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Abstract

In this work we give the first deterministic extractors from a constant number of weak sources
whose entropy rate is less than 1/2. Specifically, for every δ > 0 we give an explicit construction
for extracting randomness from a constant (depending polynomially on 1/δ) number of distri-
butions over {0, 1}n, each having min-entropy δn. These extractors output n bits, which are
2−n close to uniform. This construction uses several results from additive number theory, and
in particular a recent one by Bourgain, Katz and Tao [BKT03] and of Konyagin [Kon03].

We also consider the related problem of constructing randomness dispersers. For any con-
stant output length m, our dispersers use a constant number of identical distributions, each
with min-entropy Ω(log n) and outputs every possible m-bit string with positive probability.
The main tool we use is a variant of the “stepping-up lemma” used in establishing lower bound
on the Ramsey number for hypergraphs (Erdős and Hajnal, [GRS80]).
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1 Introduction

1.1 Background

Randomness is prevalent in computer science, and is widely used in algorithms, distributed com-
puting, and cryptography. Perhaps the main motivation and justification for the use of randomness
in computation is that randomness does exist in nature, and thus it is possible to sample natural
phenomena (such as tossing coins) in order to make random choices in computation. However,
there is a discrepancy between the type of random input that we expect when designing random-
ized algorithms and protocols, and the type of random data that can be found in nature. While
randomized algorithms and protocols expect a stream of independent uniformly distributed random
bits, this is too much to hope for from samples of natural phenomena.

Thus, a natural and widely studied problem has been the problem of constructing randomness
extractors.1 Loosely speaking, a randomness extractor is a (deterministic polynomial-time com-
putable) function Ext : {0, 1}n → {0, 1}m, such that whenever X is a “good” random variable
(where the definition for a “good” will be discussed shortly), then Ext(X ) is statistically close to
the uniform distribution. The random variable X is supposed to model the natural data, while
the output of the extractor will be used to make random choices in a probabilistic algorithm or
protocol.

Intuitively, the “good” distributions should be the distributions that contain more than m bits
of entropy. Otherwise, information theoretic considerations show that such an extractor cannot
exist, even if it is supposed to extract randomness from a fixed source that is known to the designer.
Actually, past works have converged to the measure of min-entropy [CG85, Zuc91] which is a stronger
notion than standard (Shannon) entropy. (The min-entropy of a random variable X , denoted by
H∞(X ), is equal to minx∈Supp(X )(− log Pr[X = x]).) It can be easily seen that the min-entropy
of a random variable X is always smaller than the (Shannon) entropy of X and that if Ext(X ) is
statistically close to being uniform, the distribution X must be statistically close to having min-
entropy at least m. Thus possessing high min-entropy is indeed a minimal requirement from the
input distribution.

We note that it is known that if a random variable X has min-entropy k a convex combination
of random variables X1, . . . ,Xt, where each Xi is the uniform distribution over some subset of size
2k. Such random variables are called flat. Because of this fact, when constructing randomness
extractors typically we can assume without loss of generality that the input distribution is flat.
This is convenient for several reasons, one of which is that the min-entropy of flat distributions is
equal to their Shannon entropy.

1.2 Seeded and Seedless Extractors

Unfortunately, it is not hard to see that there is no single function Ext which will produce a (close
to) uniform output on every input distribution having high min-entropy. Previous works have dealt
with this problem in two ways: the first way is to add a short truly random seed as a secondary
input to the extractor, and the second way is to use no seed, but make further assumptions on
the structure of the weak sources (in addition to the minimal assumption of it containing sufficient

1We note that while this has been the original motivation for studying randomness extractors, such constructs
have found numerous other applications in Computer Science, and are fundamental and interesting objects in their
own right.
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min-entropy).

Seeded extractors. One approach has been to allow the extractor to be probabilistic. That
is, in addition to its input X , we allow the function Ext to have an additional input Y which is
uniformly distributed. To avoid trivialities, such as the extractor that simply outputs Y, we will
require the input Y to be (much) shorter than the output length m. We call the additional input Y
the seed of the extractor, and thus we call such constructions seeded extractors.2 Seeded extractors
have been studied extensively in the past two decades (see the survey [Sha02] and there references
therein) with a series of exciting results, techniques, and applications. The current state of the
art is a construction of extractors that are nearly optimal in the sense that they use a seed Y
of length O(log n) bits, extracting essentially all the min-entropy of the source [LRVW03]. This
in particular means that using such extractors, together with enumeration over all possible seed
values, it is possible to simulate any probabilistic algorithm with polynomial overhead, using only
a high min-entropy source.

Seedless extractors. There are many reasons to try and have seedless extractors. One is that
the polynomial overhead implied by the seed enumeration above is too expensive. Another is
that certain applications in computer science, such as cryptography and distributed computing,
intrinsically prohibit such enumeration. For example, when using a weak source of randomness to
choose an encryption key via a seeded extractor, it will certainly be insecure to enumerate all secret
keys produced using all seeds and then send the encryptions of a secret message using all these keys.
More generally, it seems that we cannot always use directly seeded extractors in cryptography (see
[MP90, DS02, BST03] for different cryptographic models under weak sources of randomness).

There have been many works constructing such seedless extractors (that work for specific fam-
ilies of high min-entropy sources). The first to consider this problem (and indeed, the first to
consider the problem of randomness extraction) was von Neumann, who gave a seedless extrac-
tor from a stream of biased but independent bits [vN51] (see also [Per92]). Other works, such as
[Blu84, SV84, CG85, CW89, CGH+85, MU02, KZ03, TV00] constructed seedless extractors for more
general families of sources.3

1.3 Seedless extractors from few independent sources

When seedless extraction from one source is impossible, it is natural to consider doing so from
several independent sources of the same quality. After all, assuming we have one such source in
nature does not seem much weaker than assuming we have several.

The first to consider this problem were Santha and Vazirani [SV84], who showed how to use
O(log n) independent “semi-random”4 sources of length n and min-entropy δn for every constant
δ > 0.

2We remark that in most of the literature, the name randomness extractor (without any qualifiers) refers to what
we call here a seeded randomness extractor.

3The work of Trevisan and Vadhan [TV00] differs from all the rest, as well as from ours, in that it works in the
computational setting; the restriction on the family of sources is computational - they are efficiently sampleable, and
the extractors work assuming an unproven computational assumption.

4We will not define them formally here, only note that they are weaker than high min-entropy sources, but
nevertheless one cannot extract seedlessly from only one such source.
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Chor and Goldreich [CG85] were the first to consider general min-entropy sources, and proved
that if δ > n/2 than two sources suffice: indeed the Hadamard-Sylvester matrix H : {0, 1}n ×
{0, 1}n → {0, 1} defined by H(x, y) = 〈x, y〉 (with the inner product in GF(2)) is such an extractor.
(We note that for this construction the n/2 entropy bound is tight - there are two sources of entropy
exactly n/2 on which H is constant.) Vazirani [Vaz85] extended this to show that one can use a
similar function to output from two indpendent sources of entropy ( 1

2 + ε)n, a linear number of bits
which are exponentially close to the uniform distribution.5

Improving [CG85] seems hard. Even its disperser version, namely having a non-constant output
for any two sources of entropy rate below 1/2, is the notorious “Bipartite Ramsey” problem, which
is still open. A slight improvement for this problem was made this year by Pudlak and Rödl [PR04],
who lowered the min-entropy requirement for such a disperser to n/2−√

n, but getting a constant
δ < 1/2 remains a barrier for 2 sources. (Very recently, Barak, Kindler, Shaltiel, Sudakov and
Wigderson [BKS+05] used the results of the current work to overcome this barrier and obtain such
a disperser for entropy δn with δ > 0 an arbitrarily small constant, see Section 5.)

An alternative 2-source function is the Paley matrix, P : GF (p) × GF (p) → {±1} defined by
P (x, y) = χ2(x+ y) (where p is an n-bit prime and χ2 : GF(p) → {±1} is the quadratic character).
P too is an extractor with exponentially small error for entropy > n/2, and is conjectured to have
the same property for entropy δn for all δ > 0. While generally believed, proving this conjecture
seems beyond current techniques.6 Assuming even more, Zuckerman [Zuc90] showed that if this
conjecture holds for all multiplicative characters (not just χ2), than a constant (actually poly(1/δ))
number of sources suffice for extraction of linearly many bits with exponential error. The extractor
we use here is exactly the same as Zuckerman’s (but our analysis uses no unproven assumptions).

1.4 Our Results

1.4.1 Multiple-Sample Extractors.

In this work we will be interested in extracting randomness from a constant (larger than 2) number
of samples from a high min-entropy source.7 Loosely speaking, our main result is an efficient
construction to extract (almost) uniformly distributed bits from a constant number of samples
from independent distributions over {0, 1}n each having min-entropy at least δn, for an arbitrarily
small constant δ > 0. The statistical distance of our output from the uniform distribution is
exponentially low (i.e., 2−Ω(n)).8 More formally, our main theorem is the following:

Theorem 1.1 (Multiple-sample extractor). For every constant δ > 0 there exists a constant ` =
(1/δ)O(1) and a polynomial-time computable function Ext : {0, 1}n·` → {0, 1}n such that for every
independent random variables X1, . . . ,X` over {0, 1}n satisfying H∞(Xi) ≥ δn for i = 1, . . . , `, it
holds that

dist

(

Ext(X1, . . . ,X`), Un

)

< 2−Ω(n)

5Vazirani [Vaz85] states his result for the “semi-random” sources of [SV84] but it extends for general min-entropy
sources.

6We note that it is known (using Weil’s estimate of character sums) that P is an extractor for two sources where
one of them has entropy > n/2 and the other one only entropy > log n.

7We note that our results can be generalized to the case of extracting from a larger (i.e., super-constant) number
of samples having sublinear entropy. However, we do not consider such extensions in this paper.

8Note that we get statistical distance that is much better than what is possible to obtain with seeded extractors,
which cannot do better than a polynomially small distance when using a logarithmic-length seed. This low statistical
distance is important for cryptographic applications.
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Un denotes the uniform distribution over the set {0, 1}n and dist(X ,Y) denotes the statistical
distance of two distributions X and Y. That is,

dist(X ,Y)
def
= 1

2

∑

i∈Supp(X )∪Supp(Y)

∣
∣
∣Pr[X = i] − Pr[Y = i]

∣
∣
∣ .

As mentioned in the introduction, we denote by H∞(X ) the min-entropy of the random variable
X (i.e., H∞(X ) = minx∈Supp(X )(− log Pr[X = x])).

Remark 1.2. As is noted in Section 3.5, we can actually reduce the statistical distance of our
extractor by using more independent samples. In particular, for every c, we can ensure that the
output of our extractor will be 2−cn-close to the uniform distribution by multiplying the number of
samples we use by a factor of O(c). Note that if a distribution Y over {0, 1}n is 2−cn-close to the
uniform distribution then in particular for every y ∈ {0, 1}n, Pr[Y = y] ∈ (2−n − 2−cn, 2−n + 2−cn)
(i.e., Y is even close to the uniform distribution in L∞ norm).

1.4.2 Dispersers.

We also present a construction of dispersers that works for much lower entropy samples of the
same source. A disperser is a relaxed variant of an extractor, which does not need to output a
distribution statistically close to uniform, but rather only a distribution with large support. Thus,
when talking about dispersers, it is natural to consider only the support of their input, and so
talk about the inputs as sets rather than random variables (where a set of size 2k corresponds to a
random variable of min-entropy k). The formal definition of dispersers is in the next section. Our
main result regarding dispersers is the following theorem:

Theorem 1.3 (Multiple-sample same-source disperser). There exists constants ` and d such that
for every m, there is polynomial-time computable function Disp : {0, 1}n·` → {0, 1}m satisfying that
for every subset X ⊆ {0, 1}n with |X | ≥ nd2m

Disp(X , . . . ,X ) = {0, 1}m

That is, if |X | ≥ nd2m
then for every y ∈ {0, 1}m, there exist x1, . . . , x` ∈ X such that

Disp(x1, . . . , x`) = y.

This is a better disperser than the multiple-source extractor mentioned above in the sense that
it works for very low min-entropy (indeed note that if we let m be a constant, then sets of size nO(1)

correspond to distributions of min-entropy of O(log n)). However, it still has two drawbacks: one
drawback is that its output is much smaller than the input entropy (although it can still be much
larger than the number of samples); another drawback is that it requires all its input samples to
come from the same distribution X (rather than from different distributions, as in our extractor).
We consider the second drawback to the more serious one. The construction of this disperser closely
follows the “stepping-up” technique of Erdős and Hajnal [GRS80, Sec. 4.7] for giving an (explicit)
lower-bound on the Ramsey number of hypergraphs. We remark that we work for worse entropy
than this lower-bound9 because we want to output a super-constant number of bits (that does not
depend on the number of samples).

9Using c samples this lower-bound yields a 1-bit-output disperser for log(Θ(c)) n entropy, where we use log(i) n to
denote iterating log i times on n.
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1.5 Our Techniques

An Erdős-Szemerédi theorem for finite fields. Our main tools for Theorem 1.1 are several
results from additive number theory and in particular a relatively recent result by Bourgain, Katz
and Tao [BKT03]. They proved an analog of the Erdős-Szemerédi [ES83] theorem for finite prime
fields. Let A be a subset of some field F. We define the set A + A to equal {a + b | a, b ∈ A}
and the set A · A to equal {a · b | a, b ∈ A}. Note that |A| ≤ |A + A| ≤ |A|2 (and similarly
|A| ≤ |A · A| ≤ |A|2). An example for a set A where A + A is small (of size about 2|A|) is an
arithmetic progression. An example for a set A where A · A is small is a geometric progression.
The Erdős-Szemerédi theorem is that for every set A ⊆ N, either A+ A or A · A is of size at least
|A|1+ε0 , for some universal constant ε0. In some sense, one can view this theorem as saying that
a set of integers can’t be simultaneously close to both an arithmetic progression and a geometric
progression.

A natural question, with many diverse applications in geometry and analysis, is whether this
theorem also holds in finite fields. A first observation is that this theorem is false in a field F

that contains a non-trivial subfield F
′. This because if we let A = F

′ then A + A = A · A = A.
However, [BKT03] showed that a variant of this theorem does hold in a finite field with no non-
trivial subfields.10 In particular it holds in the fields GF(p) and GF(2p) for every prime p. That is,
they proved the following:

Theorem 1.4 ([BKT03]). Let δ > 0 be some constant and let F be a field with no subfield of size
between |F|δ/2 and |F| − 1. Let A ⊆ F be a set such that |F|δ < |A| < |F|1−δ. Then, there exist
some constant ε (depending on δ) such that

max{|A + A|, |A · A|} > |A|1+ε

In [BKT03], the dependence of the constant ε on δ was not specified (and examining the proof
sees that it is probably of the form ε = 2−Ω(1/δ)). In Appendix A we give a proof of Theorem 1.4
(using some of their lemmas) with ε = Θ(δ).11 Konyagin [Kon03] gave a stronger result for prime
fields, and showed that, as long as |A| < |F|0.99, ε can be made independent of the size of A (even
if |A| is very small). That is, he proved the following theorem:

Theorem 1.5 ([Kon03]). There exist some constant ε0 such that for every F which is a field of
prime order, and every A ⊆ F with |A| < |F|0.99,

max{|A + A|, |A · A|} > |A|1+ε0

1.6 How is this related to extractors?

Using Theorem 1.5 to obtain dispersers. Theorem 1.5 actually already implies some kind of
multiple-sample disperser that was not previously known. This is because it implies the following
corollary:

10By a trivial subfield in this context we mean a subfield that is either the entire field or very small (e.g., of constant
size).

11The proof of Appendix A also has the advantage of proving the theorem for all fields F simultaneously. [BKT03]
prove Theorem 1.4 for prime fields, and then only mention how it can be generalized to other fields.
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Corollary 1.6. There exist some constant ε0 such that for every F which is a field of prime order,
and every A ⊆ F with |A| < |F|0.99,

|A · A + A| > |A|1+ε0

Indeed, by Theorem 1.5, for every set A either |A · A| or |A + A| is at least |A|1+ε′ for some
absolute constant ε′. If the former holds then since |A · A + A| ≥ |A · A| we’re done. In the latter
case we can use previously known number theoretic results (i.e. Lemma 3.7) that imply that if
|A + A| ≥ |A|1+ε′ then |A + B| ≥ |A|1+ε′/2 for every set B with |B| = |A|. This means that if
we let s be any member of A and consider B = s−1A then we get that |A + B| ≥ |A|1+ε′/2 (since
multiplying by a fixed element is a permutation that does not change the size of a set). For the
same reason, |A + B| = |A + s−1A| = |sA + A| but the set sA + A is a subset of A · A + A.

In other words, Corollary 1.6 states that there is an efficiently computable f(·) such that
|f(A,A,A)| ≥ |A|1+ε0 (i.e., f(a, b, c) = a · b + c). Yet this implies that for every set A with
|A| ≥ |F|δ, if we compose f with itself O(log(1/δ)) times we get a function g : F

` → F (for
` = 2O(log(1/δ)) = (1/δ)O(1)) such that g(A, . . . ,A) = F (where g(A, . . . ,A) denotes the image of g
on A`) .12 If we identify the field F with the strings {0, 1}n, then we see that this function g (which
is obviously polynomial-time computable) is already some kind of a disperser.

Obtaining extractors. To obtain an extractor, rather than a disperser we would like to obtain a
statistical analog of Theorem 1.5. Consider the following notation: if X is a random variable then
we define X +X to be the distribution obtained by choosing a, b independently at random from X
and outputting a + b, and define X · X in a similar way. Then, a statistical analog of Theorem 1.5
would be that there exists some ε > 0 such that for every random variable X with min-entropy at
most 0.9 log |F|, either the distribution X + X or the distribution X · X has min-entropy at least
(1 + ε)H∞(X ). Unfortunately, this is false: for every prime field F, there is a random variable X
which is uniform over some set of size 2k (for k � 0.9 log |F|) and such that for both X + X and
X · X , a constant fraction of the probability mass is concentrated in a set of size O(2k).13

Even though the statistical analog for Theorem 1.5 does not hold, we show that a statistical
analog for Corollary 1.6 does hold. That is, we prove (in Lemma 3.1) that there exists some constant
ε0 > 0 such that for every random variable X over a prime field F, the distribution X · X + X has
(up to some negligible statistical distance) min-entropy at least (1 + ε0)H

∞(X ). (In fact, we need
to (and do) prove a more general statement regarding distributions of the form X · Y + Z.) The
proof of this lemma is the main technical step in our extractor. The proof uses Theorem 1.5, along
with some other additive number-theoretic results of Ruzsa [Ruz96] and Gowers [Gow98].

We use this lemma to show that the function g sketched above is actually not just a disperser
but an extractor. That is, we show that for every random variable X of min-entropy at least
δ log |F|, the random variable g(X , . . . ,X ) (where g is applied to ` independent copies of X ) not
only has large support but is in fact very close to the uniform distribution. (In fact, we need to
(and do) prove a stronger version of this statement. Namely, that g(X1, . . . ,X`) is close to uniform
for every independent random variables X1, . . . ,X` with H∞(Xi) ≥ δ log |F| for i = 1, . . . , `.)

12This is because each time we apply f we grow in the set size from m to m1+ε0 . We note that one needs to
analyze separately the case that |A| > |F|0.99 but this can be done. This function g is described in more detail in the
beginning of Section 3.

13An example for such a random variable X is a random variable which is with probability half an arithmetic
progression and with probability half a geometric progression.
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2 Preliminaries

In this section we establish our definitions for multiple-sample extractors and dispersers. Unfortu-
nately, such definitions tend to have a large number of parameters.

Definition 2.1 (Multiple-sample extractor). A function Ext : {0, 1}n·` → {0, 1}m is called an `-
sample (k,m, ε)-extractor if for every independent random variables X1, . . . ,X` satisfying H∞(Xi) ≥
k for i = 1, . . . , ` it holds that

dist

(

Ext(X1, . . . ,X`), Um

)

< ε

Parameters and qualifiers:

• The parameter ` is called the number of samples of the extractor. In all of our constructions
we will use ` which is a constant independent of the input length.

• The parameter m is called the output length of the extractor. Usually, we’ll use m = n.

• The parameter k is called the min-entropy requirement by the extractor.

• The parameter ε is called the statistical distance of the extractor.

• One can also make a weaker definition in which the extractor is required to output a close
to uniform value only if the variables X1, . . . ,X` are identically distributed. We call such
an extractor a same-source extractor. Thus, we will sometimes say that a standard (as per
Definition 2.1) multiple-sample extractor is a different-source extractor.

We now define the weaker notion of a disperser:

Definition 2.2 (Multiple-sample disperser). A function Disp : {0, 1}n·` → {0, 1}m is called a
`-sample (k,m)-disperser if for all sets X1, . . . ,X` satisfying |Xi| ≥ 2k for i = 1, . . . , ` it holds that

Disp(X1, . . . ,X`) = {0, 1}m

Notes:

• We will use the same names for the parameters and qualifiers of dispersers as we used for
extractors (e.g., number of samples, output length, same-source/different-source).

• In previous literature dispersers are usually defined with a parameter ε analogous to the
statistical distance of extractors, requiring that |Disp(X1, . . . ,X`)| ≥ (1 − ε)2m instead of the
requirement we make. Thus, one can think of our definition as setting ε = 0. However, in
our particular setting of independent samples, this is essentially without loss of generality as
we can convert a disperser satisfying the weaker definition with any constant ε < 1/2 into a
disperser satisfying the stronger definition with only a constant factor increase in the number
of samples.14

14This can be done for example by identifying the set {0, 1}n with elements of a prime field F (as we do in the
sequel) and using the Cauchy-Davenport theorem. This theorem says that if A and B are subsets of a prime field F,
then the set A + B = {a + b|a ∈ A, b ∈ B} is of size at least min{|F|, |A| + |B| − 1}. Hence, if A1, . . . ,Ak are sets of
size > ε|F| with k > 2/ε then A1 + . . . + Ak = F.
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Basic facts and observations. The following facts regarding multiple-sample extractors and
dispersers are either known or easy to verify:

• There does not exist a 1-sample disperser (and hence extractor) even with only one bit of
output and even if the source is assumed to have n − 1 bits of min-entropy.

• There is a simple construction for a 2-sample same-source 1-bit output extractor whenever
the source min-entropy is larger than O(log 1

ε ) (where ε is the statistical distance). This is
the extractor that on input x, y outputs 1 if x > y.

• In contrast, by Ramsey-type arguments, a 2-sample same-source disperser (and hence an
extractor) with more than 1 bit of output requires the input min-entropy to be at least log n.
The same holds for a different-source 1-bit output disperser.

The best known previous explicit constructions for both cases require the min-entropy to be
more than n/2 [CG85, Vaz87]. Indeed, the function H : {0, 1}2n → {0, 1} defined as follows
H(x, y) =

∑
xiyi (mod 2) (i.e., the adjacency function of the Hadamard graph) is known to

be a 1-bit output extractor for sources with more than n/2 entropy [CG85]. This is essentially
the best known previous construction in terms of the minimum entropy requirement. There
has been some improvement in obtaining variants of this extractor that have a larger output
size [Vaz87, Elb03, DO03], although these still require at least n/2 entropy. (Also, as mentioned
above, it is known that the adjacency function of the Paley graph is a 1-bit output extractor
which works as long as one of its inputs has more than n/2 entropy while the other input
only needs to have more than log n entropy [GS71, Alo95] . However, in this paper we restrict
ourselves to the symmetric case where all sources have the same entropy requirement.)

• Using enumeration over all possible seeds, one can use a seeded extractor to obtain a polynomial-
samples same-source extractor with the same requirement over the min-entropy. It is also
possible to generalize this to work for different sources[RSW03].

Explicit constructions. In the definition of extractors and dispersers we did not require these
functions to be efficiently computable. However, we will naturally be interested in obtaining extrac-
tors and dispersers that are computable in polynomial-time. We call such constructions explicit.

3 Constructing a Multiple-Sample Extractor

In this section we prove Theorem 1.1. That is, we construct an extractor Ext (where Ext : {0, 1}`·n →
{0, 1}n) such that Ext(X1, . . . ,X`) is statistically close to the uniform distribution for every inde-
pendent random variables X1, . . . ,X` over {0, 1}n with high enough min-entropy (i.e., at least δn
where ` = poly(1/δ)). Our extractor will be very simple, involving only a recursive composition of
the operation (a, b, c) 7→ a · b + c. As noted in the introduction, this is the same exact construction
used by Zuckerman [Zuc90].

Formally, we fix a suitable field F (see below) and define the functions Exti for all i ∈ N

recursively as follows:

• For every i, the function Exti will be a mapping from F
3i

to F.

• Ext0 : F
30

= F → F is the identity function Ext0(x) = x.

9



• Assume Exti is already defined. We define Exti+1 : F
3i+1

=
(

F
3i

)3
→ F as follows:

for every x1, x2, x3 ∈ F
3i

,

Exti+1(x1, x2, x3)
def
= Exti(x1) · Exti(x2) + Exti(x3)

Our extractor will be equal to Exti for a suitably chosen constant i. When extracting from a
string in {0, 1}n we will choose as the field F to be of the form GF(N) for some prime N ∈ [2n, 2n+1)
(and hence we can identify any string in {0, 1}n with an element in the field F). We postpone the
issue of finding such a prime to Section 3.4.

Theorem 1.1 will follow from the following two lemmas:

Lemma 3.1. There exists some constant ε > 0 such that for every distributions A,B, C over a
prime field F each with min-entropy at least m, the distribution A · B + C is 2−εm-close to having
min-entropy at least min{(1 + ε)m, 0.9 log |F|}.

Lemma 3.2. Let A1, . . . ,A9 be 9 independent distributions over a prime field F each with min-
entropy at least 0.9 log |F|. Then, Ext2(A1, . . . ,A9) is of distance at most |F |−0.01 from the uniform
distribution over F.

Lemmas 3.1 and 3.2 imply Theorem 1.1. Indeed, Lemma 3.1 implies that for every constant
δ > 0, if we let i = log(1+ε)(1/δ) then the output of Exti is close to having min-entropy 0.9 log |F|.
Note that the number of samples Exti requires is 3i which is polynomial in 1/δ. We use Lemma 3.2
to get from min-entropy 0.9 log |F| to a close to uniform output. Using the union bound, the
statistical distance of the extractors output from the uniform distribution on F will be at most
N−Ω(1). We defer the proof of Lemma 3.2 to Section 3.6 and now turn to proving Lemma 3.1.15

3.1 Basic Facts and Notations

Before proving Lemma 3.1, we introduce some notations and some tools that will be used in the
course of the proof. We identify a set A with the uniform distribution on elements of A. If D is a
distribution then we denote by cp(D) the collision probability of D; that is, cp(D) = Prx,y←RD[x =
y]. Note that for a set A , cp(A) = 1

|A| . If A and B are distributions over subsets of the field F,
then we denote by A + B the distribution obtained by picking a at random from A, b at random
from B and outputting a + b. Note that this distribution may be far from the uniform distribution
with the same support. We define the distribution A · B in a similar way. For k ∈ Z and A a set
or a distribution we define kA and Ak in the natural way.16

We say that a distribution X is a convex combination of distributions X1, . . . ,Xm if there exist
numbers p1, . . . , pm ∈ [0, 1] such that

∑

i pi = 1 and the random variable X (when looked at as a
vector of probabilities) is equal to

∑

i piXi.
The following lemmas would be useful:

15Note that we could prove Theorem 1.1 without using Lemma 3.2 by applying the previously known two-sample
extractors that work for entropy larger than log |F|

2
. In addition, Salil Vadhan observed that using the fact that the

function family {hb,c} (where hb,c(a) = a · b + c) is pairwise independent and the Leftover Hash Lemma of [HILL89],
one can prove that under the conditions of Lemma 3.2 the first 0.8 log |F | bits of A1 · A2 + A3 are within statistical
distance |F |−0.01 to the uniform distribution. This is also sufficient to prove Theorem 1.1.

16E.g., for k > 0, kA = A + · · · + A� ��� �

k times

and for k < 0, kA = −A− · · · − A� ��� �

|k| times

.
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Lemma 3.3. Let X and Y be distributions, then Pr[X = Y] ≤
√

cp(X )cp(Y) ≤ max{cp(X ), cp(Y)}.

Proof. For every i in the union of the supports of X and Y, let xi denote the probability that X = i
and let yi denote the probability that Y = i. Then

Pr[X = Y] =
∑

i

xiyi ≤
√

∑

i

x2
i

∑

j

y2
j

by Cauchy-Schwartz, however this is the geometric mean of cp(X ) and cp(Y) (which is less than
the maximum of these quantities).

Corollary 3.4. Let A, C be distributions over F. Then cp(A + C) ≤
√

cp(A−A)cp(C − C).

Proof. Let A′ and C′ be two new independent random variables distributed identically to A and C
respectively. Then,

cp(A + C) = Pr[A + C = A′ + C′] = Pr[A−A′ = C − C′]

which is smaller than
√

cp(A−A)cp(C − C) by Lemma 3.3.

Lemma 3.5. Suppose that X is a convex combination of distributions X1, . . . ,Xm. Then cp(X ) ≤
max{cp(X1), . . . , cp(Xm)}.

Proof. Using induction on m, this reduces to the case that m = 2 (since we can treat the combi-
nation of X1, . . . ,Xm−1 as one distribution whose collision probability is bounded using induction).
However in this case X = αX1 + (1 − α)X2 and then

cp(X ) = α2cp(X1) + 2α(1 − α) Pr[X1 = X2] + (1 − α)2cp(X2)

However, Pr[X1 = X2] ≤ max{cp(X1), cp(X2)} by Lemma 3.3 and so we’re done.

Lemma 3.6. Let X be a distribution such that cp(X ) ≤ 1
KL . Then X is of statistical distance 1√

L
from having min-entropy at least log K.

Proof. We can split X into a convex combination X = αX ′ + (1 − α)X ′′, where X ′ contains the
“big” elements of X that are obtained with probability at least 1

K and X ′′ contains the rest of X .

We see that cp(X ) ≥ α2cp(X ′), and so 1
KL ≥ α2

K and thus α ≤ 1√
L
. However, H∞(X ′′) ≥ log K

and so we’re done.

Note that if H∞(X ) ≥ k then clearly cp(X ) ≤ 2−k. Together with Lemma 3.6 this implies that,
up to an arbitrarily close to 1 multiplicative factor and an exponentially small (in the min-entropy)
statistical distance, H∞(X) is approximately equal to log(1/cp(X )). (The quantity log(1/cp(X ))
is sometimes called the 2-entropy or the Renyi entropy of X .)
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3.2 Additive Number-Theoretic Results

The following two lemmas hold for any Abelian group, and so the “+” operator may be replaced
in them by “·”. Note that we didn’t state these lemmas with the most optimal choice of constants.

Lemma 3.7 ([Ruz96] (see also [Nat96, Ruz89])). Let A,B, C be subsets of some Abelian group G.
Then, |A + C||B| ≤ |A + B||B + C|.

In particular, |A| = |B| = M and ρ > 0 is such that |A + B| ≤ M 1+ρ then |A + A| ≤ |A+B|2
M ≤

M1+2ρ.

In other words, if A+B is “small” for some B then A+A is small. Note that Lemma 3.7 implies
that we can replace A+A and A · A in Theorem 1.4 with A+ B and A · B. Note that Lemma 3.7
also implies that if |A| = M , |B| ≥ M 1−ε and |A + B| ≤ M 1+ρ then |A + A| ≤ M 1+2ρ+ε.

We’ll use the following lemma of Gowers (which is a quantitative improvement of a result by
Balog and Szemerédi). We state it here using different sets A,B (similarly to the way it is quoted
in [BKT03], although in [Gow98] it is stated with A = B). See also Lemma A.5 for a generalization
of this lemma obtained by [SSV04].17

Lemma 3.8 (Proposition 12, [Gow98]). Let A,B be subsets of some group G with |A| = |B| = M
and let ρ > 0 be such that cp(A + B) ≥ 1

M1+ρ . Then, there exists A′ ⊆ A and B′ ⊆ B such that
|A′|, |B′| ≥ M1−10ρ and |A′ + B′| ≤ M1+10ρ.

We remark that it can be shown that if A = B in the conditions of this lemma, then A ′ = B′
in its conclusion. We also note that we can apply the lemma even if A and B are of different sizes,
as long as they are close enough. Indeed, if |A| = M and |B| = M 1−ρ/10, then we can partition A
to subsets A1, . . . ,Ak of size |B| and since A + B is a convex combination of Ai + B, one of these
subsets has collision probability as least as large as cp(A + B), and we can apply the lemma to it.

3.3 Proof of Lemma 3.1

Fixing ε. We fix ε small enough such that for every M < |F|0.99, Theorem 1.5 ensures us that if
X is a set of size at least M 1−104ε then max{|X ·X |, |X +X|} is at least M 1+104ε (e.g., we can take
ε = ε0/10

9). Note: This is the only place in the proof we use the fact that F is a prime field. In
particular, using Theorem 1.4 instead of Theorem 1.5, our proof yields also a variant of Lemma 3.1
for non-prime fields (see Lemma 3.14).

Statistical analog of Theorem 1.5. Roughly speaking, Theorem 1.5 says that if |A · A| is
“small” then |A + A| is “large”. By combining Theorem 1.4 with Lemma 3.7, it is possible get
a “different sets” analog of this statement and show that for every set A of size M , if |A · B| is
“small” (i.e. ≤ M 1+ε) for some set B of size M , then |A + C| is “large” (≥ M 1+ε) for every set C
of size M .

17 We note that in some sources the lemma is stated with the condition being that the distribution A + B is of
statistical distance at least M−Cρ from having min-entropy (1 + ρ) log M (a condition that up to constant factor
in the distance is equivalent to the condition that there is a subset C of A × B such that |C| ≤ M 1+ρ/(2C), but
Pr[A+B ∈ C] ≥ M−Cρ). However this is equivalent to our statement below by the observations above on the relation
between min-entropy and collision probability. In particular, if there is such a set C the the collision probability of
A + B is at least Pr[A + B ∈ C]|C|−1.
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At this point we would have liked to obtain a collision probability analog of this statement.
That is, we would like to prove that if A,B, C are uniform distributions over sets of size M , and
cp(A · B) ≥ 1

M1+ε then cp(A + C) ≤ 1
M1+ε . Unfortunately, this is false, as can be witnessed by

considering the following counterexample: Let M = N 0.1 and let A = B = C be a distribution that
is an arithmetic progression of size M with probability 1

2 and a geometric progression of size M
with probability 1

2 . For such a distribution, both cp(A + A) and cp(A · A) are at least Ω(1/M).18

However, we are able to prove a slightly weaker statement. That is, we show that if A·B is small
in set-size, then A + C shrinks significantly in collision probability. This is stated in the following
lemma:

Lemma 3.9. Let M and ε be as above and let A ⊆ F be a set such that |A| ≥ M 1−20ε but
|A · B| ≤ M 1+20ε for some B with |B| ≥ M 1−20ε. Then cp(A + C) is smaller than 1

M1+20ε for all
sets C of size M .

Proof. If cp(A + C) ≥ 1
M1+20ε then by applying Lemma 3.8 (with ρ = 60ε, and assuming ε < 1/10)

it holds that there exists subsets A′, C′ of A and C respectively such that |A′|, |C′| ≥ M1−600ε but
|A′ + C′| ≤ M1+600ε. This means by Lemma 3.7 that |A′ + A′| ≤ M1+2000ε. However, this means
that |A′ · A′| ≥ M1+104ε by Theorem 1.5 which implies that |A′ · B| ≥ M1+103ε by Lemma 3.7.
However, since A′ ⊆ A this implies that |A·B| ≥ M 1+103ε , contradicting our initial assumption.

We call a set A satisfying the conclusion of Lemma 3.9 (M, 20ε)-plus-friendly. That is, A is said
to be (M, ε′)-plus-friendly if cp(()A + C) ≤ M−1−ε′ for every C with |C| = M . Since M and ε are
fixed for this proof, we’ll sometimes drop the prefix (M, 20ε), and simply call (M, 20ε)-plus-friendly
sets plus-friendly. Reversing the roles of addition and multiplication we obtain

Lemma 3.10. Let M and ε be as above and let A ⊆ F be a set such that |A| ≥ M 1−20ε but
|A + B| ≤ M 1+20ε for some B with |B| ≥ M 1−20ε. Then cp(A · C) is smaller than 1

M1+20ε for all
sets C of size M .

Again, we call a set A satisfying the conclusion of Lemma 3.10 (M, 20ε)-times-friendly and
again in the following we’ll sometimes simply call such sets times-friendly. The main step in our
proof will be the following lemma:

Lemma 3.11. Let A ⊆ F with |A| = M . Then, there exist two disjoint subsets A+ and A× such
that

• A+ is either empty or (M, ε)-plus-friendly.

• A× is either empty or (M, ε)-times-friendly.

• |A \ (A+ ∪A×)| < M1−ε. (I.e., A+ ∪A× capture almost all of of A.)

Note that this lemma implies that the counterexample described above (of a distribution that is
an arithmetic progression with probability half and a geometric progression with probability half)
captures in some sense the worst case for the theorem.

18Let Aarith denote the arithmetic progression. A random element from A + A is in the set Aarith + Aarith with
probability at least 1

4
. However, because the set Aarith + Aarith is of size at most O(M), we get that cp(A + A) ≥

1
16

Ω(1/M) = Ω(1/M). The symmetrical reasoning shows that cp(A · A) ≥ Ω(1/M).
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Proof of Lemma 3.11. We prove the lemma by repeatedly applying Lemma 3.8 to construct the sets
A+,A×. We start with A+ = ∅ and A× = A. At each point we remove some elements from A×
and add them to A+. We always maintain the invariant that A+ is either empty or plus-friendly.

If |A×| < M1−ε then we’re done (since we can then let A× = ∅ and have |A×∪A+| ≥ M−M1−ε).
If A× is (M, ε)-times-friendly then we’re done. Otherwise, there exists B ′′ of size M such that
cp(A× · B′′) ≥ 1

M1+ε and so we can apply Lemma 3.8 to obtain subsets A′ of A× and B′ of B′′ such
that |A′|, |B′| ≥ M1−5ε but |A′ ·B′| ≤ M1+5ε. By Claim 3.9, A′ will be (M, 10ε) (and so in particular
(M, ε)) plus-friendly, and so we can remove it from A× and add it to A1 (i.e., let A+ = A+ ∪ A′
, A× = A× \ A′). Note that the union of disjoint plus friendly sets is plus-friendly with the same
parameters (since a convex combination of low collision-probability distributions has low collision
probability by Lemma 3.5). We continue in this way until either A× is (M, ε)-times-friendly or
|A×| ≤ M1−ε.

Using Lemma 3.11, we can obtain a collision-probability analog of Corollary 1.6:

Lemma 3.12. Let A,B, C ⊆ F with |A| = |B| = |C| = M . Then A · B + C is M−ε-close to having
collision probability at most 1

M1+ε

Proof. We split A into A+ and A× as per Lemma 3.11. The distribution A · B + C is within
M−ε statistical distance to a convex combination of the distribution X+ = A+ · B + C and the
distribution of X× = A× · B+C. (Unless A+ or A× is empty, in which case A·B+C is within M−ε

statistical distance to one of these distributions.) We will finish the proof by showing that for both
distributions X+ and X×, if the corresponding set is not empty, then the collision probability is at
most 1

M1+ε .

Showing that cp(A+ · B + C) ≤ 1
M1+ε . Using Lemma 3.5, cp(A+ · B + C) ≤ maxb∈F cp(A+b + C).

However cp(A+b + C) = cp(A+ + Cb−1) since the latter distribution is a permutation of the
former distribution (obtained by multiplying each element by b−1). Yet the fact that A+ is
(M, ε)-plus-friendly implies that cp(A+ + Cb−1) ≤ 1

M1+ε .

Showing that cp(A× · B + C) ≤ 1
M1+ε . This follows immediately from the fact that cp(A× · B) ≤

1
M1+ε and since cp(A× · B + C) ≤ cp(A× · B) (as A× · B + C is a convex combination of
distributions of the form A× · B + c for some fixed c ∈ C).

3.3.1 Finishing up

Lemma 3.12 almost directly implies Lemma 3.1: First we use the known fact that if the distributions
A,B, C have min-entropy at least m, then the joint distribution A,B, C is a convex combination on
independent distributions of the form A′,B′, C′ where each of these is a uniform distribution on a
set of size at least M = 2m. Thus, it is sufficient to prove Lemma 3.12 for such distributions. By
Lemma 3.12, for such distributions the distribution A′ · B′ + C′ is within M−ε distance of having
collision probability at most 1

M1+ε for some constant ε > 0. Now, by applying the Lemma 3.6 (with

K = M1+ε/2, L = M ε/2) we obtain that A′ ·B′+C′ is within statistical distance M−ε +M−ε/4 from
having min-entropy at least log(M (1+ε/2)) = (1 + ε/2)m.
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3.4 Constructing the field F

Recall that our extractor obtains inputs in {0, 1}n, and needs to treat these inputs as elements of a
field F of prime order. Unfortunately, there is no known deterministic polynomial-time algorithm
that on input 1n outputs an n-bit prime (without assuming a strong number-theoretic assumption
about the distance between consecutive primes). Fortunately, in our setting we can still find such
a prime. The reason is that we can use some of our samples from the high-entropy distribution to
obtain such a prime. To do so, we will use the following result on seeded dispersers (which we state
here with the parameters suitable for our purposes):

Theorem 3.13 ([Zuc91]). For every δ > 0, there exists a constant d > 1 and a polynomial-time
computable function D : {0, 1}(10/δ)n×{0, 1}d log n → {0, 1}n such that for every set A ⊆ {0, 1}(10/δ)n

with |A| ≥ 22n, it holds that
∣
∣
∣D(A, {0, 1}d log n) ∩ {0, 1}n

∣
∣
∣ ≥ (1 − 1

n2 ) · 2n

Let D be the function obtained from Theorem 3.13 and identify its output with a number in [2n].
We say that x ∈ {0, 1}(10/δ)n is “bad” if 2n+D(x, y) is not a prime number for every y ∈ {0, 1}d log n.
Because the set of primes has more than 1/n2 density in the interval [2n, 2 · 2n],the set of all bad
x ∈ {0, 1}(10/δ)n is of size at most 22n. This means that if we take 10/δ samples x1, . . . , x10/δ from
10/δ independent distributions over {0, 1}n each of min-entropy at least δn, then the probability
that the concatenation x of x1, . . . , x10/δ is bad is exponentially low (at most 22n/2(10/δ)·δn = 2−8n).

This means that with 1 − 2Ω(n) probability if we enumerate over all seeds y ∈ {0, 1}d log n (which
can be done in polynomial time), then we will find some y such that 2n + D(x, y) is prime. Note
that we can check primality in deterministic polynomial-time [AKS02].19 Thus we can construct the
field F with very high probability by using the first (10/δ)n samples and the function D to obtain
a prime P ∈ [2n, 2n+1]. We then embed the set {0, 1}n in the field F = GF(P ). Note that since
n ≥ log P − 1 there is no significant loss in relative entropy by this embedding.

Using non-prime fields. A different approach to solve the problem of obtaining the field F is
to use a non-prime field such as GF(2p) (where p now is a small prime and hence can be easily
found) and then use Theorem 1.4 (the version proved in Appendix A) instead of Theorem 1.5. This
would yield the following variant of Lemma 3.1:

Lemma 3.14. There exists an absolute constant c > 0 such that for every prime p every δ > 0
and every distributions A,B, C over GF(2p) with H∞(A),H∞(B),H∞(C) > δp, the distribution
A · B + C is 2−εm-close to having min-entropy at least min{(1 + ε)m, 0.9 log |F|} where ε = cδ.

3.5 Decreasing the statistical distance.

We now show how we can decrease the statistical distance by repetition. We use the following
variant of a XOR-lemma:

Lemma 3.15. Let Y1, . . . ,Yt be independent distributions over F such that dist(Yi, UF) < ε for
every i = 1, . . . , t. Then

dist (Y1 + · · · + Yt, UF) ≤ εt

19It is possible to use the same idea to run also a probabilistic primality testing algorithm using some additional
samples from the high entropy sources.
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Proof. We can represent each distribution Yi as a convex combination of the following form: with
probability (1 − ε) we get Ui (where each Ui is an independent copy of the uniform distribution)
and with probability ε an element of some distribution Ỹi. Thus, one can think of the distribution
Y1 + . . . + Yt as a convex combination where with probability εt we get an element of the form
Ỹ1+· · ·+Ỹt and with probability 1−εt we get a distribution of the form Ỹ +UF for some distribution
Ỹ which is independent of UF. In other words w.p. −εt we get the uniform distribution.

3.6 Proof of Lemma 3.2

Before proving Lemma 3.2, we’ll prove the following related lemma:

Lemma 3.16. Let F be any field of size N , and let A,B, C,D be four independent random variables
over F, where each variable has collision probability at most 1/M for some M > N 3/4 Then,

dist ((A− C) · (B −D), UF) < O(N3/2/M2)

where UF denotes the uniform distribution over F.

We will start with a variant, where we divide rather than multiply, and where A = C and
B = D. (Throughout this section, we will always use N to denote the size of the field F.)

Lemma 3.17. Let A1,A2 be identical independent random variables over F with collision probability
at most 1/M for some M > N 1/2 and let B1,B2 be likewise. Then,

dist
(
(A1 −A2) · (B1 − B2)

−1, UF

)
≤ O(N/M 2)

(We can ignore the event that B1 = B2 and we need to divide by zero, since it happens with
probability at most 1/M . Thus, no matter how the value of x/0 is defined, it won’t contribute
more than 1/M to the statistical distance.)

Proof. Let s be an arbitrary non-zero element of F. The distribution A1 +sB1 is a random variable
over F and hence has collision probability at least 1

N . Hence we see that

Pr[(A1 + sB1) = A2 + sB2)] ≥ 1
N

There are two ways that this equality can occur. If B1 = B2 then this equation can only hold if
A1 = A2. Otherwise, it holds only if s = (A1 −A2) · (B1 − B2)

−1 and hence we get that

Pr[s = (A1 −A2) · (B1 −B2)
−1] + Pr[A(1) = A(2) ∧ B(1) = B(2)] ≥ 1

N

So Pr[s = (A1 − A2) · (B1 − B2)
−1] ≥ 1

N − 1/M2 for all s 6= 0, so almost all field elements are at
least close to the uniform probability. The distance between two distributions D1 and D2 can be
expressed as 2

∑

s|D1(s)≥D2(s)(D1(s)−D2(s)). Taking D1 as the uniform distribution on F, and D2

as the above distribution, each s except 0 contributes at most 1/M 2, and 0 contributes at most
1/N to this sum. Hence,the statistical distance is at most 2N/M 2 + 2/N = O(N/M 2).

Lemma 3.18. Let X and Y be independent random variables on a set S of size N . Then cp(X)+
cp(Y ) + 2Pr[X = Y ] ≥ 4/N .
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Proof. Let X be distributed according to D0 and Y according to D1. Then let D1/2 = 1/2D0 +
1/2D1. Then D1/2 is a probability distribution on S, so cp(D1/2) ≥ 1/N . On the other hand,
cp(D1/2) =

∑

s∈S(1/2D0(s)+1/2D1(s))
2 = 1/4(

∑

s∈S D0(s)
2+2

∑

s∈S D0(s)D1(s)+
∑

s∈S D1(s)
2) =

1/4(cp(X) + 2Pr[X = Y ] + cp(Y ).

Lemma 3.19. Let A,B, C,D be four independent variables over F each with collision probability at
most 1/M where M > N 1/2. Let A1,A2 be two independent variables distributed the same as A, and
likewise for B1,B2, C1, C2,D1,D2. Then for any s ∈ F, s 6= 0, Pr[s = (A1−A2)(B2−B1)

−1]+Pr[s =
(C1 − C2)(D2 −D1)

−1] + 2Pr[s = (A− C)(D − B)−1] ≥ 4/N − O(1/M 2).

Proof. Let X be A + sB and Y be C + sD. Note that, by a similar case analysis to the proof of
Lemma 3.17, cp(X) ≤ Pr[s = (A1 − A2)(B2 − B1)

−1] + 1/M2, cp(Y ) ≤ Pr[s = (C1 − C2)(D2 −
D1)

−1] + 1/M2 and Pr[X = Y ] ≤ Pr[s = (A− C)(D − B)−1] + 1/M2 (using Lemma 3.3 to bound
the probabilities that A = C and B = D). The claim then follows from Lemma 3.18.

Lemma 3.20. Let A,B, C,D be four independent random variables over F each with collision
probability at most 1/M where M > N 1/2. Then,

dist
(
(A− C) · (B −D)−1, UF

)
< O(N/M 2)

where UF denotes the uniform distribution over F.

Proof. The statistical distance between (A − C)(D − B)−1 and UF can be computed as the sum
of Pr[UF = s] − Pr[(A − C)(D − B)−1 = s] for all s ∈ F where this difference is positive. Since
Pr[UF = s] = 1/N , using Lemma 3.19, we see that for all such s 6= 0 (the case s = 0 can add at
most 1/M to the distance) it is the case that

1

N
− Pr[s = (A− C)(D − B)−1] ≤
1

2
Pr[s = (A1 −A2)(B2 − B1)

−1] − 1

N
− 1

2
Pr[s = (C1 − C2)(D2 −D1)

−1] + O(1/M 2) ≤
1

2

∣
∣
∣Pr[s = (A1 −A2)(B2 − B1)

−1] − 1

N

∣
∣
∣ +

1

2

∣
∣
∣
1

2
Pr[s = (C1 − C2)(D2 −D1)

−1]
∣
∣
∣ + O(1/M 2)

Summing this over all such s, we get that

dist
(
(A− C) · (B −D)−1, UF

)
≤

1
2dist

(
(A1 −A2) · (B2 − B1)

−1, UF

)
+ 1

2dist
(
(C1 − C2) · (D2 −D1)

−1, UF

)
+ O(N/M 2)

which is at most O(N/M 2) by Lemma 3.17.

To finish the proof we also use the following simple observation about the relation between
L2 and L1 norm, or in our notations, between the statistical distance of a random variable from
uniform and the difference between the collision probability of this random variable and 1/N .

Lemma 3.21. Let Z be a random variable over F. Let δ = dist(Z, UF). Then 1/N + δ2/N ≤
cp(Z) ≤ 1/N + δ2.

Proof. Let δs = |Pr[Z = s] − 1/N |. Then
∑

s∈F
δs = δ, and

∑

s∈F
δ2
s =

∑

s(Pr[Z = s])2 −
2/N

∑

s[Pr[Z = s] + N/N 2 = cp(Z) − 1/N . By convexity,
∑

δ2
s is minimized when all δs = δ/N

and maximized when one δs = δ. Thus, δ2/N ≤ cp(Z) − 1/N ≤ δ2.
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To obtain Lemma 3.16, we note that for every two distributions X ,Y over F \ {0}, cp(X · Y) =
cp(XY ). Indeed, x · y = x′ · y′ if and only if x

y′ = x′

y . By Lemma 3.20, dist((A− C)(D − B)−1, UF) =

O(N/M2). Thus, from the previous lemma, cp((A− C)(D−B)) = cp((A−C)(D−B)−1) ≤ 1/N +
O(N2/M4). Then it follows from the lemma above that dist((A−C)(D−B),U)2/N ≤ O(N 2/M4),
so dist((A− C)(D − B),U) ≤ O(N 3/2/M2).

Proving Lemma 3.2. We can now prove Lemma 3.2. Indeed, for every 9 distributions X1, . . . , sX9,
cp(Ext2(X1, . . . ,X9)) ≤ cp(Ext1(X1,X2,X3) ·Ext1(X4,X5,X6)), since adding the additional indepen-
dent distribution Ext1(X7,X8,X9) cannot increase the collision probability. Hence, it is enough to
prove that for X1, . . . ,X6 of min-entropy 0.9 log N , the distribution (X1 · X2 + X3) · (X4 · X5 + X6)
is N−0.1 close to the uniform distribution over F. Yet this distribution is a convex combination of
distributions of the form (X1 · x2 + X3) · (X4 · x5 + X6) for fixed (and with very high probability
non-zero) x2, x5 ∈ F. Any such distribution is of the form (A−B)(C−D) (for A = X1 ·x2, B = −X3,
C = X4 · x5, D = −X6) and hence the result is implied by Lemma 3.16.

4 A Constant-Samples Same-Source Disperser for Low Min-Entropy

In this section we prove Theorem 1.3. That is, we construct a constant-samples same-source
disperser for subsets of {0, 1}n of size nO(1). A central tool we will use is the deterministic coin
tossing technique. This technique was used in several contexts in computer science (e.g., the parallel
algorithm of [CV86]), and it was also used in a very similar context to ours by Erdős and Hajnal
(where it was called the “stepping up lemma”, see Section 4.7 in [GRS80]) and Fiat and Naor [FN93].
By “deterministic coin tossing” we mean the function ct : {0, 1}2n → [n] defined as follows: for
every x, y ∈ {0, 1}n, ct(x, y) is equal to the first position i such that xi 6= yi (if x = y then we let
ct(x, y) = n). The following property of this function will be useful for us:

Lemma 4.1. For every A ⊆ {0, 1}n, |ct(A,A)| ≥ log |A|

Proof. Let S ⊆ [n] denote ct(A,A) and suppose for the sake of contradiction that |A| > 2 |S|. Then,
by the pigeon-hole principle, there exist two distinct strings x, y ∈ A such that x agrees with y on
all the coordinates of S. However, for such x and y clearly ct(x, y) 6∈ S.

The main idea behind our construction of a disperser is to apply the function ct in order to
map our initial domain {0, 1}n to the much smaller domain [n], and then use brute force to find
an optimal disperser (or even extractor) on this smaller domain. In fact, we will need to apply the
function twice to reduce our domain to the domain [log n] so we can apply brute force and obtain
an optimal disperser for the smaller domain. That is, we use the following simple lemma:

Lemma 4.2. For every constant m every n, it is possible to construct in 2O(n) time the table for
a function Eopt : [n] × [n] → [m] such that for every A ⊆ [n] with |A| > log n + 10m, it holds that
|Eopt(A,A)| ≥ m

2

Proof. One way to do so will be to go over all possible functions until we find a function satisfying
this condition (there will be such a function because a random function satisfies it with high
probability). However, enumerating all possible functions will take take mn2

-time. Note that testing
this condition only requires going over all such subsets A which are at most min{2n, n10m+log n}
many.
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Thus if we reduce the number of functions to test to something smaller than this number then
we can reduce the overall time to 2O(n). This can be done by considering functions from a sample
space over [m]n

2
which is 2−n-close to being (log n + 10m)2-wise independent. There are explicit

construction for such sample spaces with 2O(n) many points [NN93].

Proof of Theorem 1.3. To prove Theorem 1.3, we consider the following disperser Disp:

Disp(x1, . . . , x8) = Eopt

(
ct

(
ct(x1, x2), ct(x3, x4)

)
, ct

(
ct(x5, x6), ct(x7, x8)

))

It clearly runs in polynomial time. We will prove that for every set A of size at least nd2m
,

|Disp(A, . . . , A)| ≥ m
2 . Thus Disp is a disperser with “statistical distance” equal to 1

2 . Such a
disperser can be modified to obtain a disperser according to our standard definition. For example,
this can be done by embedding [m] in some prime field [p] (with m ≤ p ≤ 2m) and letting
Disp′(x1, . . . , x32) = Disp(x1, . . . , x8)+Disp(x9, . . . , x16)+Disp(x1, . . . , x24)+Disp(x25, . . . , x32). By
the Cauchy-Davenport inequalities it will hold that for every set A as above, Disp′(A, . . . , A) = [p].

To prove the bound on A, we note that by Lemma 4.1, if |A| ≥ nd2m
then ct(ct(A,A), ct(A,A)) ≥

log log n+m+log d. Since we apply Eopt on a domain of size log n, by Lemma 4.2, this means that
for d large enough, |Eopt(A,A)| ≥ m

2 , thus finishing our proof.

5 Subsequent and Future Work

In this work we have given the first extractors for a constant number of independent sources, each of
linear entropy. Unfortunately the number of sources needed is a function of the (constant) entropy
rate, and the most obvious next challenge was to remove this dependency.

In very recent work, [BKS+05] have achieved this. They give explicit deterministic extractors
from 3 independent sources of any linear entropy. This was further improved by Ran Raz [Raz05],
who only needs one of the sources to have linear entropy, while the others can have only logarithmic
amount of entropy.

Further results in [BKS+05] give a deterministic disperser from only two independent sources
of constant entropy rate (greatly improving bounds on the Bipartite Ramsey problem). They also
give a disperser for one affine source (a uniform distribution of an affine subspace) of linear entropy
(=dimension). The error in all these constructions is a constant.

All these new results heavily rely on the techniques and results in this paper. They demonstrate
the power of the tools from combinatorial number theory even more, and argue the relevance of
these tools to theoretical computer science.

In light of this progress, the two natural directions which present themselves. The first is
reducing the entropy requirement in extraction from a constant number of sources. Can we go
down to polynomial, or even polylogarithmic entropy? The second is reducing the error in all
these constructions. Can we go down to polynomial, or even exponential error? The first problem
seems to require a way around the [BKT03] argument (which necessarily needs linear entropy). The
second problem seem to require bypassing the use of a non-constructive extractor as a building
block. Both need new ideas!

Another major problem is of course extraction from two sources. The dispersers in [BKS+05]
are strong in the sense that each of their outputs has some constant probability. But the technique
achieving that, called the challenge-response mechanism in that paper, seem to inherently prevent
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extraction. Can one bypass this method, or enhance it? The same question applies equally well
to the problem of extraction from affine sources. An exciting new development in this direction
is a very recent result by Jean Bourgain [Bou05], which gives (again using results from [BKT03]) a
simple algebraic construction of an extractor for 2 independent sources requiring ( 1

2 − ε)n entropy
for some small absolute constant ε > 0.

To summarize, after nearly 20 years of no progress, there seem to be new excitement, ideas,
tools, and results on deterministic extraction from independent sources, and we expect more to
follow soon.
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[Plü70] H. Plünnecke. Eine zahlentheoretische Anwendung der Graphentheorie. J. Reine
Angew. Math., 243:171–183, 1970.

[Pud05] P. Pudlak. On Explicit Ramsey Graphs and Estimates on the Numbers of Sums And
Products, 2005. Unpublished manuscript.

[PR04] P. Pudlak and V. Rodl. Pseudorandom sets and explicit constructions of Ramsey
graphs, 2004. Submitted for publication.

[Raz05] R. Raz. Extractors with Weak Random Seeds, 2005.

[Ruz89] I. Ruzsa. An Application of Graph Theory to Additive Number Theory. Scientia Ser.
A: Mathematical Sciences, 3:97–109, 1989.

[Ruz96] I. Z. Ruzsa. Sums of finite sets. In Number theory (New York, 1991–1995), pages
281–293. Springer, New York, 1996.

[RSW03] O. Reingold, M. Saks, and A. Wigderson. Personal Communication, 2003.

[SV84] M. Santha and U. V. Vazirani. Generating Quasi-Random Sequences from Slightly-
Random Sources. In Proc. 25th FOCS, pages 434–440. IEEE, 1984.

[Sha02] R. Shaltiel. Recent developments in extractors. Bulletin of the European Association
for Theoretical Computer Science, 2002.
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A A Proof of Theorem 1.4

In this section, we prove Theorem 1.4 with a better explicit dependence between the constants ε
and δ (namely ε = Θ(δ)). That is, we prove the following theorem:

Theorem A.1. There exists an absolute constant c0 > 0 such that for every field F and δ > 0
such that |F|1/k is not an integer for every integer 2 ≤ k ≤ (2/δ), and every set A ⊆ F with
|F|δ < |A| < |F|1−δ, it holds that

max{|A + A|, |A · A|} ≥ |A|1+c0δ

Note that Theorem A.1 indeed implies Theorem 1.4 since a finite field F has a subfield of size
M if and only if M = |F|1/k for some integer k.

We prove Theorem A.1 by proving the following two claims A.2 and A.3:

Claim A.2. There exists a fixed size uniform rational expression r(·) such that for every δ, field
F satisfying the conditions of Theorem A.1 and set B ⊆ F with |B| ≥ |F|δ,

|r(B, . . . ,B)| ≥ min{|B|1+δ , |F|}

By a rational expression we mean an expression involving only the operations +,−, · and / and
variable names, but no coefficients (for example, (x1 − x2)/(x2 · x3 + x4)).

20 By fixed size we mean
that the number of operations and variables in the expression does not depend on δ, F or A. A
rational function is obviously a division of two polynomials. We say that a polynomial is uniform if
all its monomials have the same degree. We say that a rational function is uniform if it’s a division
of two uniform polynomials. In fact, the expression r obtained from the proof of Claim A.2 will be
very simple: it will be a uniform 16-variable rational expression with both the nominator and the
denominator of degree 2.

Claim A.3. For every uniform rational expression r(·) there is a constant c (depending on r(·))
such that if A ⊆ F satisfies |A+A|, |A · A| ≤ |A|1+ρ (for sufficiently small ρ > 0) then there exists
a set B ⊆ A with |B| ≥ |A|1−cρ but |r(B, . . . ,B)| ≤ |A|1+cρ.

We note that this actually holds also for non-uniform rational expressions as well, but the proof
is slightly easier for uniform expressions.

20Throughout this section we define x/0 as 0 (it will not matter much since we’ll always have that the event that
the denominator is zero in the expression is zero has negligible probability).
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Proving Theorem A.1 using Claims A.2 and A.3. Claims A.2 and A.3 together imply
Theorem A.1. Indeed let r(·) be the rational expression obtained from Claim A.2 and let c be
the constant (depending on r) obtained from Claim A.3. If for δ, F and A as in the conditions of
the theorem both |A + A| and |A · A| are less than |A|1+δ/(10c) then there is a subset B of size
at least |A|1−cδ/(10c) ≥ |F|δ/2 such that |r(B, . . . ,B)| ≤ |A|1+δ/10 < |B|1+δ/2 , thus obtaining a
contradiction.

We note that Claim A.3 follows almost immediately from Lemmas 2.4 and 3.1 in [BKT03].
Nevertheless, for the sake of completeness, we do provide a proof of Claim A.3 (following similar
lines to the proofs of [BKT03]) in Appendix A.2. We now move to the proof of Claim A.2.

A.1 Proof of Claim A.2

To prove Claim A.2 we’ll prove the following even simpler claim:

Claim A.4. Let F be any field and let B ⊆ F and k ∈ N (with k ≥ 2) be such that |F|1/k < |B| ≤
|F|1/(k−1). Then |B−BB−B | ≥ |F|1/(k−1).

Proof. Suppose otherwise that |B−BB−B | < |F|1/(k−1). Thus we can find s1 6∈ B−BB−B . Similarly, if k > 2

then we can find s2 6∈ B−BB−B + s1
B−B
B−B (since this set is of size at most |B−BB−B |2 < |F|. In this way we

define inductively s1, . . . , sk−1 such that for 1 < i ≤ k − 1,

si 6∈ B−BB−B + s1
B−B
B−B + . . . + si−1

B−B
B−B

Consider the function f(x0, . . . , xk−1) = x0 + s1x1 + . . . + sk−1xk−1. This is a function from Bk

to F where |B|k > |F| and hence it has a collision. That is, there are two vectors ~x = (x0, . . . , xk−1)
and ~x ′ = (x′0, . . . , x

′
k−1) such that ~x 6= ~x ′ but f(~x) = f(~x ′). If we let i be the maximum index such

that xi 6= x′i we see that

(x0 − x′0) + s1(x1 − x′1) + . . . + si−1(xi−1 − x′i−1) = si(x
′
i − xi) .

Dividing by (x′i − xi) we get that si = y0 + s1y1 + . . . + si−1yi−1 where all the yi’s are members of
B−B
B−B , contradicting our choice of si.

To prove Claim A.2 we let F,δ, B be as stated in the theorem and choose k such that |F|1/k <
|B| ≤ |F|1/(k−1). By one invocation of B−BB−B we get to a set of size at least |F|1/(k−1) but since

that is not an integer, this set is of size larger than |F|1/(k−1) (this is for k > 2, for k = 2 we
get to the entire field F). Thus if we compose this expression two times (i.e., let r(x1, . . . , x16) =

r′(x1,...,x4)−r′(x5,...,x8)
r′(x9,...,x12)−r′(x13,...,x16)

where r′(a, b, c, d) = a−b
c−d ) then we get that for k > 2,

|r(B, . . . ,B)| ≥ |F|
1

k−2 = |F|
1

k−1 (1+
1

k−2 ) ≥ |B|1+δ

where for k = 2, r(B, . . . ,B) = F.

A.2 Proof of Claim A.3

We now prove Claim A.3. Before turning to the actual proof, we state two number theoretic lemmas
which we’ll use. These lemmas are variants of the lemmas presented in Section 3.2.
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A.2.1 More number theoretic lemmas.

Stronger form of Gowers’s Lemma. We will use the following generalized and stronger form
of Lemma 3.8 (see [Gow98, BKT03], [SSV04, Claim 4.4]). Because it is such a useful lemma, we state
it below in the most general (and unfortunately also cumbersome) form:

Lemma A.5. Let A1, . . . ,Ak be subsets of some group G with |Ai| = M for all i ∈ [k]. Then,
there exists C = C(k) such that for every ρ > 0, if cp(

∑k
i=1 Ai) ≥ 1

M1+ρ then there are k subsets
A′1, . . . ,A′k with A′i ⊆ Ai and |A′i| ≥ M1−Cρ for every i ∈ [k] satisfying

|
k∑

i=1

A′i| ≤ M1+Cρ (1)

Moreover, Equation 1 is demonstrated by the fact that every element z ∈ ∑k
i=1 A′i can be

represented in M `−1−C′ρ different ways as a sum z = y1 + · · ·+y` (for C ′ = C ′(k) and ` = 2k2 −k)
where each of the yj’s is a member of Ai or −Ai for some i = i(j) (with the choice of a sign also
being a function of j).

Furthermore, if for all i ∈ [k], Ai = A or Ai = −A for some set A then all the subsets A′i are
of the form A′i = A′ or A′i = −A′ for some subset A′ ⊆ A.

It is easy to see that by applying Lemma A.5 for k = 2 we get Lemma 3.8 (perhaps with 10
replaced by a different constant). Lemma A.5 can be proven by a generalization of the proof of
Lemma 3.8, see [SSV04].21 When using Lemma A.5, we will always be in the case that that we have
an upper bound on the set size of

∑k
i=1 Ai (i.e., |∑k

i=1 Ai| ≤ M1+ρ) and not just a lower bound
on its collision probability.

We note that in the proofs below we will use several times this technique of showing that some
set B is not much larger than M by showing that every b ∈ B can be represented in roughly M `−1

ways as a sum of ` elements, each from some set D of size M .

Sumset estimates. We’ll also use the following Lemma, which is a variant of Lemma 3.7:

Lemma A.6 ([Plü70, Ruz96]). Let A,B be subsets of some Abelian group G with |A| = |B| = M
and let ρ > 0 be some number. If |A + B| ≤ M 1+ρ then

|A ± B · · · ± B
︸ ︷︷ ︸

h times

| ≤ M1+2hρ

We note that this lemma immediately implies a similar result for sets that are of slightly different
sizes. That is, if |A| = M and |B| = M 1−ε then we can break up A to A1, . . . ,AMε that are of the
same size as B. We then have that |Ai + B| ≤ |A + B| ≤ M 1+ρ and hence the lemma implies that
for every i, Ai ± B · · · ± B

︸ ︷︷ ︸

h times

| ≤ M1+2hρ. However A± B · · · ± B is just the union of Ai ± B · · · ± B

for all i and hence we get that
|A ± B · · · ± B

︸ ︷︷ ︸

h times

| ≤ M1+2hρ+ε

21We note that this lemma is not stated exactly in this form in [SSV04]. Rather, Claim 4.4 there states that under
these conditions every such z can be represented in roughly M 2k−2 ways as a sum of 2k − 1 elements wl, where each
of these elements can be represented in roughly Mk−1 ways as a sum of k elements in the Ai’s. It is also stated in
[SSV04] in terms of distance from having high min-entropy rather than high collision probability, see Footnote 17.
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Similarly if |B| = M and |A| = M 1−ε then,

|A ± B · · · ± B
︸ ︷︷ ︸

h times

| ≤ M1+2hρ+hε

since if we split sB to B1, . . . ,BMε then we have that A±B · · · ±B is the union of sets of the form
A± Bi1 ± · · · ± Bih for all i1, . . . , ih ∈ [M ε].

A.2.2 The actual proof.

In fact, to prove Claim A.3 it is enough to prove the following claim:

Claim A.7. For every integer k > 0 there exists a constant C = C(k) > 0 such that for every
ρ > 0, if A ⊆ F satisfies |A+A|, |A ·A| ≤ |A|1+ρ then there is a set B ⊆ A such that |B| ≥ |A|1−Cρ

but |Bk − Bk| ≤ |A|1+Cρ.

Obtaining Claim A.3 from Claim A.7. Claim A.7 implies Claim A.3 by applying Lemma A.6.
Indeed, suppose that r is a rational expression where both the numerator and denominator have at
most k′ monomials each of degree k′ (if one of them has monomials of smaller degree than k ′, we can
multiply with a uniform polynomial to make the degree k ′). Let k = 4k′2 and let B be the subset
of A obtained from Claim A.7 such that |Bk −Bk| is at most |A|1+Cρ for some constant C = C(k).
Since |B| ≥ |A|1−Cρ, this means that |Bk − Bk| ≤ |B|1+C′ρ for some different constant C ′. This

implies by Lemma A.6 that |kBk| ≤ |B|1+2C′kρ. Now, kBk ⊇ C def
= (k′Bk′

)(k′Bk′
) and hence the

size of C is also at most |B|1+2C′kρ. Applying Lemma A.6 again we get that
∣
∣
∣
k′Bk′

k′Bk′

∣
∣
∣ ≤ |A|1+4C′kρ.

However, r(B, . . . ,B) ⊆ k′Bk′

k′Bk′ and hence we’re done.

Proof of Claim A.7. We now turn to proving Claim A.7. Let A be a set satisfying the conditions
of the claim, and denote M = |A|. We will prove that for some constant C = C(k) > 0, there is a
subset B ⊆ A of size at least M 1−Cρ such that any member of the set Bk − Bk can be represented
in at least M `−1−Cρ different ways as a sum d1 + . . . + d` where all the elements di come from a
set D of size at most M 1+Cρ for some ` = `(k). This clearly implies that |Bk − Bk| ≤ M1+C′ρ for
some constant C ′ thus proving the claim.

Proof idea: the case k = 2. To illustrate the proof idea, we now sketch the proof for the case
k = 2. The proof for general k follows in exactly the same way, although with more cumbersome
notations. Under the conditions of the claim, |A+A| ≤ |A|1+ρ, and hence cp(A−A) = cp(A+A) ≥
|A|1−ρ. Hence, by Lemma A.5, there exists a set A′ ⊆ A with |A′| ≥ M1−Cρ (where C is some
absolute constant independent of ρ) such that not only |A′ − A′| ≤ M1+Cρ but actually this can
be demonstrated by the fact that every element of A′ −A′ can be represented in at least M 5−Cρ

different ways in the form a1 − a2 + a3 − a4 + a5 − a6 where for i = 1, . . . , 6, ai ∈ A.22

We know that every member of A′ − A′ can be represented in roughly M 5 different ways as
a1 − a2 + a3 − a4 + a5 − a6 with the ai’s in A. Now, if we multiply this by an arbitrary element
of A we get that every member of (A′ −A′)A can be represented in roughly M 5 different ways as
b1 − b2 + b3 − b4 + b5 − b6 with the bi’s in A · A. Since by the conditions of the claim, A · A is

22For simplicity of exposition we assumed that the pattern of + and − signs that is obtained from Lemma A.5 is
as written above. The proof clearly follows through regardless of the fixed pattern we use.
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also of roughly size M , we get that the set (A′ −A′)A is also “not large” (i.e., of size M 1+C′ρ for
some absolute constant C ′). Now consider an element y − z of the set A′2 − A′2. For the sake of
simplicity, we assume for a moment (with loss of generality) that any y in A′ ·A′ can be represented
in roughly M different ways as y = y1y2 with y1, y2 ∈ A′.23 Since z ∈ A′ · A′, it is equal to z1z2 for
some z1, z2 ∈ A′. Every representation y1y2 of y induces a representation of y − z = y1y2 − z1z2

as (y1 − z1)y2 + z1(y2 − z2), and so we get that every element of A′2 −A′2 can be represented as

d1 − d2, with d1, d2 ∈ D def
= (A′ − A′)A in roughly M different ways. However, since we already

showed that the size of D is roughly M , this proves that A′2 − A′2 is also of size roughly M and
hence we’re done (for the case k = 2).

Proving for general k. We now turn to proving the claim rigorously and for any k. Recall that
our goal is to find a not-too-small subset B of A such that Bk − Bk can be represented in roughly
M `−1 ways as a sum of ` elements from a set D that is not too large. We’ll start by defining the
set D.

Let ` be some number, and let a, b ∈ A′ (where A′ is obtained from Lemma A.5 as above) and
c ∈ A′`. By the same reasoning as above, we get that the element (a − b)c can be represented
in at least M 5−Cρ different ways as a1c − a2c + a3c − a4c + a5c − a6c or in other words, it can
be represented in at least M 5−C′ρ different ways as b1 − b2 + b3 − b4 + b5 − b6 for bi ∈ A`+1 for
i = 1, . . . , 6. By the multiplicative version of Lemma A.6, |A`+1| ≤ M1+3`ρ and hence the set
(A′ − A′)A′` is “small” (i.e., of size at most M 6(1+3`ρ)M−(5−C′ρ) ≤ M1+20C′`ρ). Using again the
multiplicative version of Lemma A.6 (setting A = (A′ − A′)A′`−1, B = A′), we get that the set

(A′−A′)A′`A′−`′ is also “small” (i.e., of size at most M 1+C′′ρ for some constant C ′′ = C ′′(`, `′)).24

Using the fact that (A′−1 −A′−1) ⊆ (A′−A′)A′−2, we get that for any `1, `2, the set D`1,`2 defined
as follows:

D`1,`2 = (A′−1 −A′−1
)A′`1A′−`2 ∪ (A′ −A′)A′`1A′−`2

is of size at most M 1+C′′′ρ for some constant C ′′′ depending on `1, `2. We define D def
= ∪`1+`2=`sD`1,`2

for ` as obtained by Lemma A.5 (i.e., ` = 2k2 − k). As desired, we have that |D| ≤ M 1+Cρ where
C is a constant depending on `.

Defining the set B . We now turn to defining the required set B. Utilizing Lemma A.5 again,
we obtain that for some absolute constant D = D(k), there is a set B ⊆ A′ with |B| ≥ M 1−Dρ

and every element in Bk can be represented in M `−1−Dρ ways as a1 · · · a`, where ai is in A′ or in
A′−1 for i = 1, . . . , ` (for ` = 2k2 − k). Let y − z be a member of Bk − Bk. Fix one representation
z = z1 . . . z` of z as a multiplication of elements of A′ or A′−1. The element y can be represented
M `−1−Dρ times as y = y1 · · · y` with yi ∈ A′ for i = 1, . . . , `. For each such representation we define
di = y1 · . . . · yi−1(yi − zi)zi+1 · · · z`. Note that

∑`
i=1 di =

∏`
i=1 yi −

∏`
i=1 zj = y − z. Also note

that for every i, di ∈ D, where D is the set defined above. The map (y1, . . . , y`) 7→ (d1, . . . , d`) is
one-to-one (indeed, given z1, . . . , z` we can recover y1, . . . , y` from d1, . . . , d`). Hence we get that
each member of Bk − Bk can be represented in M `−1−Dρ different ways as

∑`
i=1 di with di ∈ D,

implying that |Bk − Bk| ≤ M1+D′ρ for D′ = D′(k).

23We will not be able to get to that situation in the actual proof below, but we will approximate it using the
multiplicative version of Lemma A.5.

24Again, the case of division by zero does not matter, but for simplicity, we can just remove 0 from the set A′ if
it’s there.
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