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ABSTRACT

Security of protocols for network communication has received
considerable attention in recent years. We concentrate on ensur-
ing the security of cryptographic protocels in distributed systems.

In a distributed system, beyond eavesdropping, a saboteur
may impersonate another user or alter messages being sent. A
saboteur who is also a user may send conflicting messages or use
other illegal messages in order to uncover secret information.

The problem we address, in its most general form, is: "given a
multi-party protocol which is provably secure when all the partici-
pants monitor every message being sent, can the protocol be
modified to be secure in a distributed system?”

We use the Byzantine Agreement, Crusader Agreement, and
other specific checks to improve protocols by making them secure
in a general distributed network. We examine the trade-off between
detection of faulty behaviour and the number of messages

exchanged.

1. Introduction

The main purpose of a cryptosystem is to protect private information.
Cryptographic protocols enable users to employ the cryptosystem while com-

T Part of this wark has been done while the first author visited [BM Research Center, San
Jose, California.
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municating with each other. A cryptosystem is secure if it cannot be "broken"
using various mathematical tools. The security of a cryptographic protocol is
measured by its ability to prevent eavesdroppers and other non-participants
from understanding the information being exchanged. Distributed cryptographic
protocols are intended to guarantee the security of private information in case
one cannot trust even the users participating in the protocol itself. We will
make sure that private information will not be disclosed even in the case that
several participants collaborate in atternpting to cause such disclosure.

The security of cryptographic protocols has been discussed in previous
papers (DEK, DLM, DY, LW, NS). In this paper we assume that we are given a pro-
tocol which is secure in a round-table environment {or round-table secure). That
is, the protocol is secure provided every user is able to see every message being
exchanged between every pair of users in the system, provided users are con-
sistently following the protocol, and provided deviations from the protocol can
be detected. We will show how to modify such a protocol to make it secure in a
distributed system in which a user can see only information he himself receives.
For example, all the protocols presented in (LW) are round-table secure. But the
same protocols, when used in a distributed system are no longer secure.

The difference between a round-table and a distributed system is that in the
latter a user can slightly deviate from the protocol in a way that the recipient of
the message cannot be aware of, and by doing so he is able to uncover secret
information. As a matter of fact, a saboteur in a distributed system can do can
do whatever he wants as long as the user receiving the message does not suspect
a misbehaviour, or even if he suspects, he is unable to obtain a “proof of mis-
behaviour".

The methods we will give for improving round-table secure protocols by
making them distributed-secure produces protocols that are fault-tolerant in a
very broad sense. The protocols will be able to sustain any malicious behaviour
without ever revealing an individual's secret. We make no assumptions about
the type of faulty behaviour nor about the communication network, We guaran-
tee that in the case that the participants are all faithful, the protocol proceeds
as usual. A malfunction may cause the protocol to stop. However, even in this
case a saboteur cannot uncover private information. The algorithms we use will
try to overcome the faulty behaviour, but we cannot guarantee to identify all the
faulty users, as one might have hoped. The reason is that a faulty user can
behave in a way that does not disclose his faultiness. However in cases where

faultiness may endanger the security of the protocol, a faulty user will be
detected.

2. The Model

Let U be a set of users participating in a given network. For simplicity we
assume that all the users in U participate in the protocol. Moreover, we assume
that the network is such that every two users can communicate directly. To
relax this assumption one can follow the results of (Da, LSP) and obtain similar
restrictions on the network connectivity. Let CU be the subset of correct {or
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faithful) users, and TU be the rest of the users, named the traitors (faulty users
or saboteurs). We assume that faithful users do not know which users are
members of which sets. Faithful users behave correctly: they follow the proto-
cols and correctly execute the algorithms. There are no assumptions on the
behaviour of saboteurs; they may even collaborate in trying to break the proto-
col. Notice that saboteurs may know who are the members of each set. More-
over, the can behave faithfully, or at least pretend to do so. We do assume that
saboteurs cannot break the cryptosystem.

Let t be an upper bound on the number of saboteurs that may participate
in the protocol, that is, t is the cardinality of the set TU. Our results are
parametrized by £.

We assumne that users communicate synchronously and thus an absence of a
message can be detected. The synchronous behaviour can be relaxed, but then
one needs an upper bound for the time it takes for a faithful user to respond to
a message he receives (FLP).

In the analysis that follows, we assume that no message has been stopped
by eavesdroppers. To overcome the stopping we need to include this mis-
behaviour in the parameter t in some way (if this possibility was not limited, one
faulty user could have isolated every other user from all others). We will not
cover this extension here.

Let MSG be the set of possible messages. We assume MSG is closed under
the operation of forming sequences from MSG.

A synchronized multi-party protocol P for a set of users U is a finite
sequence of phases G.Gg, - - - .G. Each phase is a directed graph G (U .Eg.T¢)
where nodes correspond to the users in U, and the edges E, are labeled from
MSG according to T,. For every directed edge {(vv) in £,
T, (w,v)=f (k.I, M(k w)), where f is a function of /,, the private information of
user 1, and M(k,u), that contains the information u obtains through phase &
from messages he receives. (M(1,2) is empty for every faithful user u).

The phases are numbered with consecutive positive integers. At each phase
k, a user should send the messages on his outedges and receive the messages on
his inedges.

A protocol works in a round —table environment if for every faithful user u,
M{kw)=Mk-1u) v {T(ab) | a.belU}. In other words, every faithful user
has the same information about every message that was sent in each phase.

A protocol is round —table secure if it is secure under the condition that a
faithful user sends a message at the kth phase only if for every pair of faithful
users a.b we have M{k—1,a)=M(k—1,b).

A protocol works in a distributed system if at every phase k and for every
faithful user u, M(k.2) = M(k—1u) U {Te(a 1) | €U} In other words, a faith-
ful user obtains only the messages he received at each phase.

We assume the exsistence of a cryptographic signature scheme with the fol-

lowing properties:
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(1) Every user z has a distinct signature function S; with which he signs mes-
sages.

(2) Every user can identify the signature of every other user and can extract
the message from the signed message.

(3) No user (not even a saboteur) can forge the signature of another user.

(4) Every change in a signed message which is not done by the user who signed
it can be detected by any other user.

(5) The signature functions do not commute, i.e. for every message M
S:S,(M)#5,S, (M) whenever z»y.

A signature scheme with the above properties can be constructed using a
{secure) public-key cryptosystem {DH, RSA). We further assume that the crypto-

graphic system used for signatures is independent of the one used for encryp-
tion.

using the cryptographic signature scheme one can obtain messages with
several signatures, can extract the contents of a message, and can identify the
various signatures (and their order) a message carries. This will be the way we
will use the signature scheme in the coming sections.

We use the following notation: A user notarizes a message if he signs it and
sends it to all users. (Our algorithm works also if faulty users are able to remove
signatures notarizing a message in an undetectable way). For simplicity we will
assume that when a faithful user sends a message he also sends it to himself. A
message is said to be k-dense if its contents is followed (notarized) by exactly k
distinct signatures. Notice that the contents of a message can be another mes-
sage which by itself carries signatures. We assume that the content of a mes-
sage is uniquely defined. (In fact, it follows from our definition of a protocol).

3. Distributed Agreements

The security of a round-table secure protocols is based on the fact that all
the faithful users obtain the same information about every message being
exchanged in each phase. The idea is that by obtaining that information they
can check and find deviations from the protoco! and stop the protocol before the
saboteur is able to break it. We will try to bring the users in a distributed system
to an agreement on what messages each user has sent. By doing that we will
induce the security of a protocol in a distributed system from its security in a
round-table environment. Our exact goal is : "Given a round-table secure proto-
col P, produce a modified distributed protocol P' such that at every phase of P’
which correspond to a phase of P there is an agreement about the messages
sent in the previous phase of P, or at the first time that this does not hold, at
least one faithful user holds a "proof” about the faultiness of some user".

Two types of distributed agreements have been discussed previously in the
literature: Byzantine agreement and Crusader agreement. These two agree-
ments will enable us to improve a round-table secure protocol. For the Crusader
agreement let us assume that there exists a transmitter who is supposed to

ks

On the Security of Multi-Party C

send his value to the netv
do so.
Crusader Agreement

(1) 1 the transmitter is
value he has sent.

(2) Al the faithful use
transmitter should ¢

The elements of the
faithful they reach agre
the transmitter is intro
{the users do not neces:
includes all the faithfl
transmitter, and the se
hold such a proof. All n
value as the value of the

In the following al,
transmitter should cont.

The Crusader AlgoT
C1. The transmitter not

C2. If at the end of pha
then notarize it at
transmitter is fault

3. If at the end of pt
values or at least f
are received define
only notarized valu

Theorem 1:
If the cardinality of th
algorithm reaches the (

The proof is simila
a faithful user can hold
signed also by the tr
transmitter is faulty. !
itself is faulty.

Lemma 1:
A faithful user holds ¢
the transmitter is fail
Jaultiness.

The natural idea i
about every message
agreement among the
that at the end of the



anny Dolev and Avi Wigderson

th which he signs mesg-
r user and can extract

2 of another user.

by the user wHo sighed

‘or every message M

be constructed using a
.ssume that the erypto-
e one used for encryp-

. obtain messages with
e, and can identify the
This will be the way we

ssage if he signs it and
sers are able to remove
. For simplicity we will
> sends it to himself. A
notarized) by exactly k
;e can be another mes-
the content of a mes-
ition of a protocol).

sed on the fact that all
every message being
: that information they
the protocol before the
in a distributed system

By doing that we will
1 from its security in a
md-table secure proto-
at at every phase of P*
nt about the messages
. this does not hold, at
of some user".

ussed previously in the
ent. These two agree-
tocol. For the Crusader
er who is supposed to

M

on the Security of Muiti-Party Cryptographic Protocols 171

send his value to the network and that all the users know when he is supposed to

do so.
Crusader Agreement (Da)

(1) 1f the transmitter is faithful, then all the faithful users should agree on the
value he has sent.

(2) All the faithful users who do not hold a "proof' of faultiness of the
transmitter should agree on the same value.

The elements of the Crusader agreement are that as long as all users are
faithful they reach agreement about every value being sent. When faultiness of
the transmitter is introduced then the faithful users are divided into two sets
{the users do not necessarily know who are the members of each set). One set
includes all the faithful users holding a “proof” of the faultiness of the
trangmitter, and the second set is the set of all the faithful users who do not
hold such a proof. All members of the second set should decide on the same
value as the value of the transmitter.

In the following algorithm a notarized message carrying a value of the
transmitter should contain also the transmitter’s signature.
The Crusader Algorithm:

Ci. The transmitter notarizes his value at phase 1.

C2. If at the end of phase 1 a single value signed by the transmitter is received,
then notarize it at the next phase. Otherwise notarize the message "the
transmitter is faulty”.

C3. If at the end of phase 2 at least 2 2-dense messages containing different
values or at least £ +1 signed messages saying that the transmitter is faulty
are received define it to be a proof of faultiness. Otherwise agree on the
only notarized value you have received.

Theorem 1:
If the cardinality of the set of [faulty users is bounded by t, then the Crusader

algorithm reaches the Crusader agreement at the end of phase 2.

The proof is similar to the proof in (Da). Observe that the proof of faultiness
a faithful user can hold at the end of the algorithm is either two different values
signed also by the transmitter or t+1 signed messages claiming that the
transmitter is faulty. Neither of these can be produced unless the transmitter
itselfl is faulty.

Lemma 1:
A faithful user holds a proof of faultiness only if the transmitter is faulty. If
the trensmitter is faithful, then no user (even a faulty one) can hold a proof of
Jaultiness.

The natural idea is to run the algorithm to obtain the Crusader agreement
about every message Ti{u.v) being sent and by that to reach some sort of
agreement among the faithful users about the various messages. The problem is
that at the end of the Crusader agreement some of the faithful users do agree
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on the message but some do not. So if those who did not find a "proof"” of faulti-

ness continue to follow the protocol they will send the next messages when the
conditions about M(k,x) do not hold.

We can obtain a round-table environment by running a Crusader agreement
on every message and then adding another phase in which only users who hold a
proof of faultiness will send it and the rest will wait a phase without doing any-
thing. By doing this we ensure that every user who does not receive a proof of
faultiness by the end of that phase can be sure that all the faithful users have
obtained agreement on the value of the transmitter at the end of the Crusader
agreement. Therefore if he continues that protocol he cannot cause any security

problem because of the fact that the round-table conditions held at the
previous phase.

If a faithful user obtains a proof of faultiness at the end of the Crusader
algorithm, then by the end of the additional phase all the faithful users will learn
about that. This will prevent them from continuing the protocel and will stop the
protocol at that point without enabling the faulty users to break it.

Observe that it still may happen that some of the faithful users will see a
proof of faultiness at the end of the additional phase and will stop taking part in
the protocol because of that. This will bring about a situation in which not all the
users have the same information. But in this case those that will continue will be
covered because of the round-table condition and those that have stopped will
try to stop the protocol before further phases will be completed.

To do this we actually need to run another algorithm that will distribute
that proof of faultiness among the faithful users in order to bring them to an
agreement about the faultiness of the transmitter. For that we use the Byzan-

tine agreement. For the Byzantine agreement let's assume that users may hold
a legal proof (of faultiness) and that every user can check its legality.

Byzantine Agreement (Da, DS, LSP, PSL)

(1) If a faithful user holds a legal proof, then all the faithful users should agree
on the existence of a legal proof.

(2) All the faithful users should reach the same agreement.

The difference between the two agreements seems to be small but it is
important. The Byzantine agreement requires reaching agreement no matter
what. The Byzantine agreement requires more phases than the Crusader agree-
ment. We will run it after completing the Crusader agreement in parallel with
the rest of the protocol in such a way that if a fault has been found, the Byzan-
tine agreement will broadcast it and will stop the rest of the protocol.

The Byzantine agreement will be used here to agree on the faultiness of

some user. For this reason the version of the algorithm presented here will be
optimized for this use.

The Byzantine Algorithm:
Bl. Every faithful user who holds a legal proof notarizes his proof at phase 1.
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B2. If at the end of phase k<t+1 a k-dense legal proof of faultiness is received
by a user who did not notarize it before, then he notarizes it at the next
phase and agrees on the proof of faultiness. :

B3. If by the end of phase ¢ +1 a t +1-dense proof of faultiness is received, then
agree on the proof of faultiness.

Theorem 2:

If the cardinality of the set of faulty users is bounded by t, then the Byzantine

algorithm reaches the Byzantine ngreement at the end of phase t+1. If at-some

phase k<t+] some faithful user agrees on a legal proof of Sfaultiness, then by
phase k+ 1 all the faithful users will agree on u legal proof of faultiness.

The proof is similar to the proof in (DS) although our algorithm and
definition of Byzantine agreement is somewhat different.

4. Algorithm for Improving Security
Let P be a given protocol. The following algorithm will show how to obtain

from it a protocol P’ with the property that if Pis round-table secure, then P’ is

secure for a distributed system. Furtheremore, P’ will have three times as many

phases as P, s.t. each phase k& in P corresponds to phases 3k-2, 3k-1, 3k in P.

A proof of faultiness is called legal if
(1) it is about sending or not sending some Te(a.b) that had to be sent by a at

phase 3k-2.

(2) it contains either two different values being sent (and signed) by the faulty
user a at that phase or t +1 signatures of users who are supposed to receive
Ty (2 ,b) claiming not to receive it at that phase.

(3) it is k-dense.

(4) it is received by phase k' < 3k of P'.

The legality of a given prool of faultiness can be checked, due to our
assumptions, by every user who receives it. If a proof of faultiness is not legal,
then the receiving user can ignore it.

To simplify the arguments in the following algorithm we assume that every
message a user has to send according to protocol P contains the name of the
user who suppose to receive that message in P.

Crusader-Byzantine algorithm
Define P’ to be the protocol obtained from P as follows: for every k > 0
CB1.At phase 3k-2: for every faithful user u, if w did not agree on a legal proof of

faultiness by now, then for every T(u.v) that u is supposed to send

according to the protocol P at phase k he uses the Crusader algorithm to
send the message "T{x,v), the phase is 3k-2". (Recall that the Crsader

algorithm takes two phases, 3k-2 and 3k -1).

CB2.At phase 3k: If a faithful user » holds a proof of faultiness about some user
b at phase 3k-2, then he starts a Byzantine agreement to send that legal
proof of faultiness to all the users. Otherwise, he defines
M{ku)=M(k-1u) v {Te(a,b) | uhasagreed onat phase 3k-1].
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CB3.1f 3k-2 is the earliest phase about which a faithful user » holds a legal
proof of faultiness, then u "STOP"'s the protocol at phase 3k +f +1.
Lemma 2:
In the Crusader-Byzantine algorithm, if the cardinality of the set TUis bounded
by t and a faithful user holds a legal proof of faultiness at some phase k, then
by phase k+1 all the faithful users will hold o proof of faultiness. Moreover, if a
legal proof of faultiness about some phase 3r-2 has not been received by any
Juithful user by phase 3r+t, then mno faithful user will ever later accept any
proof of faultiness about phase 3r-2 as being legal.

The proof follows from the properties of the Byzantine agreements and the
way we use them in the Crusader-Byzantine algorithm.

Notice that we can save one phase in lemma 2 and in stopping the protocol

if we would exclude the faulty user while running the Byzantine agreement about
his fault.

Lemma 3:

In the Crusader-Byzantine algorithm, if a foithful user u decides fo send
Ti{u.v) at phase 3k-2 of P, then M{k—1.a)=M(k-1,b) for every pair a,b of
users,

These lemmas enable us to prove the main theorem about the security of
the new protocol P'.

Theorem 3:

If the protocol Pis round-table secure and the cardinality of TUis bounded by t,
then the protocol P’ obtained from P using the Crusader-Byzantine algorithm is
secure. Moreover, in case the protocol P’stops with a proof of faultiness, then a
Jaulty user is found and this fact is known fo all the users.

Observe that if the security of P holds only in the case where ¢ is bounded
by some function of n=|U|, then in the new protocol P' it will also be bounded
by that functien of n. For example the round-table secure protocols in (LW)
require that t<n -1 or t<n /2, and therafore in the protocol one obtains from it
using the Crusader-Byzantine algorithm, ¢ should also be be similarly bounded
for ensuring the security of the protocol.

5. Conclusions

The number of phases in the new protocol, P, is only three times as many
as the number of phases in P. However, The number of messages that P’ uses is
more than that of P by a factor of nZ Using better algorithms for reaching
Byzantine agreement and similar ideas in the Crusader agreement one can
reduce this factor to nt. One can save even more, using the algorithm in (DR),
but that algorithm will require many more phases for reaching the agreement
about the faultiness of a user. Observe that if one is not interested in reaching
agreement about the faultiness of a user, then the number of messages can be
further reduced, and so can the number of phases.
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The algorithm we presented gives a way to induce security of distributed
protocols from that of a round-table protocol. Thus, a protocol designer can con-
centrate on producing round-table secure protocols, and then convert them
using our algorithm to be secure in a distributed system. Further research is
needed for obtaining the most eflicient way to transform nondistributed secure
protocols to be secure in a distributed system.

The ideas presented in the paper can also be used for networks in which not
every two users can communicate directly. In addition, the ideas can be used
for improving protocols that are secure in environments fulfilling weaker
assumptions than the round-table environment.
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