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of the schemes, the resulting two prover interactive proofs can be shown to be efficient
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Ben Or, Goldwasser, Kilian and Wigderson [BGKW] introduced the idea of multi- with the
! prover interactive proofs, in order to show how to achieve perfect zero-knowledge up to ti
interact’

interactive proofs for all of IP without using any intractability assumptions.

A multi-prover interactive proof is an extension of an interactive proof. Instead
of one prover attempting to convince the verifier that = (the input string) is in &

prover consists of two separate agents (or rather two provers) who jointly 2 L

language, the
agree on a strategy to convince the verifier that z is in the language. Although the )
provers can agree on a strategy before they talk to the verifier, once the interaction ir}lx this
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with the verifier starts they can no longer send each other messages or see the messages
exchanged between the verifier and the “other prover”,

The main novelty of this model is that the verifier can check interactions with
the provers against each other. This allowed [BGKW] to prove that anything prov-
able in this model has a statistical zero-knowledge proof, without any intractability
assumptions.! Of more practical significance, they give a direct, efficient proof that
membership in any NP language can be done in perfect zero-knowledge. The zero-
knowledge protocol for NP proposed in [BGKW] is an adaptation to the two-prover
model of any of the known zero-knowledge proofs for NP-complete problems in the
one-prover model.

Essentially, the cryptographic encryption schemes used by the protocols of
(GMW], [Bl], and [Sh], are replaced by new commit and reveal protocols. In the
commit protocol, the first (designated) prover commits to a bit value such that the
verifier can not (information theoretically) distinguish between a commitment to a 0
and commitment to a 1. In a reveal protocol, the second prover reveals to the verifier
the value committed to by the first prover. The probability that the provers can cheat
and reveal a different bit to the verifier than the one committed to, can be made neg-
ligible. The commit and reveal protocols consist of a few addition operations which
are of trivial complexity. No other operations such as large modular multiplications
are necessary.

We note that the overall efficiency of our protocols can be increased by using
efficient weaker commital protocol in which the the provers have a non-negligible
probability of error.

The application of zero-knowledge interactive proofs to identification schemes has
been demonstrated in [FS], [MS], [GQ] among others.

In this paper, we suggest applications of the two prover model to the area of
identification schemes. We propose two identification schemes which are much more
efficient than those known for the one prover model. The first is based on the in-
tractability of the subset sum problem, and implements a variant of a protocol due
to Shamir [Sh]. The second is based on the intractability of the circuit satisfiability
problem, and implements a variant of protocols due to Brassard-Chaum~Crépeau
[BCC] and Impagliazzo-Yung [IY]. The verifier, which in this case of the identifica-
tion application is the central computer (or a local center such as an ATM machine),
receives two cards (or one card with two physically separated CPU’s) and interacts
with them to receive a proof that the cards belong to a legal and valid user. It is
up to the verifier to ensure the cards can not communicate with each other while
interacting with him.

2 Definitions and Background

. In this section we review the definitions of multi-prover interactive proofs and the

theorem of [BGKW] that all NP languages have perfect zero-knowledge multi-prover

! Authors’ note: More recently, this proof has been strengthened to achieve perfect zero-knowledge

¢ (to appear in the journa! version of [BGKW].)
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interactive proofs.

Let P;, P, be computationally unbounded Turing machines and V be a probabilis-
tic polynomial time Turing machine. Machines P, P2, and V each have a read-only
input tape, a work tape, communication tapes on which V and P; can write messages
for each other, and a random tape. In addition, P; and P; share the same random

tape.

Definition: Let Pi, P2,V have access to the same input tape. We call (P1, Py, V)a
two prover interaciive protocol.

Definition: Let L C {0,1}". We say that L has a two prover tnteractive proof system
if there exists a probabilistic polynomial time Turing machine V such that:

1. There exists Pp, P, such that (P, P2, V) is a two-prover interactive protocol and
for all z € L. prob(V accepts z} = 1.

2. For all P, P; such that (Py, P, V) is a two-prover interactive protocol, for all
¢ L,
1

prob(V accepts z) < W,
T

for all constant ¢, and for all sufficiently large z.

If the above conditions hold, we call (P, P2, V) from Condition 1 a multi-prover in-

teractive prooffor L.

Definition: Let (P, P;, V) be an interactive protocol. Let Viewp, p,v(z) denote the
verifier’s view during the protocol, i.e the sequence of messages exchanged between
the verifier and the two provers and the verifier’s coin tosses. We say that a two-
prover interactive protocol (Py, P,, V) is perfect zero knouwledge for a language L if
for all V* there exists a probabilistic Turing machine M such that for all z € L,
M(z) is identically distributed to Viewp, p,v+(z) and M(z) terminates in expected
polynomial time. We say that L has a perfect zero knowledge interactive proof if

there exists an interactive protocol (Py, P, V) which is an interactive proof for L and

perfect zero-knowledge for L.
The following theorem is instrumental to prove the correctness and security of our

authentication schemes.

Theorem [BGKW] : For every L € NP, L has a perfect zero knowledge two prover
interactive proof.

3 Subset Sum Based Authentication Scheme

In [Sh] a zero-knowledge proof for 0 /1 modular knapsack was presented for the one-
prover model. We use of the ideas in [Sh] for our first two-prover identification scheme.
Throughout this section we refer to the verifier as V, and to the provers as Py, P;.
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For concreteness sake we suggest the reader envisage the verifier V as an ATM
machine, and the two provers P;, P, as a pair of cards issued to every customer. The
cards and the ATM have a common input, which the Bank gave the customer. When
the customer logs in, this information is visible to the Bank. Ordinarily, the bank
stores pairs (user-name, common input.)

We let P; and P, share a random string R = ryr;...r, where r; € {0,1,2} chosen
at random and k is a polynomial in the number of identifications R will ever be used
for. R can be thought of as either truly random (as we do for the sake of this abstract)
in which case Py, P, change it on their own after k authentications, or an outcome of
a pseudo random number generator.

We first need to introduce two protocols called commit and reveal.
Let oo be the identity function and o,(0) = 0,04(1) = 2,04(2) = 1.

Commit (b,j): (b denotes the bit being committed to, and j how many commits
were performed thus far.)

1. V flips a coin c € {0,1} and send c to P,
2. P, computes v; = o,(r;) + b mod 3 and sends v; to V.

3. V stores (7, c,v;).

Reveal (j): (reveal the j-th bit which was committed to)
1. P, sendsrjto V

2. V looks up its stored values, (j,¢c,v;), and computes

b=v; — o.(r;) mod 3.

Claim 1: Let ¢,g € {0,1}. If prob(r = i) = 1 for i = 0, 1,2, then

prob(b = glv = oc(r) + bmod 3) = prob(b = g) =

proof: see [BGKW].
Claim 2: Let prob(c = 0) = prob(c = 1) = . Then Ve > 0:
if for b € {0,1},

prob(P; successfully reveals b) > 1 — ¢,
then,

-~ prob(P, successfully reveals ) < % +e

proof: see [BGKW].
Note then that the probability with which the prover can cheat is bounded by the,

1 3
max{min{1 — &5+ €}} < 7
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which is achieved at € = -14-.

We are now ready for the subset sum authentication protocol.

The input to (Pr, P2, V) protocol is an instance of the subset sum problem denoted
by the tuple (w;,1 << 7, T,t) where the weights w; are picked from a range [1, Sal,
where n is the security parameter of the application and ¢ denotes the number of w;

in the subset in question.
Prover P, has as a private input an index set J C {1,...,n} such that Sieqwi =T

and |J| =t.

The Identification Protocol

The following protocol for the above variant of subset sum is similar to [Sn]. Let
language L be the set of tuples of integers,

(wh-‘-vwanet)a

such that there exists a set J C [1,n} such that,

e |J| =1, and,
[ ] Zw; =T.
ieJ

In the protocol below, let Sa denote a strict upper bound on 3 w;.

1. P, permutes the w; at random and accordingly the set J. Denote the permuted
values as w},J’ such that ¥ ;e w! =T. Py and V now run a commit protocol
on secrets A, B,C, D, E (defined below) using the commit protocol (defined

above).

A = {ri|]l i< n} wherers are picked at random from 1, Sx).
o B={uwj|l1 <i<n}

° C:{s'-:w;-*-ri mod Sﬂll stn}

e D=J".

° E = EJ'GJI T mod Sn.

9. V uniformly chooses t € {1,2,3} and sends t to Pp.

3. Using the reveal secrets protocol defined above between P, and V:

e ift=1, Pyrevealsto V commmitted secrets A, B and C.
e ift=2, P, reveals to V committed secrets C, D and E.
o ift=3, P, revealsto V committed secrets A, D and E.

4. V checks that indeed
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o ift=1 s =r;4+ w mod S, for all
o ift=2Y,psi=FE+TmodS,
o ift=3, Y iepri=E mod S,.

Now to get a high chance of correctness, this protocol is repeated k times where
k is the security parameter, chosen by the parties who are running the protocol.

Theorem 1: Let C be an illegal user pretending to be the legal provers Py, P,. Under
the assumption that solving the subset-sum problem is hard, for all k, for all £ > 0,
for all sufficiently large n,

k
prob(C cheats successfully) < (-i—;) + ;11_‘

(the L error accounts for the probability that C solves the subset sum instance.)

Theorem 2: The above protocol is a perfect-zero-knowledge multi-prover interac-
tive proof for the subset sum language.

3.1 Efficiency

The new scheme is more efficient than any other identification scheme thus far pro-
posed based on the theory of zero-knowledge. All other schemes can be classified into
two classes: they are either based on the factoring intractability assumption( such as
Fiat-Shamir) which we call Type 1, or they are based on zero-knowledge proofs for
NP-complete problems which we call Type 2. The identification schemes of Type 1 all
use as a basic operation large modular multiplications. The identification schemes of
Type 2 all use evaluations of one-way functions, for which the only known suggested
implementations use as primitive operations large modular multiplications. Thus, a
bottle neck for efficiency is the ability to perform fast modular multiplications.

In our scheme, no such operations are necessary. The primitive operations in
the commit and reveal protocols are simple additions modulo 3, which is of trivial
complexity.

In terms of number of rounds, [BGKW] have already shown that the scheme re-
mains perfect zero-knowledge even if many executions of the protocol are performed
in parallel. An interesting open question is that of analyzing the confidence amplifi-
cation afforded by running protocols in parallel.

3.2 How to Choose Subset Sum Instances

We choose the subset sum problem as suitable for our purpose, since it is easy to
generate instances of it at random, and the .c‘:omplexity of checking that indeed a
specific subset of the weights adds up to a target, given a description of the subset,
is quite inexpensive.

However, one must be careful in choosing instances of the subset sum problem so
that the instances are hard ones to solve. In the above protocol we did not address
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this issue. This of course is not sufficient. The verifier (Bank) should choose the
subset-sum instance among the believed to be hard high density instances, as widely
studied in the literature by Lagarias and Odlyzko [LO] and others.

We proceed to suggest one more implementation of an authentication scheme
based on the multi-prover model, whose security is based on the circuit satisfiability
problem.

4 A Circuit Satisfiability Authentication Scheme

As mentioned before, subset sum is an NP complete problem. In principle, any iden-
tification system based on possessing a witness to an arbitrary NP set may be reduced
to this identification scheme. However, such reductions may be extremely inefficient,
wiping out the efficiency gains obtained by using our system. This motivates the
consideration of other NP complete problems for use in identification schemes.

In this section, we briefly describe a second protocol for identification, based on the
circuit satisfiability problem. The circuit satisfiability problem is as follows: Given a
boolean circuit C, with a single output, is there a setting of the input bits such that
C will output a 17 This problem is eminently suitable for reductions from other NP
languages, since the procedure for checking a witness is fairly easy to write down as
a circuit.

The work of [BCC] and [IY] gives a protocol for the circuit satisfiability problem
with the following properties.

1. Given a circuit C of size s(n), each iteration of the protocol requires the prover
to commit ©(s(n)) bits to the verifier. For cryptographic based implementations
of this scheme, the prover must send ©(s(n)k) bits to the verifier, where k is
the security parameter being used.

2. If C is satisfiable, and the prover obeys the protocol, then the verifier will always
accept. If C is not satisfiable, then the verifier will reject with probability at
least 1/2, for each iteration of the protocol.

A more recent protocol, given in [KMO], allows for an asymptotically more commu-
nication efficient zero-knowledge protocol for circuit satisfiability. Instead of sending
O(s(n)k) bits per iteration of the protocol, the prover need only send ©(s(n) + k?)
bits.

Using a two card system, we can in fact create a protocol which only requires a
total of ©(s(n)) bits of communication per iteration. Furthermore, iterations can be
executed in parallel.

We simply use the circuit construction of [BCC] or [IY] modified to use our commit
and reveal schemes of section 4 whenever a commitment is called for.

We also note that as a by product of the t§pe of simulation that is done in the
two-prover model (no rewinding of the simulator tape is necessary), many interactions
of the modified [BCC] and [IY] protocols can be run in parallel and remain perfect
zero-knowledge.

The protocol we obtain has the the following specifications:
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1. Given a circuit C of size s(n), each iteration of our protocol requires the provers
to commit ©(s(n)) bits to the verifier. This is accomplished by sending a total
of only ©(s(n)) bits to the verifier.

2. If C is satisfiable, and the provers obey the protocol, then the verifier will always
accept. If C' is not satisfiable, then the verifier will reject with probability at
least 1/8, for each iteration of the protocol. (by Section 4, Claim 2)

We note that the rejection probability for an iteration of a bad proof is now only
1/8, instead of the factor of 1/2 of the original scheme. This is because the verifier
will reject only if the provers are forced to decommit a bit which would reveal their
cheating if correctly decommitted (which occurs with probability %), and in this case
the verifier detects them trying to decommit a value other than what they originally
committed with probability at most i Recall, whereas in the ideal abstraction for
bit-commital, the provers cannot change the value of a decommitted bit, in our system
they can do so with only a % chance of detection.

Naively, one might suggest amplifying the security of the bit commital protocol
by running it many times. This would allow us to realize a bit-commital protocol
that is indistinguishable from an ideal protocol. However, such a strategy turns out
to be ineflicient, since even with an ideal scheme, the rejection probability will still
only be 1/2. Thus, n (where (I)* < 1) iterations of our protocol, using the simple
commital scheme, will prove more efficacious than a single iteration of our protocol,
with an arbitrarily amplified commital scheme. For efficiency, it makes sense to use a
few very cheap iterations rather a single very expensive one. Metaphorically, we have
a weakest link phenomenon: There is no point paying to make some links of a chain
very strong if a single other link in this chain will still be weak.

5 References

[Bl] Blum, “How to Prove a Theorem So No One Else Can Claim It”, Zero Knowledge
Proofs, ICM 1986.

[BGKW] Ben-Or, Goldwasser, Kilian, and Wigderson, “Multi-Prover Interactive
Proofs: How to Remove Intractability Assumptions,” Proceedings of STOC
1988.

[BCC] Brassard, Gilles, David Chaum, and Claude Crépeau, “Minimum Disclosure
Proofs of Knowledge,” JCSS, Oct. 1988.

[FS] Fiat, and Shamir, “ How to Prove Yourself: Practical Solutions to Identification
and Signature Piéblems”, CRYPTO 86.

[GQ] Guillou, and Quisquater, “A Paradoxical Identity Based Signature Scheme
Resulting from Zero Knowledge”, CRYPTOQ 88.

[GMR] Goldwasser, Micali, and Rackoff, “The Knowledge Complexity of Interactive
Proofs”, SIAM J. of Comp., Feb. 1989.




506

[GMW] Goldreich, Micali, and Wigderson, “Proofs that Yield Nothing But the
Validity of the Assertion”, Proceedings of FOCS 1986.

[TY] Impagliazzo, Russell and Moti Yung, “Direct Minimum Knowledge Computa-
tions,” CRYPTO 87.

[KMO)] Kilian, Micali, and Ostrovsky, “Efficient Zero Knowledge Proofs with
Bounded Interaction,” Proceedings of FOCS 89.

[LO] Lagarias, and Odlyzko, “Solving Low Density Subset Sum Problems”, Proceed-
ings of FOCS 1983.

[MS] Micali and Shamir, “An Improvement of the Fiat-Shamir Identification and
Signature Scheme”, CRYPTO 88.

[Sh] A. Shamir, “A Zero-Knowledge Proof for Knapsacks”, presented at a workshop
on Probabilistic Algorithms, Marseille (March 1986).

o b e s bt

LT T e T S I

1

From:
systen
1,5, "

*Suj
1Suy
1Prc
interact




