if processors are allowed to make random
choices to determine their behaviour at each step.

3. Simulating ARBITRARY (1) by weaker models. The preceding section
demonstrated a separation between PRIORITY(1) and ARBITRARY(m). We can
show a similar separation between ARBITRARY (1) and COMMON(m) and between
ARBITRARY(1) and COLLISION(m) by considering the following problem.

m-colour REPRESENTATIVE.
Before: Each processor P;, for ¢ = 1,...,n has a colour z; € {0,...,m} known only
to itself.
After: Each processor P; knows the value a; € {0, 1}, where a; = 1 for exactly one
processor among those with each particular nonzero colour c.

Notice that the m-colour REPRESENTATIVE problem requires only one step on

ARBITRARY (m).
THEOREM 3. On COMMON(m) or COLLISION(m), the 1-colour REPRESEN-

TATIVE problem can be solved in O (%) steps.

Theorem 3, in fact, follows easily from Corollary 1.1, as any solution to the
1-colour MINIMIZATION problem is also a solution to the 1-colour REPRESEN-
TATIVE problem. The following theorem provides the separation between ARBI-
TRARY (1) and COMMON(m).

THEOREM 4. On COMMON(m), the 1-colour REPRESENTATIVE problem re-
quires at least ﬁ—r‘;’%ﬁ steps to solve.

Proof. The proof is similar to that of Theorem 2; here we merely sketch the
differences. As before, we maintain a set S of fixed positions, a set F of free positions,
and H,, a specification of the contents of the m memory cells after step t. In this
proof, we only fix positions to the value 0, but we do not allow the all-zero input. All
other consistent inputs are allowed. The number of free positions is initially n.

Suppose there are at least two free positions ¢ and j after some step T. Consider
the following three inputs: I;, in which z; is the only variable that has value 1, I,
in which z; is the only variable that has value 1, and I;;, in which z; and z; are the
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only variables that have value 1. Both /; and I;; put P; in the same state at the end
of step T, since in both P; sees the same input value and the same history. Similarly,
I; and I;; both put P; in the same state at the end of step T. For I,, a; = 1 and
for I;, a; = 1. If step T is the last step of the algorithm, then, for I,;, a; = a; = 1.
This contradicts the fact that the algorithm solves the 1-colour REPRESENTATIVE
problem. We can conclude that, when the algorithm terminates, there is at most one
free position.

Given the set of fixed positions S and the history (Hp, Hi, ..., H;), through time
t we need to show how to fix some free positions in a way that defines H;.,. Those
memory cells into which no processors write on either 0 or 1 retain their values.
Memory cells that are written into by some processor on 0 (including any processors
in a fixed position) are handled as in the proof of Theorem 2.

The difficulty occurs for those cells into which processors write only on 1. Let the
set of indices of such cells be denoted C. For j € C, let W, be the set of processors
in the remaining free positions that, at step t + 1, write on 1 into M; and let Wy be
those that do not write on 1 at this step. Note that none of these processors write
into M; on 0 for any j € C.

Now, the number of remaining free positions is at least |F| — (m — |C|). Thus,
for some 5 € C U {0}, it follows that

Fl=m+ic] . _IF]
ICl+1 T m+1

For one such j, we fix the colours of all processors not in W; to 0. This defines the
contents of all memory cells M with k € C —{7}. Specifically, their contents in H;,,
remain as they were in H,.

Finally, when j € C, consider the processors in W;. There is an allowable input
in which all these processors have colour 1 and, thus, they must all write the same
value on 1. Since we prohibited the all 0 input, all allowable inputs result in at least
one processor in W; receiving an input value that causes it to write at this step. Thus
Hyy, is determined, at the cost of cutting down the number of free positions by at
most a factor of m 4 1. As before, we can define a recurrence bounding the number
of free positions at step t and conclude that Theorem 4 is true. O

A lower bound of ) (ﬁ%) steps holds for the 1-colour REPRESENTATIVE

problem on COMMON(m) even if processors are allowed to make random choices [Ra].
The following theorem provides an analogous separation between ARBITRARY(1)
and COLLISION (m).

THEOREM 5. On COLLISION(m), the 1-colour REPRESENTATIVE problem
requires at least loglg';,ln;llow steps to solve.

Proof. The proof of this theorem is very similar to that of Theorems 2 and 4.
We must define the set of consistent inputs to be those with at least two 1's in free
positions, in order to enable us to fix collisions in a history. It is not difficult to reason
that, as long as there are at least three positions left free by the adversary at the
end of the algorithm, there is an input on which the algorithm answers incorrectly.
(The conclusion follows easily from the fact that any processor P; cannot distinguish
consistent inputs that agree on the private bit of P;.)

In the course of fixing the history in a cell after a particular step, there are
three cases to consider: where no processors write into that cell, where exactly one
processor writes, and where two or more processors write. The precise details of how
to fix positions are thus slightly more complicated than those of Theorem 4, but no
new techniques are involved. A recurrence for the number of free positions left after
t steps can be defined, and the result obtained. O

Wl >
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4. A lower bound for COMMON(1) and its applications. We say that a
PRAM with one cell M of shared memory computes a surjective function f : {0, 1}" —
R for some range set R if, at the beginning of the computation, F; has the :th argument
(denoted by z;) in its local memory and, at the end of the computation, the value of
f(z1,22...2,) appears in M.

Our definition can be thought of as public computation, since the answer must
appear in shared memory. The REPRESENTATIVE and MINIMIZATION problems
defined earlier can be thought of as private computation, since each processor is re-
quired to compute a private answer bit a;. A good lower bound for public computation
can lead to a good lower bound for private computation if (a1, az,. .. an) can be made
public in a small number of steps. For example, in 1-colour MINIMIZATION, the
unique processor with a; = 1 can take one more step and write ¢ into M.

The following theorem gives a lower bound on the number of steps required to
publicly compute any function on COMMON(1). The lower bound depends only on
the number of function values that are possible.

THEOREM 6. On COMMON(1), any algorithm that publicly computes a surjec-
tive function f: {0,1}" — R requires at least {logs |R|] steps for some input.

It is important to notice that Theorem 6 does not apply to private computation.
For example, no communication is required to privately compute the answer bits
(ai,...,a,) given the input bits (z1,...,Zn), wherea, =z, fore=1,...,n. However,
by Theorem 6, a linear number of steps must be performed to publically compute the
identity function id : {0,1}" — {0,1}" on COMMON(1).

Furthermore, Theorem 6 does not apply when the domain is cleft, that is, a proper
subset of {0,1}" [Re]. Consider the case where inputs are restricted so that in all valid
input, exactly one input variable has value 1 and the function to be computed is the
index of that variable. This function has a range of size n, but only requires a single
step to publicly compute on COMMON(1).

Although the theorem, as stated, applies to the case of a single shared memory
cell, it is powerful enough to use in a more general setting.

LEMMA 6.1. T steps of COMMON(m) can be simulated by mT steps of COM-
MON(1).

Proof. Each processor in COMMON(1) keeps a picture in its local memory of
what shared memory on COMMON (m) would contain at the corresponding step. The
simulation of each step of COMMON (m) proceeds in phases: in the ¢th phase, the
single cell in the simulating machine takes the role of M; in the simulated machine. All
processors that would write the value v into M; on COMMON(m) at this step write
the ordered pair (v,) into M; on COMMON(1). Then all processors read M; and
update the contents of M; in their picture of the shared memory of COMMON(m).
Each phase takes one step and so one step of COMMON(m) is simulated by m steps
of COMMON(1). O

COROLLARY 6.2. On COMMON(m), any algorithm that publicly computes a sur-

jective function f: {0,1}" — R requires at least [(lﬂfﬁ“—m] steps for some input.

When COMMON (m) publicly computes a function, we require the value of the
function to appear in shared memory at the end of the computation, but it may be
distributed among the m shared memory cells. Note that this definition of computa-
tion is particularly weak when m is large; consider the identity function, whose value
is just an m-tuple consisting of the input bits. When m = n, this can be publicly
computed in one step under our definition; but Beame [B] has shown that if the tuple
must appear in a single cell, 2(logn) steps are required on PRIORITY (nC(1)).

By specifying a particular function to be computed, we can separate the ARBI-
TRARY and COMMON models, with the separation varying as a function of the size
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of shared memory.

COROLLARY 6.3. Simulating one step of COLLISION(km) on COMMON(1) re-
_quires Q(kmlog(n/km)) steps; on COMMON(m), it requires ((klog(n/km)) steps.

Proof. Partition the input positions into m groups of size |n/km] or [n/km| +1,
and consider the function f defined on domain {0,1}" whose value is an km-tuple
(a1,as,...,akm) such that a; = 7 if z; is the only variable in group ¢ with value 1 and
a; = 0 if either no variable or more than one variable in group ¢ has value 1.

This function can be publicly computed in two steps on COLLISION(km), as-
suming each shared memory cell is initialized to 0. In the first step, each processor
P; in group j writes ¢ into M, on value 1. Each processor F;, for i = 1,...,m, then
reads cell M; and, if it sees the collision symbol, writes 0 into M, at the second step.

The function f has at least (|2 ])¥™ possible values. Applying Theorem 6
and Corollary 6.2 give lower bounds of Q(kmlog(n/km)) and Q(klog(n/km)) for
COMMON(1) and COMMON(m), respectively. []

By letting k = 1, Corollary 6.3 proves a separation between COLLISION(m) and
COMMON(m) when m = o(n). In particular, when m = O(n'~¢) for some constant
€ > 0, Qlogn) steps are required.

We introduce some terminology to be used in the proof of Theorem 6. The tree
of possible computations has nodes that intuitively correspond to the different states
that the PRAM can be in during the course of the computation. Formally, with each
node v at depth ¢, we associate a history (Hop, Hy,...,H;) and a set I, consisting of
all inputs that generate this history through step . An input is said to reach node v
if it is a member of I,,. The children of v correspond to all possible extensions to the
history at v; each child is labelled with a different extension (Hy, Hy, ..., Hy, Heyy).
The last entry in the history associated with a leaf of the tree will be the function
value for all inputs that reach that leaf.

The statement of the theorem has an “information theory” flavour, and if we could
show that the degree of fanout in the computation tree is bounded by a constant, the
result would follow easily. Unfortunately, arbitrarily high fanout is possible, as the
example with cleft domain showed. The intuition behind this theorem is that a node
of high fanout corresponds to a step at which many different values can be written,
depending on the input. Since for a particular input, two processors may not attempt
to write different values, this implies that some knowledge of “mutual exclusion” can
be inferred from the history. In the example with cleft domain, the knowledge that
only one processor had an input variable with value 1 allowed n different values to be
written at step 1, depending on the input. We will show that this “mutual exclusion”
takes time to set up and is not reusable.

With each node v in the computation tree, we can associate a formula f, in
conjunctive normal form, whose variables are the private input bits z;. This formula
will have the property that the set of inputs 7, associated with this node is exactly
the set of inputs that satisfy the formula f,. The construction of these formulas will
proceed by induction on the depth of a node. Formulas will have two types of clauses:
trivial clauses will contain exactly one literal, and nontrivial clauses will contain more
than one literal.

For the root 7 of the computation tree, we define f, to be the empty formula. Now
suppose we have a node w with associated history (Hg, Hy,..., H;—1) and associated
formula f,,. Suppose, furthermore, that w has a child v and that the history at v is
the history at w extended by the value H;. This means that for some inputs in I,
the content of M after the tth step is the value H;. The action of any processor at
step t for an input in I, is completely determined by the history through step ¢t — 1
(the history associated with w, which is the same for all inputs in I,,) and by the
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processor’s private input bit z;. Thus, it is possible to determine which private bit
values would cause processors to write Hy.

For inputs that reach v, at least one processor must have a value that causes it to
write H,. Thus inputs with history (Ho, H1,..., Hi—1, H¢) must satisfy f,, and also a
clause consisting of the OR of the literals corresponding to these possible bit values.
For example, if P; writes H; when z; = 1, and P, does so when zz = 0, then the
added clause would be (z; V T3). This is the only (possibly) nontrivial clause that
we add. In two cases we do not add such a clause: when one processor P; writes
regardless of what its private bit is, and when no processor writes, i.e., Hy = Hy_.
Since there is only one memory cell, each processor reads its content during every read
phase. Therefore, we can assume, without loss of generality, that processors write into
the memory cell M only to change its value.

All possible bit values that would have resulted in something other than H; being
written will result in additional trivial clauses. For example, if P; would have written
H; (different from H,) if z3 = 1, we add the trivial clause (Z3), since the fact that
H, and not H| was written implies that z3 = 0. We can also substitute these known
values into other clauses. In our example, a clause containing the literal z3 would have
that literal removed; a clause containing the literal 3 would be entirely removed. This
simplification is crucial to our proof, as it removes nontrivial clauses.

LEMMA 6.4. If a node w with q children has a formula f, with ¢ nontrivial
clauses, the formula at each child of w has at most ¢ + 3 — q nontrivial clauses.

Proof. If ¢ < 2 this follows from the construction, as at most one nontrivial
clause is added. Thus we may assume g > 2. There are g possible extensions of the
computation history at this node. One of them could correspond to the case where
no one writes (H; = H;_1), but there are at least ¢ — 1 different values that could be
written at the next step.

No processor may write more than one of these values, for otherwise that processor
would always write, and w would have exactly two children. For each value written,
we arbitrarily select one processor that writes it; assume without loss of generality
that for i = 1,2,...,¢q — 1, value V; is written by F; at this step if literal [; is true.
(Note that [; is either z, or T5.)

The formula f,, implies that at most one of the literals {3,l3,...,l;—1 is true.
Otherwise, there would exist an input in I, for which two different processors would
attempt to simultaneously write different values, a violation of the COMMON model.

Now consider the formula f, at the child v of w that corresponds to V,_; being
written. This is created by first adjoining one nontrivial clause to f, and also some
trivial clauses as a result of the knowledge that {y,ls,...,lg—2 are all false. This
knowledge also results in some substitutions. Let 3 = (81,02,...,8s) be an input
in I, which makes l,_; true. Since I, is a subset of I,,, the input 3 satisfies fy, and
makes each of the literals l;,1ls,...,lq—2 false.

For j = 1,...,q — 2, let 4’ be the input obtained from 3 by complementing f;
(i.e., /7 makes both {; and lg—; true). The input 37 cannot satisfy f,,, because it
makes two literals in {l1,ls,...,l;—1} true. Let C; be some clause in f,, that 37 does
not satisfy. Since there exists an input in I, which makes /; true, and another that
makes [; false, C; must be nontrivial. The only difference between B and @ is in the
value of the jth bit. Thus C; must contain the literal {;. Furthermore, [; is the only
literal in C; that 3 makes true.

Note that C; contains the literal [; and 3 makes I; false. Thus j' satisfies C;,
but not C;. Hence, for 1 <7 < 7 < ¢ — 2, the clauses C; and C; are distinct.

Consider the creation of f,. The substitutions that follow from the knowledge
that {y,l2,...,lq—2 are false will remove the nontrivial clauses C;, fori=1,...,¢—2.
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Thus f, can have at most ¢ — (g — 2) + 1 nontrivial clauses, as required. A similar
argument works for the other children of v; in fact, the child that corresponds to the
case when no process writes will have at most ¢ + 2 — ¢ nontrivial clauses. [J

The importance of Lemma 6.4 is that, although we cannot bound the degree of a
node in the computation tree, high degree requires accumulating and then destroying
nontrivial clauses, and only one nontrivial clause is accumulated per level. We use
this idea to prove the following lemma.

LEMMA 6.5. The mazimum number of leaves in a computation tree of height h
is 3.

Proof. Let L(s,h) be the maximum number of leaves in a subtree of height A
whose root formula has s nontrivial clauses. By Lemma 6.4, we have

L(s,1) £ s+ 3 and

h) < : —g¢h=1)}
L(S,h)_erggH{q Ls+3-¢h-1)}

This can be shown by induction on & to satisfy the inequality L(s,h) < (3 + s/h)".
The base case is obvious; suppose the statement is true for A < k. Then

< . — —
L(sik) <, max {q L(s+3-¢k~1)}

s+3—gq k-1
< _ .
_2§?g§+3{q (3+ k-1 )

The quantity inside the curly brackets, considered as a function over real ¢, can be
shown by elementary calculus to reach its maximum at ¢ = 3 + s/k. This yields
L(s, k) < (3 + s/k)*, as required. O

Theorem 6 then follows from the fact that each leaf of the computation tree can
be labelled with at most one function value. All function values must appear, so the
tree has at least |R| leaves. By Lemma 6.5, the computation tree must have height at
least [logs |R|].

We can extend this result and obtain a theorem similar to Theorem 6 for prob-
abilistic algorithms. In the probabilistic COMMON model, each processor is allowed
to make random choices to determine its behaviour at each step. We insist that no
sequence of choices results in two processors attempting to write different values into
the same cell at the same time. Theorem 7 gives a bound on the expected number of
steps to compute a function in terms of the size of its range.

THEOREM 7. In the probabulistic COMMON(1) model, any algorithm that pub-
licly computes a surjective function f: {0,1}" — R has an expected running time of
at least |logs |R|]| steps on some input.

As in Corollary 6.3, we obtain a logarithmic separation between the probabilis-
tic COMMON(m) model and the deterministic ARBITRARY(m) model, for m =
O(n'~¢) where € is a positive constant. In this case, randomization does not help the
COMMON model to simulate the more powerful model.

Theorem 7 is proved using the following two lemmas.

LEMMA 7.1. The sum of the root-leaf distances to any set S of leaves in a tree
of possible computations is at least |S| - |logs |S]].

Proof. Let us define a tree skeleton to be a tree whose nodes can be labelled with
nonnegative integers, such that the root is labelled with zero, and any node labelled
with s that has ¢ children has each child labelled no higher than s+ 3 —q. Lemma 6.5
is actually a statement about tree skeletons; any computation tree leads in a natural
way to a tree skeleton, where the label of a node is just the number of nontrivial
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clauses in its formula. Let S be our set of chosen leaves and let @ be the sum of the
root-leaf distances. We can prune away everything but the root-leaf paths to leaves
in S. This still leaves a tree skeleton, since deleting a node does not invalidate the
labels of its siblings. The pruning also leaves () unchanged.

We can then transform the tree skeleton in a way that will never increase the sum
of the root-leaf distances to leaves in §. Suppose we can find two leaves v; and vy,
where v; is at depth t; and t3 — t; > 2. We add two children v}, vj to vy, label them
with the same number as v;, and delete vo. We remove v, v from S and add v}, v5.

Continuing in this fashion, we can obtain a tree skeleton and a set S’ of leaves,
where |S| = |S’|, and the depths of all leaves in S’ differ by no more than 1. Lemma
6.5 implies that the depth of each leaf is at least |logs |S|]. Since the sum of root-leaf
distances to leaves in &' is less than or equal to @, the result follows. O

LEMMA 7.2. Let Ty be the expected running time for a given probabilistic algo-
rithm solving problem P, mazimized over all possible inputs. Let Ty be the average
running time for a given input distribution, minimized over all possible deterministic
algorithms to solve P. Then Ty > Ts.

Lemma 7.2 was stated by Yao [Y] in a stronger form; the weak form here can
be proved in a few lines. We can consider a probabilistic algorithm as a probabilistic
distribution of deterministic algorithms. Let A be our set of deterministic algorithms,
and T our set of inputs. Let r[A;, I;] be the running time of algorithm A, on input ;.
Suppose our given probabilistic algorithm chooses to run deterministic algorithm A;
with probability p;, and that our given input distribution gives probability g; to I;.
Then

Tl =r]r]1%)1({ Z pZT[Ai,Ij]}

AEA
>3 q ) wirlAn )
LEI Ac€A
= > pi Y arlA, 1)
A;EA  Lel
2 min, Y grlAi )
Lel
=T, 0

We wish to bound T; from below. By Lemma 7.2, it suffices to bound T from
below. To do this, we must specify an input distribution that results in a large average
running time for any algorithm to compute f. This input distribution must depend
on f, but not on a particular program. For each possible value of f, choose one input
that results in that value. This selects a set of |R| inputs; our chosen distribution will
give probability 1/|R| to each of these.

To bound T, from below for this distribution, consider the tree of possible compu-
tations associated with some deterministic algorithm. Our set of inputs reaches some
set of |R| leaves. Then the expected running time on the given input distribution is
the average depth of these leaves which by, Lemma 7.1, is at least [logz |R]]. This
proves Theorem 7.

By a more careful analysis, the base of the logarithm in the lower bounds of
Theorems 6 and 7 can be reduced to 1++/2. It is possible to define a somewhat artificial
family of functions {f;} such that f; has range R; and can be publicly computed in

logg [R:| + O(1) steps on COMMON(1), where 3 = mz@ [Ral.
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5. The relationship between COMMON and COLLISION. It is not im-
mediately obvious whether COMMON is at least as powerful as COLLISION, whether
COLLISION is at least as powerful as COMMON, or whether the power of these two
models are incomparable.

To begin with, consider the following problem.

EXACTLY ONE.
Before: Each processor P;, for i = 1,...,n, has a bit z; known only to itself.
After: M; contains the value 1 if and only if exactly one bit z; is initially one.

If M, is initialized to 0, the EXACTLY ONE problem can be solved on COLLI-
SION(1) by having each processor P; write the value 1 into M; when z; = 1. However,
in a model without the ability to detect collisions, it can take significantly longer.

THEOREM 8. The EXACTLY ONE problem requires at least ﬁﬁ% steps to
solve on COMMON(m).O0

The proof of this result is essentially identical to the proof of Theorem 4. It then

follows that © ( ﬁ;‘;ﬁ—l)) steps on COMMON(m) are needed, in the worst case, to

simulate one step of COLLISION(1). The lower bound comes from Theorem 8, and
the upper bound follows from the simulation of ARBITRARY by COMMON given
in Theorem 1 and the fact that ARBITRARY can simulate COLLISION in constant
time (as observed in §1).

Conversely, consider the following problem which can be solved in a constant
number of steps on COMMON(1).

k-GROUP IDENTIFICATION.

Before: The processors are divided into & groups of size s or s+ 1, where s = |n/k].
Each processor knows the indices of all other processors in its group. Each
processor P;, for ¢ = 1,...,n, has a private bit z; € {0,1} known only to
itself. Furthermore, for 1 < ¢,5 < n, if 2; = z; = 1, then F; and P; are in
the same group.

After: M, contains the value a # 0 if and only if z; = 1 for some processor P; in
group a. M; contains the value 0 if and only if all input variables are 0.

THEOREM 9. On COLLISION(m), the |/n]-GROUP IDENTIFICATION prob-

lem requires () (mg]";‘;%;) steps to solve.
Proof. The proof is similar to that of Theorems 2,4, and 5. In addition to

maintaining a set S of fixed positions, a set F' of free positions, and the history
(Ho, Hy,...,H;) through time t, we maintain a set A C {1,...,[v/n]} of groups
whose positions have not yet been completely fixed. Positions are fixed only to 0.
Allowable inputs are consistent with the fixed positions and also with the restriction
mentioned in the statement of the problem.

At each step of the construction, we not only fix individual positions within groups
to 0, but fix whole groups to 0 as well. It is possible to do this in such a way that if
|Al = s before step t, then it has size —2= after step ¢. Furthermore, if b is a lower

m+1

bound, for each a € A, on the number of free positions in group a, then Ti:ff is a lower
bound afterwards. This is essentially done by associating with each group the cell into
which the most processors in that group write on 1, and then finding the cell that is
associated with the most groups. All groups not associated with that cell are fixed to
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0 and removed from A; all processors in groups associated with that cell that write
on 1 into different cells have their positions fixed to 0. As long as two free positions
remain in two different groups, the algorithm cannot answer. Again, the details are
omitted. O

The above result is somewhat unsatisfying. In an essential way, the proof depends
on the fact that the &~-GROUP IDENTIFICATION problem has a cleft domain. Re-
call, this means that the input is a proper subset of {0,1}". Such an unrealistic
assumption might never arise in the computation of a function defined on the domain
{0,1}". Indeed, the following theorem shows that COLLISION(1) is at least as power-
ful as COMMON(1) for computing functions on the domain {0,1}™. This simulation
result uses the same structure that was used in the lower bound result of Theorem 6.

THEOREM 10. The public computation of any function f : {0,1}" — R requires
at most twice as many steps on COLLISION(1) as it does on COMMON(1).

Proof. We show how to convert any algorithm that publicly computes a function
f:{0,1}" — R on COMMON(1) into an algorithm, using at most twice as many steps,
that works on COLLISION(1). This new algorithm simulates the original algorithm
in a step by step fashion, using two steps to simulate each step of the COMMON(1)
algorithm.

For any input, the COLLISION(1) algorithm will produce a history (Ho, Hy, ...,
Hay,) through step 2t, with the property that (Ho, Ha, ..., Hy;) is the history through
step t produced by the COMMON(1) algorithm on that input. Thus, the set of inputs
I, that reach any even depth node v in the tree of possible computations for the
COLLISION(1) algorithm is a subset of I,/ for some node v' occurring at the half the
depth in the tree of possible computations for the COMMON(1) algorithm. The node
v will be called the COMMON(1) node corresponding to v.

The COLLISION(1) algorithm is obtained from the COMMON(1) algorithm as
follows. At any even depth node in the COLLISION(1) algorithm, each processor P
writes its index ¢, provided processor P; writes on the input z; at the corresponding
COMMON(1) node. Without :loss of generality, we will assume that all the values
written in every possible execution of the COMMON(1) algorithm are distinct from
the processor indices 1,...,n. If no write takes place, then, at the next step, the
processors do nothing. If the value ¢ appears in the shared memory cell, indicating
that processor P; was the only processor attempting to write, then processor P; writes
the value it would have written in the COMMON(1) algorithm. Finally, if a collision
occurred, then processor P; writes the value that would have been written into the
shared memory cell in the COMMON(1) algorithm. It remains to show that there is
enough information for processor P; to determine this value.

As in the proof of Theorem 6, the set of inputs I,/ that reach a node v’ in the
COMMON(1) tree can be described by a Boolean formula for in conjunctive normal
form. For each even depth node v in the COLLISION(1) tree, the Boolean formula
for associated with the corresponding COMMON(1) node v', is satisfied by each input
in I,. This is because I, C I,-. There is additional information about the input that
the COLLISION(1) algorithm also accumulates during the course of the simulation.

CLAIM. For each (nontrivial) clause in fyr, either every input in I, satisfies at
least two literals in that clause (although not necessarily the same literals for different
inputs) or there is a particular literal in that clause which is true for all inputs in I,,.

Proof. The proof of this claim proceeds by induction on the depth of the node v.
If v is the root of the COLLISION(1) tree, then the root of the COMMON(1) tree is
its corresponding node. Its associated formula, the empty formula, has no clauses. In
this case, the claim is satisfied.

Now suppose v has depth 2¢, where t > 1, and assume that the claim is true for
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the grandparent w of v. Let w' and v" be the COMMON(1) nodes corresponding to
w and v, respectively.

Consider the history (Ho, Hy, Ha, ..., Hy;_1, Hy:) through step 2t produced by
the COLLISION(1) algorithm on inputs in I,. By construction, no write occurs at
step 2t — 1 in the COLLISION(1) algorithm (i.e., Hy;—1 = Ha;—2) if and only if no
write would have occurred at step ¢ in the COMMON(1) algorithm. In this case,
each nontrivial clause in f,- is also a nontrivial clause in f,. Since I, C I, there is
nothing to prove.

Otherwise, node v' is the child of w’ arising when the value Hs, is written at the
tth step in the COMMON(1) algorithm. Compared to f,, the formula f,s contains at
most one additional nontrivial clause, consisting of the literals corresponding to those
private bit values that cause processors to write the value Hy,.

If Hy;—; is the index of processor P;, then, for every input in I, P; is the only
processor that writes at step 2¢ — 1 in the COLLISION(1) algorithm. Thus, the literal
(either z; or Z;) causing P; to write the value Ho; at step ¢ in the COMMON(1)
algorithm is true for all inputs in I,. Notice that the additional nontrivial clause in
fur, if there is one, contains this literal, thereby satisfying the conditions of the claim.

Finally, if Hy;—; is the collision symbol, then, for every input in I,, at least two
processors write at step 2¢ — 1 in the COLLISION(1) algorithm and, therefore, would
have written at step ¢t in the COMMON(1) algorithm. Hence at least two literals in
the additional clause are true. This concludes the proof of the claim. [J

We are now ready to complete the proof of Theorem 10. Let v be a node of
depth 2t in the COLLISION(1) tree and let u be the child corresponding to a collision
occurring at step 2t + 1. We will show that the values written by any processor at the
(t + 1)st step of the COMMON(1) algorithm, for any input in I,, are all the same.
Hence, P; can determine this value from its knowledge of I, and the programs of the
other processors.

Let a be an input in I,, and assume that there is another input in I,, for which, at
the (¢ +1)st step in the COMMON(1) algorithm, a different value is written. Suppose
that P; is a processor writing this other value and that it does so because literal [; = 1.

Consider the input b obtained from e by making I; = 1. Then b ¢ I,,; otherwise
the COMMON model would be violated. Since a collision occurs, two or more true
literals occurring in a cause a particular value to be written. Thus at least one
processor would write that value at step ¢t + 1 on input . Since I; = 1 in b, P;
would simultaneously write another value.

Because a € I,y and b ¢ I, f(a) = 1 and f,(b) = 0. Now f, is a formula
in conjunctive normal form. Therefore f,, contains a clause g such that g(a) = 1
and g(b) = 0. Since b is obtained from a by changing !; from 0 to 1, I; is the only
literal in ¢ satisfied by a. By the claim, E =1 is true for all inputs in I,. This is a
contradiction. O

6. Simulating PRIORITY (km) by ARBITRARY (m). Section 2 consid-
ered the simulation of PRIORITY machines by ARBITRARY machines with more
memory. Here we study the “complementary” problem of simulating PRIORITY ma-
chines by ARBITRARY machines with less memory. As a corollary, we obtain a
separation between PRIORITY and ARBITRARY machines with the same amount
of memory.

Our goal is to solve the km-colour MINIMIZATION problem in the ARBITRA-
RY(m) model. This can clearly be done in time O(klogn), by dividing the colours
into k& groups of m colours and solving one group at a time by the algorithm of
Theorem 1. A proof similar to that of Corollary 6.3 shows that the km-colour MIN-

h
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IMIZATION problem requires £2(kmlog(n/km)) steps on COMMON(1), and thus
Q(k log(n/km)) steps on COMMON(m). In fact, it is possible to do considerably bet-
ter on ARBITRARY (m), as the following theorem and corollary demonstrate. Hence
ARBITRARY is another example of a computational model in which “mixing” the
computation of several functions on disjoint sets of inputs enhances efficiency. Boolean
and arithmetic circuits also exhibit this property ([P], [U], [AHUJ).

THEOREM 11. On ARBITRARY (1), the m-colour MINIMIZATION problem can

be solved in O (w) steps.

logm

When m = O(n¢) for some constant e > 0, this upper bound O(m) matches the
trivial lower bound. In comparison with algorithms that solve the problem one colour
at a time, this solution uses an average of O(1) steps per colour. This disproves a
conjecture of Vishkin [V].

The idea is to try to solve the m different problems concurrently, although we
have only one common memory cell. We say that a processor P; has colour ¢ if z; = c.
For each colour ¢, processors maintain an ordered set S C {1,...,n} and a “current
winner” w, € {1,...,n,00} = 8. If we < oo, then w, is the smallest index of any
processor globally known to have colour ¢c. When there is no processor that is globally
known to have colour ¢, as is the case initially, w, = oo. The set S. consists of the
indices of those processors that may replace the current winner. In particular, i € S;
implies that ¢ < w,. Initially, S; = {1.2,..., n}.

The algorithm proceeds in phases. In a single phase, each set S, is shrunk by
approximately a factor of m. When S, = ¢ for all ¢, the algorithm can halt.

At the beginning of a phase, each set S; is divided into m pieces Sk, 82,...,8"
of size at most ]—Snfq, where the processors in S¢ have lower indices than those in S?

for a < b. The goal in a phase is to publicly determine, for each colour c, the first
group among S}, S2,...,S™ containing the index of some processor having colour c.
Then S, is updated appropriately.

Conceptually, these sets are arranged in an m x m array; the entry in row ¢ and
column 7 is Si. At each step of the phase, we either eliminate a row or the leftmost
column of the array. The set C will consist of those colours whose rows have not yet
been eliminated in this phase.

If processor P; has colour ¢ and j belongs to the group in the leftmost column
of the row corresponding to colour ¢, then it attempts to write its index and colour
into memory cell M;. Throughout the phase, the invariant is maintained that for any
colour ¢ € C, no processor with that colour lies in Sk for any eliminated column k.
Hence, when (7, ¢) appears in M;, any processor having colour ¢ and with index lower
than j must be in the group currently in the leftmost column of row ¢. In this case,
row ¢ is eliminated from the array. If no write occurs at a given step, then none of
the groups in the leftmost column contain the winner for their row and the column
can be eliminated. More formally, the phase proceeds as follows.

C—{1,2...m}

11

While C # ¢ and ¢ < m do

Ifje S;J and z; € C, processor P; will attempt to write (7, z;) into
M;.
If (j,c) appears in M;

Remove ¢ from C, set w, — P;, and shrink S to {k € Sk <j}
Otherwise set ¢ «— 1 + 1.

At each step, either |C| is decreased by one or 1 is increased by one. A phase thus
takes at most 2m — 1 steps, and any set S, which was of size s before the phase is of
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size at most [ S ] — 1< 7 at the end of the phase. Thus O ( ) phases suffice. O

COROLLARY 11.1. One step of PRIORITY (km) can be simulated by 0( klogn ")

logk
steps of ARBITRARY (m), for k > 1.
Proof. Simulating one step of PRIORITY (km) is equivalent to solving the km-
colour MINIMIZATION problem; divide the colours into m groups of k colours each,
and use the algorithm above to solve each group in parallel. [J

The following lower bound proves this procedure optimal for km = O(nl-
proves a separation between PRIORITY(m) and ARBITRARY (m).

THEOREM 12. The km-colour MINIMIZATION requires (%) steps to

solve on ARBITRARY(m).

COROLLARY 12.1. ARBITRARY (m) requires at least Q(log(n/m)) steps to sim-
ulate one step of PRIORITY (m).

To simplify the proof of Theorem 12, we divide the processors into km groups of
size at least |n/km|, and declare that the processors in group ¢ will have colour either
¢ or 0. Note that we can define this restricted problem over domain {0,1}m.

We maintain a history Hg, H; ..., a set S of fixed positions, and a set F of free
positions. Initially, the processor of highest index in each group has its colour fixed
to 1, and all other positions are free. We maintain the invariant that for any free

position, there are no positions of lower index that are within the group and fixed to
1.

¢}, and

Our measure of the algorithm’s progress against the adversary strategy will be
by means of a potentlal function. If there are s; free positions in group i, then this
function has value 21 11081 (s; + 1). Initially, then, the function has value at
least kmlog, ,(n/km). We shall show that the adversary can fix positions in such a
fashion so that the history is determined through step ¢ and the value of this function
decreases by at most ctm, for some absolute constant c.

As long as there is at least one free position (that is, the value of the potential
function is nonzero), the algorithm has not solved all colours, thus establishing the
lower bound.

Given history Ho, H; ... H;, and the fact that group 7 contains s; free positions,
we show how to fix H;1, and cause a drop in the potential function of at most cm.
Initially, the contents of each cell in H,,, are unfixed. Suppose the free positions in
group ¢ at any point are ji,ja,...,Js- We define lower; to be the lowest 1st of the
free positions in group 7, that is, positions j; through J[s/(k+1)]- upper; 1s deﬁned to
be all free positions in group 7 not in lower;.

1) If a processor in any fixed position writes at step ¢ +1 into an unfixed cell, declare
one such processor to win the competition to write into that cell for all allowable
inputs. The value of the potential function does not change. Repeat this step
until all cells are fixed or no such processor exists.

2) If any processor in any free position writes on 0 into an unfixed cell, choose one
such processor, fix its colour to 0, and declare it to win the competition to write
at time ¢ + 1. If it is in group ¢, then the potential function drops by

1
logy, (si +1)— loggy1 8 = logy (1 + ;—) <logey1(2) <1
(]

Repeat this step until all cells are fixed or no such processor exists.

3) Once the first two cases are taken care of, then processors write into unfixed cells
only if they receive their colour. If there is a processor P; in a free position in
group 1 such that P; writes into an unfixed cell on colour ¢, and j € upper;, then

;
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