oeR. 9. ZUUZ 4:3YFM

No./bZd¥

One, Two, Three ... Infinity:

Lower Bounds for Parallel Computation

Faith E. Fick
University of Washington
Friedhelm Meyer auf der Heid:
IBM Research, San Jose
Prabbakar Ragde
Unﬁnﬁcy of Californis at Berkeley
Avi Wigdersan
IBM Research, San Jose

ABSTRACT

In this paper we compars the power of the two
most commoaly used concurrent-write models of paral-
lel computation, the COMMON PRAM and the PRI-
ORJTY PRAM. These models differ ia the way they re-
solve write conflicts. If several processors want to write
hwthengmoshuedmmedluthomtime,
is the COMMON model they have to write the same
value. In the PRIORITY model, they may attempt to
write different values; the processor with smallest index
succeeds,

We consider PRAM's with n processors, esch hav-
ing arbitrary computational power. Weo provide the
first sepacation results betweea these two models in two
extreme cases: when the size m of the shared memory
is small (m < n%,¢ < 1), and whea it is infinite,

In the case of small memory, the PRIORITY
model caa be faster than the COMMON model by a
factor of ©(logn), and this lower bound holds even if
the COMMON model is probabilistic. In the case of

e 8

Suppert for this research wae provided by an TRM Faculty
Developmans Award, NOF Grat MCS 8492676, DARPA Con-
tact No. NOUS3S-82-C-0238, s NSERC postgnndmate schol
asship, and the Univeryity of Waskington Graduste Schosl Re-
sexrch Pnd.

Permission 16 copy without fee all or part of this material is granted
provided Lhat the copies are not made or disributed for direct
commercia) advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise. of to republish, requires a fes and; or specilic permission.

© 1985 ACM 0-89791-151-2/85/005/0048 $00.75

48

factor of N{logloglogn).

We develop new proof techniques to obtain these
results. The techaigue used for the second lower bound
is strong enough to establish the first tight time bounds
for the PRIORITY model, which is the stromgest parale
lel computation model, We show that finding the max-
imum of n sumbers requires &(log log n) steps, general-
izing a result of Valiant for parallel computation trees.

Introduction

The parallel random sccess machine (PRAM) is
an important and widely used model of parallel com-
putation. It consists of a set of n processors Py, ... Pa,
each of which is a random sccess machine. The pro-
cessors communicate via a shared memory, whose size
is called the communication width (VW|, The PRAM
is synchronous. It compntes a fanmction f: " — L, it
{nitially each processor contains ouc input value, and at
the end of the computation the fonction value is stored
in the first shared memory cell.

One eycle of computation consists of three phases.
In the compute phase, each processor may perform an
arbitrary amount of computation. In the write phase,
each processor may write into an arbitrary shared
memory cell. In the read phase, each processor mey
read an azbitrary shasred memory coll.

In the write phese it may happen that many
processors try to access the same cell, that is, a write
conflict occurs. When one restricts the model in & way
that such simultaneous writes are forbidden, one gets
the Exclusive-Write model [FW]. This model is very

Sep. 5. 2002 4:39PM

weak. In [CDJ, Cook snd Dwork proved an O(logn)
lower bound for computing the n-way OR function in
this model. This function can be computed in depth 1
by an unbounded fan-in circuit and also in constant
time by all other PRAM models considered in this
paper, even when they only have one shared memory
cell. :

It simnitaneous writes ate got forbidden, the fol
lowing two write conflict resolutions are most com-
monly nsed in literature.

o COMMON: If several processors waat to write
into the same memory cell at the same time, they
have to write a common value [Ku].

¢ PRIORITY: I several processors want to write
fnto the same memory cell at the same time, the
one with smallest index wins [Go).

Both models are widely used for designing pas
allel algorithms (For example, [SV], [Ga], and [KR]
us¢ COMMON; (VT] uses PRIORITY.). There are
sho some lower bounds known for concurrent-write
PRAM's (mentioned below), but the proof techaiques
aze oot sensitive enough to separate these two models.

Simultaneous access to the same cel) on the COM-
MON mode! can be easily implemented by depth 1 OR
circuits. This is 30 easy because the main part of the
conflict resolution is done by the program. The pro-
gram bas to make sure that different processors aever
try to simultaneously write different values in the same
cell. In the PRIORITY model, however, write con.

flicts are resolved entirely by the machine. The extra

hardware required to implement PRIORITY confliet-
resolution leads one to consider simulating this model

. by the COMMON model.

It {s known that one step of the PRIORITY model
can be simulated in constant time by the COMMON
model, if we square the number of processors and

_ sufficlently enlarge the shared memory {Ku). However,

in order to understand the differencs in the power in
the two conllict resolution schemes, we gestrict both
models to bave the same aumber »n of processor and
the same communication width.

Let COMMON({m) and PRIORITY(m) denote the
respective models with m shared memorty cells. The
main results of this paper are two lower bounds on
the common model, one on COMMON(1) and one on
COMMON(o0). These lower bounds are sensitive to
the COMMON conflict resclution scheme, 3o that we
cal use them to separate COMMON from PRIORITY.

Let { : [0,1]° = $ be a surfective function.

49

No.7628 P. 3

Then a COMMON(1) requires at least log,(|S]) steps
to compute f. Even if the machine #s probabilistic,
the same lower bound holds for the expected number
of steps. This result implies that it requires at loast
logy n steps to compute the smallest index of an input
variable with value 1. Thus we get a log, n separation
betweea COMMON(1) and PRIORITY(1), because
this function can easily be computed by PRIORITY (1)
in one step. The result cas be gemeralized to obtain
aa {i(logn) separation between COMMON(m) and
PRIORITY(m), # m € n*, ¢ < 1.

The second result is on the time required by
COMMON(00) to solve the element distinctzess prob-
lem, that is, to decide whether all n Integer inputs are
distinct. We prove a lower bouad of R(logloglogn)
steps. This implies an Qi(logloglogn) separation be-
tweer COMMON(c0) and PRIORITY(cc), becanse ef-
ement distinctnéss can be solved in constant time oa
PRIORITY(co).

Actually, our results extend to separating the
COMMON model from weaker models than PRIOR-
ITY. More specifically, we refer to the ARBITRARY
[SV] and ETHERNET Gt} models. Both separation
vesalts extend to these models. In fact, we ean demon-
strate functions that can be computed in time o fac-
tor of ((logn} faster on & deterministic ETHERNET
model than on s probabilistic COMMON model. This
Is importaat, since ETHERNET becomes more power
ful with randomization allowed.

The proof of the first lower bound is based on a
Bew technique to handle the problem that - in con-
trast to the Exclusive.Write mode] - the “information
fan-in” on the COMMON model may be arbitrarily
large. Therefore the well-known information theory ar-
guments used in [CD] do not apply in this case.

The difficulty in proving the second lower bound is
that, due to the infinite shared memory, processors may
use indirect addressing in very subtle ways. We handle
differently the Information that a processor sequires by
direct and indirect addressing. In the second case, we
use [n a crucial way the fact that in the COMMON
model, it is useless for a processor to read a cell it has
just written into. Note that in the PRIORITY model,
such bebaviour is extremely useful,

Surprisingly, a simplified version of this proof tech-
ique yields a lower bound for PRIORITY(co). Pre-
viously known lower bounds for PRIOGRITY impose
restrictions cither om the shared memory size ([VW])
ot on the arithmetic power of the processors ([MR],

Sep. b ZUUZ 4:4UPM

[FSS]). We show an Q(loglog n) lower bound for 8ad-
ing the maximam of n sumbers on PRIORITY. This
generalizes the result of Valiant [V] for parallel compar-
ison trees. By an upper bound of Shiloach and Vishkin
[SV], our resait provides the first tight time bound oa
the PRIORITY model.

A Lower Bound for Small Memory

Consider a COMMON(1) with n processors, P,
through P,. The processors communicate through one
cell M of shared memory, which can hold arbitrar-
ily large values. We say such a machine computes a
surjective function f : {0,1}* — R for some range
set R if st the begiuning of the computation, P, bas
the i* argument (denoted by 2,) in ita local mem-
ory and, at the end of the computation, the value of
J(21,23...3s) appesss in M. A particular veetor of ar-
guments (2, 25,...2,) is called an inpui. The variable
2; Is called P;’s private bit. -

Other ways to define the computation of a function
appear in the literature. For example, in [VW] the
arguments are located in read-only shared memory, one
arguinent per cell. Our definition can be thought of
as public computetion, sluce the answer must appear
in shatzed memory. It Is sometimes useful to define
private computation, in which each processor is required
compute a private answer bit a;. Fos the step-by
step simulation of a PRIORITY(1) by a COMMON(1)
appearing in [FRW], for example, 3; would be 1 if P;
wished to write, sud a¢ = 1 if and only if i is the
processar of least index with z; = 1. A good lower
bound for public computation can lead to a good lower
bound for private computation if (a;,03,...a,) can be
made public in a small namber of steps. This is the ease
with the simulation example, as the unique processor
with 6, = 1 ¢can take one more step and write i into M.

The following theorem is the main result of this
section, giving & lower bound on the number of steps
sequired to publicly compute any fusction. The lower
bound depends only on the number of function values
that are possidle.

Thecrem 1. In the COMMON(1) model, any algo-
rithm that publicly computes a sugjective function [:
{0,1}* — R requires at least log, |R| steps on soms
input. :

Although the theorem as stated applies to the case
of a single shared memory cell, it Is powertul enongh to

50

No-fbZs V. &

use in a more general setting. We note that a COM-
MON(1) esn simulate one step of a COMMON(m) in
at most m steps, which leads to the following corollary.

Corollary 1. A COMMON(m) that padlicly com-
putes 8 surjective function £ : {0,1}® — R requires
at Jeast b—‘;‘lﬂ steps.

By specifying » particular function, we can sepa-
tate the PRIORITY and COMMON models, with the
separation varying as a function of the site of shared
memory.

Corollary 3. Simulating ane step of 3 PRIORITY (m)
requires Q(log n — logm) steps o 8 COMMON(m). Ia
particular, whes m = O(n*),¢ < 1, Q{logn) steps are
required.

Proof of Corollary 3: Divide the input positions
into m groups of size |n/m| ot {n/m]+1, and consider
the function f whose value is an m-tuple (81,03 ...0m)
such that o; = min{j}j is in i group and 2; = 1}).
This function can be computed In one step on a
PRIORITY(m); in fact, it can be viewed ([FRW])
a3 a special case of simulating a write step of a
PRIORITY(m). The function f bas st least ()™ pos-
sible values. Applying corollssy 1 gives a iower bound
of Q(logn - log m) for s COMMON(m). =

This imnplies that logarithmic time is required for
COMMON to simulate one step of PRIORITY when
the size of the shared memory Is O(n‘).

We introduce some terminology to be used in
the proof of Theorem L. Given a particular input,
the Airtory of e compuiation through step 1 Is the
sequence of values {Ho, H,,...,Hy}, where H; Is the
contents of the shared memory cell after step i. Hy
fs the {nitial content of M, which we can assume is
0. The tree of possidle computstions has nodes that
intuitively correspond to the diffezent states that the
PRAM can be in during the course of the computstion.
Formally, we associate with a node v at depth i &
bistory {Ho,H),...,Hi}, aad the set I, of all inputs
that generate this history through step i. An imput is
said to resch node v if it is & member of J,. The children
of v correspond to all possible extensions to the history
at v; sach child is labelled with a different extension
{Ho,Hy,... Hi\Hiqsr}). The last entry in the history
associated with a leaf of the tree will be the function
value for all inputs that reach that leal

With each node v in the computation tree, we
ean associate a formala f, in conjunctive normal form,

0eP. 9. ZUUZL 4:41PM

whose variables are the private input bits z,. This
formula will have the property that the set of laputs
I, associated with this node iy exactly the set of inputs
that satisfy the formula f,. The construction of these
formulas will proceed by induction on the depth of a

Bode.

For the root r of the computation tree, we define
Jr to be the empty formula. Now suppose we have 3
node w with associated history {Ho, By, ... Hi-,} and
associated formuls /,. Suppose, furthermore, that w
has 3 child v and that the history at v is the history
at w extended by the value H;. This means that for
some luputs in [, the content of Al after the d* step Is
the value H;. The action of any processor st step { for
ab ioput ia 7, is completely determined by the history
through step £—1 (the history associated with w, which
i the same for all inputs in [,) and by the processor's
private bit. Thus, it is possible to determine which
private bit values would cause processons to write H,.
At least one of this possibilities must occur; thus laputs
with history {Ho, Hy,...He_,, Hz}‘mﬂ satisty /, and
also a clause consisting of the OR of these possible bit
values. For example, If P, writes H; whea z, = 1, and
P; does 30 when 33 = 0, then the added clause would
be {2, V7). In two cases it is not necessary to add s
¢lsuse: when one processor F; writes regardless of what
his private bit is, and when no processor writes, i.e.,
8y = H.,. Since there is only cae memory eell, each
processot reads its content during every read phase.
Therefore, we can sssume, without loss of genetality,
that processors write into the memory cell A/ only to
change its valye,

All possible bit values that would bave resulted
in something other than H,; belug written will resnlt
in additional clanses. For example, it P; would have
written H different trom H, if 25 = 1, we add the
clause (¥3), since it is known that 2, = 0. We can also
substitute these known values into other clauses. In our
example, a clsuse containing the literal 2, would bave
that literal removed; & clause containing the literal 75
would be entirely removed.

We call a clanse nontrivial if it contains more than
one literal. Note that at most oue nontrivial claunse is
added to f, to create the formula st the child of w.
The following lemma provides sn important bouad on
the accumulation of nontrivial clauses.

Lemma 1. If s node w with ¢ children bas a formuls
Jo with ¢ nontrivial clauses, the formuls at each cbﬂd
of w bas at most ¢ + 8 — ¢ nontrivial clanses.

51

Wo.rbie F. 9

Proof: If ¢ < 2 this follows from the construction,
Ay at most ode nmontrivial clause is added. Thus we
ay assurne ¢ > 2. There are ¢ possible extensions of
the computation history at this node. One of them
could correspond ¢o the case where 2o one writes
(B: = H,_,), but there are st least ¢ - 1 different
values that could be written st the mext step. No
proceasor may write more than one of these values, for
otherwise that processor would always write, and those
two values would be the only possibilities. For each
value written, we can arbitrarily select one processor
that writes {t; assume without loss of genenality that
fori=1,2...9-1, value V; is written by P; at this
step if literal /; is true. (Note that /, iy either 3 or Z7.)

The formula f, implies that at most one of the
Literais hyla... b4y is true. Otherwise, there would
exist an input in I, for which two different processors
would sitempt to simultaneously write different values,
8 violation of the COMMON model.

Now consider the formuls /, at the cbild v of
w that corresponds to V,_, being written. This is
created by first adjoining one noutrivial clanse to /,and
also some trivial clauses as & result of the knowledge
that (I}, la,...,0¢—2} are all false. This knowledge also
results in some sybstitutions. Let # = (81, 44,...8,)

_be an input in 7, which makes lo—1 true. B satisfles £,

since I, is a subset of I, and makes {hila,... . 04)
false. :

For j = 1...¢ = 2 let #7 be the input obtained
from B by complementing g; (i.e., #/ makes both l; and
lg-y true). The input §7 cannot satisfy f,,, because it
makes two literals in {l].'z....,"_’} true. Let C; be
some clause in f, that #7 does not satisfy. Since there
exists an input in J,, which makes I, true, and another
that makes I, false, C; must be nontrivial. The caly
difference between J and A/ is in the value of the jtA
bit. Thus C; must contain the literal T;. aad = 2
otherwise, Furthermore, I Is the only literal in C; that
8 makey true.

Wecunwm:&nl«l$i<jsq—z. the
clanses C; and C; are distinct. This follows from the
fact that 4 satisfles C; (it contains the literal I}, and
p' makes I; talse) but not C;. Coasider the creation of
Jo. The substitutions that follow from the knowledge
that {l;,1,...0,_3) are falss will remove the nontrivial
clauses C;. Thus f, can have at most e-{g-2)+1
nontrivial clauses, s required. A similar argument
works for the other children of v; in fact, the child that
corresponds to the case of no one writing will have at

ver. 9. ZUUZ 4:4ZPM

most ¢ + 2 — ¢ noutrivial clauses. s

The importance of lemma 1 is that, although we
canuot bound the degree of a node in the computa-
tion tree, high degree requires accumulating and then
destroying nontrivial clauses, and ouly ome aontrivial
clause is accumulated per Jevel We make this ides
more precise in the following fashion. Let L(e,h) be
the maximum number of leaves In & subtree of beight
h whose toot formula has » clauzes.

Lemma 2. L{s,h) € (3 + o/R)*. [In particular,
L(0,h) S 9. }

Proofs By lemmas 1, we have

L{sa1) S o +3 «

L(s,h) € max s{q't,(a-o-a--' ¢.h -1)}

3¢S+

This ¢ad be shown by induction to satisfy the statement
ofthe lemma, @

Theorem 1 then follows from the fact that each leaf
of the computation tree can be labelled with st most
one function value, All function values muat appear,
80 the tree has at least |S| leaves. By Lemma 2, a
computation tree of height h bas at most 3* leaves.

We can extend this result, and obtain a theotem
similar to Theorem 1 for probabilistic algorithms. In
the probabilistic COMMON model, each processor {s
allowed to make random choices to determine its be-
haviour at each step. We ‘insist that no sequence of
choices results in two processors attempting to write
different values into the same cell at the same time.
Theorem 2 gives s bound on the expected aumber of
steps to compute a function in terms of the size of its
range.

Theorem 3. [n the probabilistic COMMON(1) model,
any algorithm that pudlicly computes a sutjective func-
tion f : {0,1)* — R has an expected rusning time of
at Jeast |log, [R}] stepa on some input.

As in Corollary 2, we obtain a logarithmic sepa-
tation between the probabilistic COMMON(m) model
and the deterministic PRIORITY(m) model, fot m =
O(n*) where € < 1. This separation can also be shown
between probabilistic COMMON and models weaker
tban PRIORITY, such as the ARBITRARY model de-
fined in [FRW), For these casss, randomization does not
belp the COMMON model to simulate more powerful
models.

NO-/bZG K. b

Theorem 2 is proved using the following two lem-
mas,

Lemma 3. The sum of the root-leaf distances to aay
set S of leaves in a tree of possible computations is at
least |5 [log |S1).

Prooft Let us define a free shelelon to be a tree
whose nodes ¢an be labelled with ponnegative integers,
such that the root is labelled with zero, and any node
labelled with ¢ that has ¢ children has each cbild
labelled no highet than o + 8 — ¢. Lemma 2 is actually
a statement about tree skeletons; any computation tree
leads in a natural way ¢o a tree skeleton, where the label
of a node is just the number of uontrivial clauses in its
formula. Let S be our set of chosen leaves, and Q be
the sum of the root-leaf distances. We can prune away
everything but the root-leaf paths to leaves in S. This
still leaves a tree skeleton, for after deleting a mode, the
labelling at its brothers is still valid. The pruning also
Jesves Q unchanged. o

We can then transform the tree skeleton in o
way that will never increase the sum of the root-leal
distasices to leaves in S. Suppose we can find two leaves
vy and vy, where v; {s at depth 4, snd & ~ 1, 22 We
add two children v}, v} to vy, label them with the same
sumber as vy, aad delete vy, We remove vy, 03 from §
and add v}, v}. :

Continuing in this fashion, we can obtain a tree

" skeleton and a set S’ of leaves, where |S| = |S°], and

52

all leaves in S’ are at depth ¢ or { ~ 1. Furthermore,
the sum of root-leat distances to leaves in S’ is less
than or equal to Q. But Lemma 2 says that ¢ is at
least [log, |S]], and the result follows. ®

Lemnma 4. Let T, be the expected running time for a
given probabilistic algorithm solving problem P, max-
imized over all possible inputs. Let Ty be the average
ruening time for a given input distribution, minimiced
over all passible deterministic algorithms to solve P.
Then T3 2 T5.

Lemma 4 was stated by Yao ([Y]) in & stronger
form; the weak form here can be proved in a few
lines. We can consider a probabilistic algorithm as
probabilistic distribution of deterministic algorithms.
Let A be our set of deterministic algorithms, and
I our set of inputs. Let ¢[A; ;] be the running
time of algorithm A on-imput [;. Suppose our given
probabilistic algorithm chooses to rum deterministic
slgorithm A; with probability p, and that our given

gep. 9. ZUUZ 4:43PM

2) For1 € i € n/2, processor P; weltes 1 into eell 2.

8) For {n2) +1 € i & m, processor P; reads eell 2;
and, if its value is 1, writes 0 [uto answer.

4) For 1 < § < n, processor F; veads answer.

8) If answer ¢ O then, in paralle],

5.1) Processors Py,..,Pajs compute ED, (2,

veay By ,3)
5.2) Processors Plu/s)41, 1 Pa
ED.”(Z(;,’).‘.D ooy 8.).
This algorithm also uses O(logn) steps. But, in
this case, the number of new inequalities verified in one
step decreases as the egmpnmion procesds; at the t**

execution of step 3, %r inequalities are verified.

In the lower bound proof presented in the mext
section, we distinguish between information received
via direct storage access (as ln ALGORITHM 2) and
via indirect storage access (as in ALGORITHM 8).

A Lower Bound for COMMON (o)
In this section we prove the following result.

compute

Theorem 8. Computing ED. on 8 COMMON(o0)
requires ((logloglogn) steps.

Together with ALGORITHM 1 this implies an
N(logloglog(n)) separation between the COMMON
and PRIORITY models with {nfinite memory.

In order to prove this theorem, we first introduce
a varisnt of the COMMON(c0) which we call the k-
read COMMON(¢c0). This model differs from the
COMMON(c0) in two respects. Firetly, no processor
may wiite into a cell o which some processor has
already written., This restriction is essential for our
lower bound proof. In compensation, in the read phase
of each step of a k-read COMMON(00), each processor
hnuwedtogeadlptohmorycelbinyudlel.
instead of just cue. This will guasantee that, for large
enough &, an k-read COMMON(00) is aot weaker than
s COMMON().

Lemma 8. T steps of a COMMON(co) can be simu-
lsted by a T-read COMMON(cx) in T steps.

Prooft Let C be 8 COMMON(co) executing T
steps. We modify C to obtain a T-read COMMON()
C*® as follows. We sebdivide the infinite shared memory
of C into T infinite parts. If a processor of C writes
to cell w at step ¢, then, at step ¢, the correspondiag

54

NOo-fbdg P. ¥

processor of C* writes to the w'™ cell of the ¢** part of
memory. This epsures that no processor writes into a
previously accessed cell. When a processor of C reads
cell r, the corresponding processor of C* reads the r'h
cell of each part of the shared memory. Because cach
processor of C* reads (among other things) the value
read by the corresponding processor of M, we have
shown that C* simulates M. @

Theorem 8 now follows directly from the next
lemma, by taking & to be loglogn.

Lemma 6. Az k-read COMMON(co) requires
Nlogloglogn - loglog k) steps to compute ED,,.

Prooft This proof is an adversary argument. As
the computation proceeds, the adversary fixes the value
of certain variables sod maintains & set of allowed
inputs such that, after each step, each processor only
knows oue live variable (i.e. a variable whoee value has
ot been fixed). The precise measing of the statement
“processor P, only knows =;, after step {” is that the
configuration of P; after step ¢ is the same for all
allowable inputs with the same value of 2;,.

Let [n] = {1,...,n). Consider the situation ar
ranged by the adversazy after step ¢ of some slgorithm.
We use V; C [n] to denote the set of indices of live vari
ables, and {V;]? to denote the set of all unordered pairs
of elements from V;. The set By § [Vi]® describes those
pairs of live variables which the adversary has declared
to be distinet. The simple graph G; = (V;, Ey) with
vertex set V; and edge set E; Is called the distinetness
graph. Live variables ave restricted, by the adversary,
to take values from an infinite subset S; G N. The
indexed set Fr = {/ili € [n] = Vi), describes the ad-
versary's assigpment of values to the fixed variables.
These values arve distinct elements of N — ;.

The set I(Vy, Et, Si, Fe) of allowed inputs conaists
of all n-tuples (;,. . .. ba) satisfying the following prop-
erties:

1) & = §; foe all § € [n] -~ V4,

2) b €S for all i € Vi, and

S)bikd forallijEV with {i,j} € By,

For two disjoint sets A and B, lot X (4, B) denote
the complete bipartite graph on A and B. Let G =
(V. E) be a simple graph. A family C = ((Ae, Be)|t =
1,...,7} with A" B, = ¢ Is & bipartite cover of
G it every odge (i,i} € E beloup to some graph
K(Ae,Bg). The size o(C) oA C s Ti=a{lAd +1Bd)-
The bipartite complexity of G is defined to be HG)=
min{s(C)|C is a bipartite cover of G}. Foe the como

gep. V. ZUUZ 4U44PM

plete graph on g vertices, K, the bipartite complexity
is kuowa, '

Theorem 4. ([H][P]) A(X,) 2 ¢loge.

We shall measure the “complexity” of & set of
allowable inputa in terms of the number of live variables
and the bipartite complexity of the distinctness graph.

Now we are ready to formulate the main lemma.

Main Lemnma. Assume that, defore step ¢, the set

of allowed inputs is I{Vi.s, By, Sioy, Fi.3) and that

each processor P; ouly knows ome variable with in-

dex in Vi.;, namely 3;,. Tben, the adversary ean

defloe & new set of allowed fapats I(V4, B,,5,, F}) C

IViat, Btwt, Steyy Fiz) such that, afier step {1, the

following properties are satisfied. (Recall that each pro-

cessor caa read k cells in & step.)

Vi |2

1) ‘,‘ QVC-] sad ‘VII 2 M-ll +2M°

2) Each processor P; knows exactly one variable with

" index in V.

8) ¢ C Si-1 and Sy is infinite.

4) E¢ 2 EiwynVi|* and B(Gy) € A(Gi_y) +n(t+k),
where G; = (W, E,

$) ey GREN -8,

We now complete the proof of lemma 6. Before
the computation starts (Le. after step 0), Vo = [n],
Eo = ¢, So = N, and 5 = i satisfy the conditions of the
main Jemma. Suppose that the computation terminates
after T steps. Then Gr = K|y, |, the complete graph
on Vr; otherwise, there would be two allowed inputs
with different images under ED, between which the
algorithm could not distinguish. Thus, by Theorem 4,
A(Gr) = [Vr|logliVr|).

Now, from condition 4, we get that §(Gr) =
B(K,)) < aT(k + T).

Siace |Vi| € n, it follows from condition 1 that

Vil 2 ﬁ/{‘-/:-lz — 2 M By tnduction, this implies
Vel 2 (,%m and Vel 2 rer.

Combining these inequalities, we get
a7k +T) > (—,:%rbc(i,—:”;;rl

Thus T = Q(logloglogn — loglogk). &

To prove the main lemma, we first state three
results - two “Ramsey like” and one graph-theoretical.
They will be extensively used in the prool.

35

No./bZ¥ P. ¥

Lemma 7. Let f : W — D be any function deflned
on an infinite domaia W. Then there exists an infinite
subset W' C W such that flw. is either comstant or
1-1. In particular, if D is Bnite, then flw: is constant.

Lemmas8 ., Let £,0: W — D be two functions deflned
on ai inflnite domain W, Then there exista an infinite
subset W' C W such that flw+ and glw: are either
identical or kave digjoint ranges.

Lemma 9 . Let H(U,L) be a fuite graph, and Jet
a(H) denote the size of a maximum iadependent set in

H. Then a(R) 2 o

o1 +2iz] °

Lemm‘lmbetocndm[clls p- 112], Lemma
8 follows directly from Lemma 7, and Lemma 9 can be
found [n [B p. 282 |.

"Proof of the main lemma : Consider the sequence
of writes performed by some processor P; up to aad
including step ¢. In step p < £, it decides whether or not
to weite according to some predicate d¥. If it writes, It
writes & value v to a cell w}, Now consider the & reads
P; executes in step ¢. It reads from cells r;,,. ,'(,g
Since P; only knows z;, it follows that d?,?
and r;, are functions of only this cne vunble ‘l'hu
0' Sty = (0,1} nd‘v,’, U", ?ip ¢ Sty = N. Note
tht the reads are executed in parallel. Therefore no
processor can use the information obtained iz one read
to determine the other read functions it uses in this
step.

Our adversary simplifies this structure by sestrict-
ing the set of allowed inputs.

Claim 1. Without loss of generality, at every step
p S 1, each processor either writes for all allowed inputs
or does not write for any allowed input.

Prooft Apply Lemma 7 successively to & for
i =1...nand p = 1,....0 to obtain an inf-
nite subset S’ C Si_;. The claim follows when the
adversary restricts the set of allowed inputs to de
I(Vier, Ese) S Fin). @

We define an addresa function s any read function
7i, ot any write function wf which is actually wsed.

Clalm 2. Without loss of generality, every address

- function b either comstant of 1-1.

Proof Apply Lemma 7 successively to all address
functions. The result [s an infinite subset S” C $' on
which every sddress fuaction is either constant or I-1.
The adversary reatricts the set of allowed Ilnpyts to be
s 't Ft-l)-

I(Vt—hE‘-h

vep. 9. 2002 4:45PM

Cialm 3. Without loss of gemerality, if P, and P,
access the same cell then they use the same address
fanction.

Prooft Apply Lemma 8 successively to every
pair of address funections. The result is an infinite
subset 5™ C S” such that every pair of address
funetions (which we now comsider to be functions on
5"') aze either identical or bave disjoint vanges. The
adversary therefore restricts the set of allowed inputs
to be I(Vg-[. By, S"‘.Fg-;). |

The next observation depends on the the fact that
we are using an k-read COMMON(co) and is the only
part of the proof which does so.

Clalm 4. Without Jass of generality, if P; and Py know
the same variable (i.e. j; = j,), thea w} # ryp for all
p=1L...taadh=1,....k Inparticular, o' #rip.)

Prooft We may assume that every processor bas
copies of the programs of all other processors. Then P,
caa compute w!(z;,), the sddress P; writes to in step
p, aud v/(z;,), the value P; writes at that step. By the
defigition of an k-read COMMON(00), all processors
writing into this cell at time p must write the same
value and, thereafter, that value is never changed. Thus
cell wf(z;,) will still contain the value vf{a,,) when P,
reads it. Since P, can compute this value, it does not
have to read cell w?(=;,). (Note that this argument is
completely fallacious for the PRIORITY(c0), as showa
in ALGORITHM 1) =

Equipped with these two claims, our adversary is
ready to continue. First, the 1.1 address functions
are bandled by determining a graph of low bipartite
complexity and adding its edges to the distinctness
graph. Following this, the adversary deals with the
constant address functions by fixing some of the live
variables,

1-1 address functions:

Suppose that g;,...,9, are the 1-1 address fouc-
tions. For each g, deflne

A = (g € Vioyjzq = 35, and v} = g, for some
i €|n]aad pef}

B = {g € Vi-1]2, = 24, snd ;5 = g, for some
i € [n] sad A € |X]}.

Intaitively, ¢ € A, if some procesyor that knows 2,
uses g, a8 2 write function. Similarly, ¢ € B, if soms
processor that knows 2, uses g¢ as its read function.

As a corollary to ¢laim 4, we get the following

result.

56

No.i

(=

4 R

<

Claim §. Agnt = ‘.

Since every processor ean contribute at most ¢
times to the A’s and at most & times to the B’s,
Lemildel +1Be| € (m + O)n. Lot G’ = Wiy, EY)
be the graph with E' =)., X(4¢, B;) and let G" =
(Ve—s, E") be the graph with £” = E,_, UE'. Then
B8(G") £ (k + t)n. This imples the following result.

Claim 6, 3(G") S 8{(G)+ (k+ t)n.

Clalm 7. Forimputs i I{V,..,, E",S™,F;—1), wve may
assume, without loss of generality, that no processor
uses a }-1 read function in step ¢. :

Prooft By claims 8 and 4, every processor that
uses a 1.1 read function reads the initial contents of the
cell, namely '0'. Thus the read imparts no information
about any laput knows to be In I(Vsy, E¥, $™, Fi-1).
Constant address functions:

From this point on, we assume that the set of
allowed inputs is 7{(Vi~1,E¥, S™, Fi1).

Claim 8. If w is & constant sddress function, then the
contents of cell w depends on at most one variable from
V!vl' ‘

Proofi To prove this claim we do not need any
of the properties of the A-read COMMON(c0). Ia
fact, we can sssume that, for cells which are accessed
by constant address functions, the PRIORITY write
conflict resolution scheme is used. Furthermore we
can allow these cells to be sccessed during more than
one step. Consider the last step p < ¢ in which cell
w was accessed for writing. Let P; be the processor
with lowest Index writing into cell w in step p. By
our construction, P; always writes to cell w at step p.
Therelore the contents of cell w can ouly depend ca 3;,.
]

Thus we can assume that all constant address
functions used up to and includiug step ¢ are different.

Consider the graph H(Vi.;.Ll), where (i\k} € L
il some processor knowing 3; uses a constant read
function w is step ¢, and the contents of w depends
on 2, (i.e. after step # this processor "knows” both
2; and 3,). Note that |L| < nk, the total number of
reads in step ¢. Apply Lemma © to this graph to obtaia
an indemdm’m of vertices V; € Vi—;. such that
il 2 7 VT-:-‘ZM' The adversary restricts the set of
allwabl: illnpntl to be J{V,, E",S™, Fi-1) and we get
the following result.

dePp. 0. ZUUZ 4:4LPM
Clalm 9. After step ¢, every processor knows at most
one varisble in V.

We now complete the proof of the main lemma.
Those processors which do not know any variable {n Vi
can be assigned an arbitrary one. The adversary fixes
the variables 2; with i € V;_, - V; and assigns them
distinet values f; € S™. These values are sdded to
Fi—) to obtain F; and are removed from S™ to obtain
Si. Finally let G, = (V;, Ey) be the subgraph of G"
Induced by V;. Then A(G:) € 5(G"). =

A Lower Bound for PRIORITY ()

In this section we apply a simplified version of the
proof method from the last section to obtain a lower
bouad for PRIORITY (o). E

Theorem §. A PRIORITY(c0) requires fi(loglogn)
stepa to compute the maximum of 3 numbery.

Proof: I contrast to solving the element distiact.
ness problem, computing the maximum of n pumbers
does not become easier if these numbers are knows to
be distinet. Therefore, we will assume that they are dis-
tinet, because this will considerably simplify the treat-
tuent of 1-1 address functions, Essentially, in the cop-
text of the previous lower bound proof, such functions
are always useless.

More formally, let M be a PRIORITY(o0) which
finds the maximum of n numbers. Let V;, S,, and F,
be defined as in the previous section. However, the
sdversary's set of allowed inputs is now defined to be
J(V(, S, F’g) - ’(V'y, IV‘]’. $¢,F¢). Spoeilul!y. all input
values are required to be distinet.

Lemma 10, Assume tbat, before step ¢, the set of
allowed inputs is J(Viny,Si-y1.Fi-1) and that each
Pprocessor only knows one variable with index i V,_,.
Then the adversary can defize a pew set of allowed
isputs J(Vi, S, F) such that after step ¢ the following
properties are satisfled.
Vi
1) ViCVieand Vi| 2 Weesl + 20"

2) Esch processor knows only one variable with index

oV, |
3) 5 C Si-y and S, ls infite, and
‘) Fl-l g}.‘gN-slo

If M requires T steps then [Vz| = 1; otherwise
.80 processor can determine the output. From Lemma

No./bdg F. 11

10 sud the fact that [Vo] = n, we can derive T =

D(loglogn). This concludes the proof of Theorem 3.
L

Proof of lemma 10 : Consider the proof of the
main lemma for & = 1. It is suficlent to show that for
J(V4, ¢, F}) the analogues of claim ¥ (which takes care
of 1-1 address functions) and claim 9 {which takes eare
of constant address functions) hold.

The proof of claim 9 does aot use the properties
of the k-reasd COMMON(co). Since I, S, Fe) €
IV, By, S, FY), the analogous result for the PRIOR.
ITY (oo) is true.

Howevez, claim § is derived from claim 2 which,
in tury, depends on the properties of the k-resd COM-
MON(oc). Fortunately, the analogue of claim 7 fol-
lows directly from claim 3, since all input variables
are assumed to have distinet values. Because the
proof of clalm 8 does pot use the properties of the
k-read COMMON(0), its analogue also holda for the
PRIORITY(x). =

References

B} Berge, C. Graphs and Hypergrapbs, North.
Holland, 1078.

{CD] Cook, S.A., and Dwork, C. Bouads om the
Time for Parallel RAMs to Compute Simple
Functions, Proc. 14'* Azgual ACM Sympo-
sium on Theory of Computing, 1982, pp.231-
233,

[FRW| Fich, F.E,, Ragde, P.L., and Wigderson, A.
Relations Between Comcurrent-Write Models
of Parallel Computation. Proe. 8'¢ Annual
ACM Symposium on Principles of Distibuted
Computing, 1084, pp. 170-189.

[FW] Fortune,$., and Wyllie, J. Parallelism in Ran-
dom Access Mackines, Proc. 10 Angual
ACM Symposium on Theory of Computing,
1978, pp. 114-118.

(Ga] Galil, Z. Optimal Parallel Algorithms for String
Matehing, Proc. 16" Ananal ACM Sympo.

sium on Theory of Computing, 1084, pp. 240-
248

{Go] Goldschlager, L. A Unifled Approach to Mod-
els of Synchronous Paralle] Machines, Journal
of the ACM, vol. 29, no. 4, 1982, pp. 1078
1086.

Jep.

" |oRs]

e

[Ha)

[KMR]

K]

MR

P

[sv]

(Tv]

vl

VW]

1¥)

9. 2UUZ 4:4bFM

Grabam, R.L., Rothschild, B.L., and Speacer,
J.H. Ramsey Theoty, Wiley and Sous, 1980.

Greenberg, A. Efficient Algorithma for Multi-
ple Access Channels, Pb.D Thesis, Usniversity
of Washington, 1983.

Hansel, G. Nombre minimal de contacts de
fermature nessecaires pour realiser une fonec-
tion booleenne symetrique de n variables, C. R
Acad. Sci. Paris 258,1964, pp. 6037-6040.

Kaanan, R., Millez, G., and Rudolph, L. Sub-
linear Paralle]l Algorithm for Computiag the
Greatest Common Divisor of Two Integers,
Proc. 25'™ Apuual Symposium on Foundations
of Computer Science, 1984, pp. 7-11.

Kucers, L. Paralle} Computation and Con-
icts in Memory Access, Information Process-
ing Letters, vol. 14, no. 2, 1982, pp. 93-96.

Meyer Auf der Heide, F., snd Reischak, R. Op
the Limits to Speed Up Parallel Machines by
Large Hardware and Unbounded Communica-
tioa, Proc. 25'* Anpual Symposium on Foun-
dations of Computer Science, 1984, pp. 56-64.

Pippenger, N. An Informatios-Theoretic Me-
thod in Combinstorial Theory, Journal of Com-
binatorial Theoty, vol. 28, mo. 1, July 1977,
pp. 99-104.

Shiloach, Y., and Vishkin, U. Finding The
Maximum, Merging and Sorting On Parallel
Models of Computation, 1.Alg, v.2, 1981, pp.
£8-102.

Tarjaz, R.E, Vishkin, U. Finding Biconnected
Componests and Computing Tree Functions in
Logarithmic Parallel Time, Proc. 25°* Aunual
Symposium on Foundations of Computer Sci-
ence, 1984, pp. 12-20.

Valiant, L. Parallelism in Computation Prob-
lems, SIAM J. Comput., vol. 4, no. 8, 197§,
pp- 348.358,

Vishkin, U., and Wigderson, A. Trade-offs Be
tween Depth and Width in Parallel Computs-
tion, to appeat in SIAM J. Computiag.

Yao, A. Probabilistic Computations: Towards
& Unified Measure of Complexity, Proc. 184
Azpus! Symposium on Foundations of Com
puter Science, 1977, pp.223-227.

58

No./bZ8

p.

1¢

