A Tradeoff Between Search and Update Time for the Implicit Dictionary Problem

Allan Borodin, University of Toronto, Toronto, Canada
Faith E. Fich, University of Washington, Seattle, USA
Friedhelm Meyer auf der Heide, Johann Wolfgang Goethe Universitat, Frankfurt, West Germany
Eli Upfal, IBM Almaden Research Center, San Jose, USA
Avi Wigderson, Mathematical Science Research Institute, Berkeley, USA

Abstract

This paper proves a tradeoff between the time it takes to search for elements in an implicit dic-
tionary and the time it takes to update the value of elements in specified locations of the dictionary. It
essentially shows that if the update time is constant, then the search time is Q(n®) for some constant
e>0.

1. Introduction

A dictionary is a data structure that supports two operations: search and update. The former
determines whether a given element y is one of the elements in the dictionary. This is useful, for exam-
ple, to determine whether a word you have just written is spelled correctly. If the element is in the dic-
tionary, its location may also have to be found.

Updates modify the contents of the dictionary. We may wish to add an element (e.g. a new
piece of jargon), delete an element (e.g. an obsolete word), or replace one element by another (eg. a
correction of a spelling mistake). By using dummy values, we may view additions and deletions as in-
stances of replace. This is convenient for purposes of analysis, since the number of elements in the dic-
tionary remains fixed.

Balanced tree schemes, such as 2-3 trees, can be used to implement dictionaries efficiently.
Both search and update can be done in O (log n) steps, where # is the number of elements in the diction-
ary. However, explicit pointers are used and extra space is needed to store them (i.c. in addition to the
space used to store the elements). For large dictionaries, this may be significant.

A natural question to ask is whether this extra space is needed to efficiently implement a diction-
ary. For example, although heaps are naturally implemented as binary trees using explicit pointers, they
can also be represented without extra space. The pointers are implicit—the elements in locations 2i and
2i + 1 are the left and right children, respectively, of the element in location i.

Implicit data structures [MS] are those in which only the number of elements and the elements
themselves are stored explicitly. The n elements are stored in an array of length n, each cell of which is
capable of holding exactly one element.

There are a number of ways to implement dictionaries implicitly. If we store the elements in an
unordered list, then update can be done in constant time, but searching requires linear time. On the oth-
er hand, if the dictionary is maintained as an array sorted in increasing order, then searching can be done
in logarithmic time, but updates may require that all the elements in the array be moved. Rotated lists
are arrays that can be sorted into increasing order by performing a cyclic shift (rotation) of the elements.

They are not much more difficu

case. Notice that, by the informi
perform at least a Jogarithmic nu

Munro and Suwanda [M.
They showed that if the elements
can be performed in O(V'r_;) ste
were able to improve the search
only increase the number of con
produced an implicit dictionary -
lists in a recursive manner, |
O(n Vasiogn (logn)3’2) update tin
O ((log n)?) time for both search
blocks of the array implicitly rep

Throughout this paper, w
ly ordered universe. Other mod
very small universe [Y] will not

Munro and Suwanda [M
satisfy some fixed partial order,
lar grid scheme, which achieves

of algorithms.

Partial orders naturally ;
[BGLY] considered the closely
search time. If P(n) and S(n)
cess and search an initially unt
Q(n logn). Mairson proved tha

In general, the informati
tions in a dictionary cannot be
Since every location in the array
be satisfied by a rotated list is ¢l
ever, the relative order of any al
tation. An implicit dictionary c:
ated search algorithm and an ass

Suppose that the n elem
mutations. If all comparisons
Alt, Mehlhorn, and Munro [AM
the worst case. (Comparisons b
tation, are not allowed.) This lo
gorithms [AM]. Notice, howevt
as hard as searching a completel

it Dictionary Problem

nada

JSA

Frankfurt, West Germany
, USA

erkeley, USA

r elements in an implicit dic-
ocations of the dictionary. It
: is Q(n®) for some constant

rch and update. The former
iry. This is useful, for exam-
~ If the element is in the dic-

add an element (e.g. a new
e element by another (e.g. a
dditions and deletions as in-

imber of elements in the dic-

nent dictionaries efficiently.
er of elements in the diction-
> them (i.e. in addition to the
cant.

iciently implement a diction-
 using explicit pointers, they
elements in locations 2i and

17,

f elements and the elements
ngth 2, each cell of which is

f we store the elements in an
ires linear ime. On the oth-
r, then searching can be done
Tay be moved. Rotated lists

ift (rotation) of the elements.

51

They are not much more difficult to search, but only half the elements have to be moved in the worst
case. Notice that, by the information theory lower bound, any comparison based search algorithm must
perform at least a logarithmic number of comparisons in the worst case.

Munro and Suwanda [MS] were the first to explicitly consider the implicit dictionary problem.
They showed that if the elements are stored partially sorted into a triangular grid, then search and update
can be performed in 0(‘vrn_) steps. Using blocks of rotated lists (sorted relative to one another), they
were able to improve the search time to O (log n), keep the number of moves per update at O (\/;), and
only increase the number of comparisons per update to O (*v’n_ log n). Combining these ideas, they also
produced an implicit dictionary that can be searched or updated in O (1 *logn) time. By using rotated
lists in a recursive manner, Frederickson [Fr] was able to achieve O(logn) search time and
0 (nW(logn)m) update time. Recently, Munro [M1], [M2] created implicit dictionaries that use
O ((logn Y?) time for both search and update. His basic approach is to have the order of elements within
blocks of the array implicitly represent pointers.

Throughout this paper, we employ a comparison based model with elements drawn from a total-
ly ordered universe. Other models, allowing more general tests or in which elements are drawn from a
very small universe [Y] will not be considered here.

Munro and Suwanda [MS] proved that if the contents of the array locations are constrained to
satisfy some fixed partial order, then the product of search and update time is Q(r). Thus, their triangu-
lar grid scheme, which achieves an O () product of search and update time, is optimal among this class
of algorithms.

Partial orders naturally arise as the result of preprocessing. Borodin, Guibas, Lynch, and Yao
[BGLY] considered the closely related problem of determining the tradeoff between preprocessing and
search time. If P(n) and S(n) denote the number of comparisons performed to, respectively, prepro-
cess and search an initially unsorted array of length n then, in the worst case, P (n)+ nlogS(n) is
Q(n logn). Mairson proved that this result also holds in the average case [Ma].

In general, the information available about the relative order of the contents of the array loca-
tions in a dictionary cannot be described by a partial order. Consider, for example, the rotated list.
Since every location in the array can contain the minimum element, the only partial order guaranteed to
be satisfied by a rotated list is the trivial partial order (containing no relations among elements). How-
ever, the relative order of any allowable sequence of elements in the array can be described by a permu-
tation. An implicit dictionary can be viewed as a set of allowable permutations together with an associ-
ated search algorithm and an associated update algorithm.

Suppose that the # elements of an array can be arranged according to any one of p different per-
mutations. If all comparisons performed during a search must involve the element being sought, then
Alt, Mehlhom, and Munro [AMM], [AM] and Cook [C] prove that Q(p liny comparisons are needed in
the worst case. (Comparisons between two elements in the array, which may help to identify the permu-
tation, are not allowed.) This lower bound is even true in the average case and for nondeterministic al-
gorithms [AM]. Notice, however, under these assumptions, searching a rotated list is, in the worst case,
as hard as searching a completely unordered list.

52

In this paper, we provide a general tradeoff between worst case search and update time for the
implicit dictionary problem. We begin by describing our computational model and then consider a
number of situations in which search is difficult. Finally, we show that if update is easy, such a situation
must occur and, hence, search is difficult. In particular, constant update time implies a worst case
search time of Q(n*®) for some constant € > 0.

2. The Tradeoff

Associated with an implicit dictionary, there is a set of permutations that describe the possible
relative orders of the contents of the locations in the array. A search algorithm for the dictionary is a
comparison tree that determines whether y is in the array x, provided that the permutation describing
the relative order of the contents of the locations of x belongs to the set of allowable permutations. The
internal nodes of this tree are labelled by comparisons of the forms x[i]:x[j]and y : x [/1. For con-
venience, we assume that the elements of the array are distinct and thus the equality branch will not be
taken at any comparison of the first type. When the element being sought is not in the array, the equali-
ty branch will not be taken at any comparison.

The update algorithm for the dictionary is given an array location ! and a new value y as input.
Depending on the value of /, it performs a sequence of comparisons involving y and the elements of the
array. It then replaces the element in location / of the array by the value y. Based on the outcome of
the comparisons, it finally rearranges the elements in at most m array locations so that the permutation
associated with the resulting array is in the set of allowable permutations. We say that such a dictionary
performs at most m moves per update.

Another way to specify an update is to provide two values y and y’. Algorithms would be re-
quired to replace the value y by the value y’ and then rearrange the contents of the array as above. Such
an approach requires that a search for the value y be performed as part of the update and, although it is
perhaps more natural, it would make the tradeoff result of this paper meaningless.

L2T 4] 6] 8] " T2n-2]12n]
LI T 4] 6] 8] [2n-2] 2n |
2T T 7 6 8] " T2n=27] 2n]
L2] 47T 7] &7 - T2n=2] 2n

L2 [4T 6] 8] - T2-27 1]

Figure 1. A Set of Arrays that Hides the Value 1

In certain instances, it is easy to prove lower bounds on the search time. For example, if the set
of arrays depicted in Figure 1 were all allowed by a dictionary, then the search algorithm would have

worst case complexity n. In pa
other locations in the array can h

In Lemmas 1 and 2, we
between search and update by sk

Letd 20andn >0be it

an array of length » containing ¢
D; =

denote the set of locations, exc
iel,#D;<d and x;[i]=v w

quence of arrays satisfies these ¢
o
X1
X2
x4
Xs

Xe

Figure 2. A §

Lemma 1. Any implicit dicti

most ¢ 2 1 comparisons per up¢

worst case.

Proof: by induction ond. If d
all possible locations in which 1
large number of the arrays x; d
rays, of updating location [wi
moves are performed by the up¢

Let T be a comparison -
generality, we may assume that
x is an array allowed by the dic
mined. Let S denote the depth «
search.

Choose u to be a numbe
andall je {1,...,n} - {i

ne for the
onsider a
| situation

/OTst case

> possible
nary is a
lescribing
ions. The

For con-
/11l not be

he equali-

- as input.
nts of the
itcome of
rmutation

lictionary

uld be re-
we. Such

ough it is

(if the set
ould have

53

worst case complexity n. In particular, no information about the relative values of the contents of the

other locations in the array can help us to determine if there is a location containing the value 1.

In Lemmas 1| and 2, we look at generalizations of the above situation. We obtain our tradeoff
between search and update by showing, in Theorem 3, that some such situation must occur.

Letd 20and n >0 be integers andlet/ ¢ {1,..., n}. Foreachi € I U {0}, suppose x; is
an array of length n containing distinct numbers. Fori € 7, let
Di={je{l...,n}={i}Ixll#xeli]}
denote the set of locations, excluding i, where x; differs from x. Furthermore, suppose that, for all
iel,#D; <d and x;[i]=v where v is a number not appearing in the array x,. The following se-

quence of arrays satisfies these conditions withv =77 and d = 2.

xp[63127821880 13]23]30]

xyp [y 8[80]8]23]30]

14[63]77]82}54[30113J23|30]

4

xg 631278217780] 13]54]30]

xs[63]12[82] B[] 13]45]30]

xe[63]s9[82] 18] 80 [77]94]30]

Figure 2. A Set of Arrays that Satisfies the Conditions of Lemma 1

Lemma 1. Any implicit dictionary of size n that allows the arrays x; for all i € [and performs at
1

. . # d+1 . L
most ¢ = | comparisons per update must perform at least [comparisons per search, in the

Alc+1)d

worst case.

Proof: by induction on d. If d =0, we show that any search algorithm must, for some input, examine
all possible locations in which v may occur. If 4 > 0, we show that there is some location / such that a
large number of the arrays x; differ from x in that location. We then consider the effect, on these ar-
rays, of updating location { with a new value. For a large fraction of these arrays, exactly the same

moves are performed by the update algorithm. This results in an instance of the problem for d ~ 1.

Let T be a comparison tree for searching any array allowed by the dicticnary Without loss of
generality, we may assume that every leaf of 7 can be reached by some problem instance (x, y) where
x is an array allowed by the dictionary and y is a value whose membership in the array x is to be deter-
mined. Let S denote the depth of T. Thus S is the worst case number of comparisons performed in any

search.

Choose u to be a number different from, but sufficiently close to v so that, foralli e / w {0}

andall je {1,..., n} —{i}, the comparisons v : x;{j] and u : x;{j] have the same outcome. No-

‘
'
P

g e e i 1

.
A e———ca——
e

S e

54

tice that x; is an allowable array which contains v, but not u. Because T gives different answers for the
nputs (x;, u} and (x;,v), it must send them to different leaves. However, y : x[i] is the only comparis-
on on which these two inputs differ. Therefore their root to leaf paths must split at the comparison

yx[i]

In fact, any path from the root to a leaf must contain at least one comparison of the form
y :x[j]. Otherwise, consider any allowable array x such that (x, v) reaches this leaf for some value of
y. Since y is not involved in any comparisons along the path, (x, y) reaches the same leaf for 211 values

of y. But this contradicts the fact that T determines whether x contains the value y .

Consider the root to leaf path P taken by the input (xg. u). Note that x ; is not necessarily an ar-
ray allowed by the dictionary. Let a be the number of comparisons of the form y : x{j] and let b be the
number of comparisons of the form x[;] : x[k] on the path P. ThenS 2a +b anda > 1.

First, suppose d =0. LetJ = {i e I | the comparison y : x[i] does not occur on the path P }.
Then #J 2 #1 ~a. Since i € J, the comparison y : x[i] does not occur on the path P. Foralli e J.
the root to leaf path taken by the input (x;, #) contains the comparison y : x[i] and thus deviates from
the path P at some point. Now x; and x agree everywhere except location /. Therefore the deviation
must occur at a comparison involving x [i] and some other element of x. For each / € J, the point of
deviation from the path P is different. To see this, suppose that i,j € J and that the paths taken by in-
puts (x;, u) and (xj, u) both deviate from path P at the comparison x[i]:x{j]. If P follows the <
branch at this comparison (i.e. xg[i] < xgl/]), then the inputs (x;,u) and (x;, u) take the other branch
(ie. x;{i1>x;[j1 and x;[i] > x;[j]). But this is impossible since x o] =x;li], x;ljl=v =x[i], and
x; (/1 =xolj]. Similarly, x4[i] > x [/} leads to a contradiction. Thus b >#/, S >2a + b 2 #/, and the
lemma is true ford = 0.

Now suppose d 21 and assume the lemma is true for d — 1. Let J = {i e [|i # .k for all
comparisons y : x[j}and x[j]: x{k] on the path P }. Then #/ 2 #/ —a - 2b. As above, all of the in-
puts (x;, u), with I € J, deviate from the path P at some point. If this occurs at a comparison y : x[/]
then j € D;. If this occurs at a comparison x[j] : x [k] then either j or k is an element of D;. There-
fore, there is a subset K < J containing at least 1/(a + 2b) of the elements in J such that the sets D;. for
all i € K, have an element in common, i.c. igDi 2. Since a +b <5 and a 2 1, it follows that

#7 #1
K2——2 -
a+2b 2§5-1 :

Let ! e ‘QD,-. Consider the effect on the arrays x;, i € K, of performing an update that re-
L€

places the element in location / with a new value w. Here w 1s chosen so that it is not an element of ar-
ray x; forany i € K '\ {0}. The moves that are performed in response to this update depend only the
sequence of outcomes of the ¢ comparisons performed. Because all of the elements being compared are
distinct, the outcome of any comparison cannot be equality. There are 2° different sequences of out-
comes possible and, hence, there is a subset L < K, with #L 2 #K /2, such that the same moves are
pertormed on all arrays x; with ie L. Let 7:{1,...,n} = {1,..., n} be the permutation

describing this set of moves.

3 Viewed
1’ =1(L) and, f

X

Because v doe:
tliye L ck
x;'[i] =3[t

not contained ir

and, because / «

By the :

fore

Hence the lemr

We nov
containing the
ielc{l,..

{V()s"l,--‘,

Furthermore, s

rs for the
omparis-

mparison

the form
value of

11 values

ily an ar-
b be the

ath P } .
llielJ,
tes from
leviation
point of
n by in-
vs the <
r branch
({1, and
and the

¢ for all
f the in-
y x[j]

There-
s D, for

ws that

that re-

nt of ar-
only the
ared are
of out-
ves are

wutation

55

- Viewed properly, we now have an instance of the original problem for d — 1. Specifically, let
I"=t(L)and,forj e {1,...,n}andi e[’ let
w if j =1(l) . w if j = (1)
xoll= {xo[-;l(j)] ifj 2ty 4 xUl= {xr‘(i)[t_lg)] ifj =)

Because v does not appear in the array xg, it does not appear in the array x either. If i € /” then
tYiYe L K. Note that ! ¢ K, since the definition of D, implies that { ¢ D,. Hence ! #t7}(i) and
x[i] =xrx(‘-)[‘c—l(z’ J1=v. Fori el u {0}, the array x; does not contain duplicate entries and w is
not contained in x;. Therefore, fori € 7”U {0}, the elements of the array x;” are distinct. Finally,
D/={je{l....,n}~{i}|xUl#xoTj1}
={je {L...,n}={i, 1)} ot DI#xlt()] }
={ke{lL...,n}-{TH@O I} xeplk] #xolk] }
= Dr‘(i) -{i}
and, because [e D -, for all @) e L =t U, it follows that #D;<d - 1.

#1
25 -1

1
. . . #l’ d ,
By the induction hypothesis, § > [] . Now #I" = #L 2 {

—_— —11/2°; there-
2(c+1)(d—1)
fore
BL<(2°8 +)28 - 1)

< (2e2(etDld=lgd 4 1y2s5 - 1)

= 2(C+1)dsd+l - 2c2(c+l)(d—l)Sd +28 =1

<20e*Ddgd+l 1 (sincec,d = 1)

< 2(c+l)dS d+1)

Hence the lemma is true for 4. By induction, the lemma is true for all integers d 2 0. O

zo[63] 12821880 [13]23]30]

zy [0 [82]23]30]

zp [638082 B][77[13][23]30]

{63 12]82]80] 77

13]23][30]

zs [63] 1282 18[23]13]77]30]

zg 63|80 (821877]12]23]30]

Figure 3. A Set of Arrays that Satisfies the Conditions of Lemma 2

‘We now consider another situation in which searching is difficult. Let z be an array of length n

containing the sequence v, ..., v, of distinct values and let v, be a different value. For
iel<{l,...,n}, let z; be an amay of length n containing all n values in the set
{vesvy oo, vy} = {v;} and let

Di={je {1....n} - {i}izoUl= U1} .
Furthermore, suppose #D; <d.

“

56

These conditions are similar to the conditions for Lemma 1. Here we do not require v to be in
different locations for each of the z; arrays. However, the set of elements in each array z; is completely

determined. For example, consider the sequence of arrays in Figure 3, with v =77 and d=2

Lemma 2. Any implicit dictionary that allows the arrays z; forall i € / and performs at most ¢ 2]

|
#17J(d+1) 42

comparisons per update must perform at least { comparisons per search, in tne worst

2((‘+1)d i J

P

case.

Proof: by induction on d. Let T be a comparison tree for searching any array allowed by the diction-
ary and let S denote the depth of 7. Essentially, we will show that there is some value which occurs at

many different locations in the z; arrays. and this will enable us to apply Lemma 1.

Ifd =0,then z;[i]=vqforalli e /. By Lemma 1.5 2#. Now let d 2 1 and assume the lem-

ma is true ford — 1.

LetL={le {1, ...,
occurs and, foreach [e L, letl, = { i el |z[/]1=vy} be the indices of those arrays in which v oc-

n}lz[11=vy for some i €/} denote the set of locations where v

curs in location /.

We first consider the case when #/; < |foralll € L. Then
Sle+1) l
J
! _d_]
EL > #1 [i—}m > (#7220 d42
2(c+1) ’

In this case, the value v occurs in a large number of different locations and Lemma 1 can be applied

directly.

More formally, let zo’ =z, and, for each | € L, choose z,"=z; for some i € J;. Then D, =
{je{l,....ny={1}|z/Ul#zi) Y =D;u{it-{l}. Since z;[I1 = vg 2 zgll] = zo'l].
we know that/ € D; v {i }. Thus#D,"<#D; <d. By Lemma I,

1

L N7 1 1
@ripesndy s | (g2 w7 | [gr2en T
le+1)d - ale+1)d = 2lc+1)d

L

N4
#l d+2
2(c+1)

2{r+l)d

1
s;{ AL }7;?2

+ 1. Thus location /

Now, we suppose there is a location / € L. such that #/; 2 [

contains the value v for a large number of the z; arrays.

Viewed properly, we have an instance of the original problem ford — 1. Specifically, define

(3]

{je{l,....

By the i1

We use the

LrJ 1th > er

Thus the claim

Finally,
Theorem 3.

comparisons pt
case.
Proof: Let] =

zg. Foriel/,

ment in locatio

Fori €

update are perf

Corollary 4.

search time, fo

vy forj=l and Vi,= Vo fori =1

{ZOU] for j #1 vi fori =0
zo’Ul=
v forie {1,...,n}={l}.

Let [= I, - {{} and let z° = z for all iel’” Then DS =

] i i

(je{t...,n}y={iY 12Ul Ul =D - {!} forall{ e [’ hence #D;"<d - 1.

L d
A . . (#rPe |4+l . . # |4+l
By the induction hypothesis, § 2 [W . Since #1" 2 Py J

2)L 2
4 de1 4| Va@n
g1 |aw2 e
[Q(CH)] [z(cq)]
S22 ||l ——— = |l
2+~ terl){d-Da2 '
-4
Pl
We usc the facts that, for all positive integers b and real aumbers r, J-%‘LZ tL“ and
124

Lr > {r Y51 Since 2+ -Dd2 1n4 4 (d+1)/2 are integers,

2 B

. |

d(_d~+n d_ d(d:'-l)
4y | a2 #1 |42 1
[2(C+1)] [z(cm] {#,y(dm }K
A 2 > || |——— = .

2(c+1)(d—1)d/2 J - 2(c+1)(d—1)d/2 2(c+1)d

Sz

Thus the claim is true for d and, hence, by induction, for all integers d 2 0.3

Finally, we prove the desired tradeoff between update and search time.
Theorem 3. Any implicit dictionary for length n arrays that performs at most m moves and ¢ 2 1

L
' 2m+1) e _ ‘
comparisons per update must perform at least comparisons per search, in the worst

S+ Dm J

case.

Proof: Let/ = {1,..., n},letzybe any allowable array in the dictionary, and let v be a value not in
zo. Fori eI, let z; be the array that is obtained from z using the update algorithm to replace the ele-

ment in location { with the value v.
Forie [, defineD;={je {1,....,n}—{i} 'z [j1#zgly] }. Since at most/m moVEs per

update are performed, #D; <m. The result follows from the application of Lemma 2. [J

Corollary 4. Any implicit dictionary for length n arrays that has constant update time has Qn9

search time. for some constant € > 0.

58

3. Conclusions

The technique used to obtain the tradeoff between search and update time may consider only &
small fraclion of the allowable permutations. Furthermore, it 2llows the search and update algorithms to
change after any update has been performed. Improvements to this tradeoff could therefore be possible.
It remains unclear whether logarithmic update time must imply nonpolylogarithmic search time for im-
plicit dicticnaries.

A tradeoff between the number of moves per update and search time would also be interesting.
For this result, it would not matter whether the element to be replaced during an update 1s specified by
its value or its location. We believe that any dictionary in which only a constant number of moves per

update are performed should very quickly get disorganized and, hence, be difficult to search.

One of the motivatjons for studying the implicit dictionary probiem is to understand the relation-
ship between the amount of time it takes to perform a search within an array and easily described pro-
perties of the set of allowable permutations. Specifically, we would like to characterize those sets of
permutations for which searching is easy (i.e. O (logn) or (logn)om comparisons, in the worst case)

and those for which searching is bard.

This is analogous to work done by Linia! and Saks [LS] for searching partial orders. They
showed that the logarithm of the number of ideals in a partial order is a lower bound for the worst case
number of comparisons needed to search an array if the only information known about the contents of

the array locations are that they satisfy the partial order.

We conjecture that if the set of allowable permutations is very large, then the worst case search
time must be large. More specifically, the search time is probably not logarithmic or perhaps not even

polylogarithmic, if the number of permutations is £(n t/¢™) for some constant ¢ > 0.

An interesting example of a large set of permutations that can be searched quickly was devised
by Feldman [Fe]. He considered the set of permutations t: {1,...,n } — {1,...,n} thatareinvo-
lutions (i.e. 72 is the identity permutation) and, moreover, fix all the even numbered locations {i.e.
w(2i)=2i fori=1,..., Ln/2J). There are more than (n/4)! such permutations. Suppose that the re-
lative order of the sequence of elements in the array x can be described by an unknown one of these per-
mutations. Searching for an element y in the array x can be accomplished in logarithmic time by the
following procedure. First, binary search is performed on the even numbered locations of x. Suppose ¥
is not found. Let i denote the unique odd numbered array location such that all even numbered loca-
tions less than i contain elements less than y and all even numbered locations greater than i contain ele-
ments greater than y. (If no suchi exists, which happens when # is even and x [n]<y,theny is notin
the array x.) Next, the rank j of element x[i] is determined by performing binary search on the even
numbered Jocations of x a second time. Finally, y is compared with x [f]. Since the permutation asso-
ciated with x is an involution, it must interchange locations i and j. Thus, ify is in the array x, it is in
location j.

Studying tradeoffs for the implicit dictionary problem is not an end in itself, but rather a stepping

stone towards a general understanding of tradeoffs for data structure problems. In particular, for dic-

tionaries that may have explicit pointers, does constant update time imply slow search?

Acknov

T

supporte
MCS-84

Referes

(AM.

[AMM

[BGLY

[C

[LS

M

™

M

per

on-
ro-
 of

5€)

hey
ase

s of

rch

ven

sed
vo-

-

ie.

Acknowledgements

This work began while the authors were at IBM Research Lab, San Jose, California and was also
supported in part by an IBM Faculty Development Award and National Science Foundation Grant
MCS-8402676.

References
[AM] H. Alt and K. Mehlhomn, Searching Semisorted Tables, SICOMP, vol. 14 no. 4, 1985, pages

840-843.

{AMM] H. Alt, K. Mehlhomn, and I.I. Munro, Partial March Retrieval in Implicit Data Structures, In-
formation Processing Letters, vol. 19 no. 2, 1984, pages 61-65.

[BGLY] A. Borodin, L. Guibas, N. Lynch, and A. Yao, Efficient Searching Using Partial Ordering, In-
formation Processing Letters, vol. 12 no. 2, 1981, pages 71-75.

[C] S. Cook, personal communication.
(Fe] P. Feldman, personal communication.

[Fr] G.N. Frederickson, Implicit Data Structures for the Dictionary Problem, J. ACM, vol. 30 no.
1, 1983, pages 80-94.

[LS] N. Linial and M. Saks, Information Bounds are Good for Search Problems on Ordered Data
Structures, 24th Annual Symposium on Foundations of Computer Science, 1983, pages 473-
4753,

[Ma] H. Mairson, Average Case Lower Bounds on the Construction and Searching of Partial Ord-
ers, 26th Annual Symposium on Foundations of Computer Science, 1985, pages 303-311.

[M1] Munro, 1.1, An Implicit Data Structure for the Dictionary Problem that Runs in Polylog Time,
25th Annual Symposium on Foundations of Computer Science, 1984, pages 369-374.

M2] Munro, 1.1, An Implicit Data Structure Supporting Insertion, Deletion and Search in O (log?n)
Time, manuscript, University of Waterloo, 1985.

[MS] 1.I. Munro and H. Suwanda, Implicit Data Structures. JCSS, vol. 21, 1980, pages 236-250.
[Y] A.C. Yao, Should Tables be Sorted?, J.ACM vol. 3, 1981, pages 615-628.

