s v

Deterministic Simulation of Probabilistic

Constant Depth Circuits

(Preliminary Version)

Miklos Ajtai

Avi Wigderson

IBM Research - San Jose

ABSTRACT

We explicitly construct, for every integer n and
¢ > 0, a family of functions (psuedo-random bit

generators)]‘;,'E:{O,l}"l - {0,1}" with the follow-
ing property: for a random seed, the pseudo-
random output "looks random" to any polyno-
mial size, constant depth, unbounded fan-in cir-
cuit. Moreover, the functions f, . themselves can
be computed by uniform polynomial size, con-
stant depth circuits.

Some (interrelated) consequences of this result
are given below.

1) Deterministic simulation of probabilistic algo-
rithms. The constant depth analogues of the prob-
abilistic complexity classes RP and BPP are
contained in the deterministic complexity classes

DSPACE(n) and DTIME(2") for any &> 0.

2) Making probabilistic constructions deterministic.
Some probablistic constructions of structures
that elude explicit constructions can be simulat-
ed in the above complexity classes.

3) Approximate counting. The number of satisfying
assignments to a (CNF or DNF) formula, if not

0272-5428/85/0000/0011$01.00 © 1985 IEEE

too small, can be arbitrarily approximated in
DSPACE(n®) and DTIME(2™), for any € > 0.

We also present two results for the special case
of depth 2 circuits. They deal, respectively, with
finding a satisfying assignment and approximate-
ly counting the number of assignments. For
example, for 3-CNF formulas with a fixed frac-
tion of satisfying assignmemts, both tasks can
be performed in polynomial time!

1. INTRODUCTION

The relationship between randomized and
deterministic computation is a fundamental issue
in the theory of computation. The results on this
subject fall into the following categories.

Simulating randomness by nonuniformity

Adleman [4d] showed that any language in RP
can be computed by a polynomial size family
of circuits. However, the proof is existential, and
there is no known way of explicitly constructing
these circuits. A similar result, for simulating
probabilistic, polynomial size, constant depth
circuits by nonuniform deterministic ones is due
Ajtai and Ben-Or [4B].

Simulating randomness under an unproven assumption

Yao [Ya] has shown that if one-way functions

exist, then RP is contained in BDTIME(2"), for
any fixed positive ¢. Note that the assumption
is extremely strong, as it implies in particular
that 2 4+ NPNcoNP. Similar results are given in
[FLS], who study the space complexity of the
simulation, and [R7], who consider RNC instead
of RP.

Simulating randomness by aliernation

Sipser and Gacs [Si] showed that BPP is con-
tained in A%. Of course, the time or space com-
plexities of languages in this class are unknown.
A related result, due to Stockmeyer [S7], is that
approximate counting is in Ag.

Simulating specific randomized algorithms

By a careful analysis of how randomness is used
in a specific algorithm, one may be able to
replace it by a deterministic construction. Such
examples are the parallel algorithms in
[Lu, KUW, KW]. Also related are explicit con-
structions of graphs with special properties,
which can be found in [Ma] and [GG].

There were no explicit upper bounds on the
deterministic simulation of any nontrivial class
of probabilistic algorithms. In fact, there is no
such simulation that does less than brute force
enumeration of all possibilities for the random
inputs.

We prove in this paper that probabilistic, polyno-
mial size, constant depth, unbounded fan-in cir-
cuits can be simulated in DSPACE(n¢) , (and

hence in DTIAIE(2"=)), for every fixed positive
e. This is done by generating a small set of
pseudo-random binary strings, such that a ran-
domly chosen one of them "looks random" to
any polynomial size, constant depth circuit.

It is interesting to note that our "pseudo-random
bit generator" is purely combinatorial, in con-
trast to the number theoretic generators used
in cryptography (e.g. [Sh, BM, BBS)).

The proof that our generator "works" requires
an intimate understanding of the structure of
constant depth circuits. Such an understanding
is drawn from the lower bound proof techniques
for such circuits [4/, F§S). Moreover, these low-
er bounds are all "probabilistic" (or "non con-
structive™), and an essential part of building the
generator is making them explicit. To this end
we use the idea of "k-wise independent' random
variables (e.g. see [ACGS, Lu, An, KUW)).

In section 2 we give definitions and state our
main theorem. In section 3 we discuss applica-
tions of the main theorem, and in section 4 we
sketch its proof. In section 5 we obtain refined
results on depth-2 circuits, and discuss their
applications.

2. DEFINITIONS AND THE MAIN THEOREM

A circuir Cis a directed acyclic graph with node
labels. The nodes of indegree zero are labeled
with input variables, the nodes of outdegree zero
are labeled with output variables, and the rest
of the nodes are labeled from {AND, OR, NOT}.
We put no bound on fan-in or fan-out.

The size of a circuit C,s(C), is the number of
nodes in it. The depth of C,d(C), is the length
of the longest input-output path. We say that
Cis an (sd) —circuit if 5(C) < 5 and d(C) < d.

We shall be interested in families of circuits. Let
5 d:N—+ N be functions. We say that
{CGln=12,.1s an (s5,d) —family if for all n,
S(G) < 5(n),d(C,) < dn). It 5 =n"Vd= 0(1)
then {C,} is a PC family (Polynomial size, Con-
stant depth). A family is uniform if there exists
a Turing machine that on input n in unary,
outputs a description of {C,}, using only O(log n)
space.

We shall mainly deal with one-output circuits.
Every circuit C with n inputs computes a func-
tion C:{0,1}" = {0,1} in a natural way. Define
p(C) = P{C(x) = 1], where x € {0,1}" with uni-
form probability.

For inputs that are generated pseudo-randomly,
we use the following. Let f:{0,1}" = {0,1}" be
a function. Define p{C) = P{C(x) = 1], where
x = f(3) and y € {0,1}” with uniform probability.

Two important parameters measure the "good-
ness" of fas a pseudo-random bit generator for
a circuit C. The natural one is |p(C) —p{C)|.
Another parameter, for which we get better
bounds, is how small can p(C) get so that still
pA{C) does not vanish.

We can now state the main theorem.

Main Theorem: Let k. d ¢, be fixed. Then there
exists a family of functions
{f,,:{O,l}"! -« §0,1}"}, n = 1,2,..., depending only
on the parameters above, with the following
properties:

(i) {f,} can be computed by a uniform, PC
family of circuits. (So in particular, {f,} can be
computed in LOGSPACE).

(i) Let {C,} be any (n*.d) family of circuits.
Then for every n,

a) p(C,) —p(C)sn’

b) For a fixed § = 8(kd,e), if p(C)) 2 27",
then p, (C,) >0

3. APPLICATIONS

The applications are given not necessarily in
order of importance, but rather in order of
notational convenience. All the applications are
based on the fact that we can get a fairly good

approximation of the output behaviour of C, by

"testing" it on only 2" inputs.

The following notation will be used often. Let
g:N - [0,1] be a function. We say that g is

polynomially small if g(n)_I = n%P_ We say that

g is sub-exponentially small if g(n)-1 =o(2"€),
for every fixed £ > 0.

3.1. Approximate counting

Let the number of satisfying assignments to a
(CNF or DNF) formula F be #F. Computing #F
from F is #P-complete. It is not known whether
#P is in the polynomial time hierarchy. An easier
problem is approximate counting, which in this
case, is to find an integer in the
range[(1 + B)"'#F, (1 + B)#F]. Call this B-ap-
proximation. For any polynomially small B,
B-approximation was shown to be in A§ by
Stockmeyer [S]. No explicit deterministic upper
bounds were known for approximate counting.

Let p(F) = RE

2’!
signments of F, where n is the number of vari-
ables in F.

be the fraction of satisfying as-

Corollary 1: Consider formulas F with
polynomially small p(F). Then for every fixed
¢ and every polynomially small 8, the S-approxi-

mation problem for F is in DSPACE(n®) (and
hence also in DTIME(2™).

Proof (sketch): F is a polynomial size, depth 2
circuit. In DSPACE(n) all the "seeds” y of f,
can be generated, f,(y) computed and tested on

F. The output is (= F(,(»))2"™. By (i),
iyl =n®
part @) of the main theorem, it is the desired

approximation.
3.2 Easy cases of satisfyability

If we are just interested in finding a satisfying
assignment to a formula F, the result above can

be improved. In [}V)], Valiant and Vazirani
showed that finding a satis{ying assignments in
formulas with exactly one such assignment is
essentially as hard as the general case. The fol-
lowing result, which complements theirs, says
that if the number of satisfying assignments is
large enough, then satisfyability becomes easier.

Corollary 2: Consider formulas F with sub-
exponentially small p(F). Then a satisfying as-

signment of Fcan be found in DSPACE(n¢) (and
DTIME(2")).

This result follows from (ii), part b) of the main
theorem. It will be refined in the section on
depth-2 circuits.

3.3 Making
Deterministic

Probabilistic Constructions

Following Sipser [Si], we define a probabilistic
construction to be a language L ¢ {0,1}. X {O,l}‘
with the property that if (uy) e L, then
Pi(u,x) e L] > % where x is uniformly chosen

with | x| = |v|. (u usually gives the size of the
required object in unary, and then a random
object of the right size has the desired proper-
ties). The deterministic construction problem for
L is, on input u, to generate v s.t. (uv) € L.

I Le3, Sipser calls it a 3P —construction. He
shows that if L is a 2?-construction, then the
deterministic construction problem for L is in
Zf;z. (An analogous statement is true for IT9).

Note that L € =f or L ¢ II” means that L can
be recognized by a family of constant depth (but
possibly exponential size) circuits. We say that
L is a PC construction if it can be recognized
by a uniform PC family of circuits.

Corollary 3: If L is a PC construction, then the
deterministic construction problem for L is in

DSPACE(n) (and in DTIME2™)).

Note that the uniformity is needed for our
deterministic machine to generate the circuit
recognizing constructions of size |u|, where u
is the input.

3.4 Deterministic Simulation of Probabilistic Con-
stant Depth Circuits

A probabilistic circuit C is one with "real" input
variables, z, and random input variables, x. If
[z =n and |x| = m(= m(n)), C computes a
function C:{0,1}""" = {0,1}. Let p(C(z)) =
Pr{C(z;x) = 1] when x € {0,1}" with uniform
probability. The idea of recognizing languages
by probabilistic circuits is that the behaviour of
p(C(z)) will depend on whether z is in the lan-
guage or not.

We define two families of complexity classes,
PC1{a) and PC2(a) where PC refers to polyno-
mial size, constant depth, 1 and 2 refer to wheth-
er we allow one- or two-sided errors, and « is
the "accuracy" (in general a:N - [0,1]is a func-
tion).

A language L c {O,l}‘ is in PC1{a) if there exists
a uniform PC family {C,} s.t. for every n and
every z € {0,1}"

ze L+ p(C(2)) > a(n)

z¢ L+ p(C{))=0.

t 3

A language L < {0,1} isin PC2(a) if there exists
a uniform PC family {C,} s.t. for every n and
every z € {0,1}"

ze L+ p(C(2)) > %+ a(n)

24 L= p(C) < %— — a(n).

Corollary 4: For every fixed ¢ > 0 we have

(i) for every sub-exponentially small function
a, PCIl(a) € DSPACE(n*®)

(i7) for every polynomially small function a,
PC2(a) © DSPACE(n®).

4.SKETCH OF PROOF OF THE MAINTHEO-
REM

The key notion in the proof is that of approxi-
mating a circuit. A given circuit will undergo
a series of simplifications, each restricting the
inputs, that will change the output behaviour by
only tiny amounts.

The proof has two logical parts. In part I we
show how to approximate n'™¢ input bits of a
PC circuit by only O(logn) bits. In part I we
show how to iterate this construction, adding
only a constant to the depth and a polynomial

to the size.
PART I

We need some notation. Let C be a PC circuit
on n variables 4 = {x,,...,x,}. For any subset
Y c 4 and a binary vector v of length | Y], let
Cy, denote the circuit obtained from C by assign-
ing the values v to the variables in Y, in the
natural order. Note that Cy, has {4 — Y| vari-
ables.

Lemma 1 asserts that, for a random set of all
but n'7¢ of the input variables and random
assignments to them, the resulting circuit will
depend only on a constant number of inputs
(although it has n'™ of them).

Definition 1: We say that a circuit C depends on
t variables if there exists a subset T < 4 of size
¢ s.t. for every assignment to the variables in T,
the resulting circuit is constant. We denote the
minimum such ¢ by #(C), and some T of this
cardinality by T(C).

Lemma 1: Let d,l,u be positive integers and £ > 0.
Then there exists an integer r so that if n is
sufficiently large; Cisa (n' d)-circuit with ninput
variables A4, and W<cA4d is random with
| W] = n'"¢ then PAt(Ca_w,) > 1] <n™" where
v is a random, uniformly chosen assignment to
A — W. Moreover, with probability at least

{ —n™¥ the set W will satisfy P{t(C _w,) < 1]

e

[2
>1 27" | If W satisfies this property, call it
t-local.

The proof of lemma 1 is an inductive argument
on the depth of the circuit, similar in flavour
to the lower bound proofs in [4), FSS, Yaol. In
fact, the first part of lemma 1 appears with a
different proof in {4;]. The inductive step is
based on a property of depth-2 circuits, which
is given in theorem 1 in section 5.

Note that different choices of v may result in
different subsets 7(C4_yw,) of W that the result-
ing circuit depends on. However, lemma 1 tells
us that the output distribution of C will essential-
ly remain unchanged if instead of assigning ran-
dom values to the variables in W (not 4 —),
we use assignments that "look random" only on
t-subsets of W. This motivates the next defini-
tions and corollary.

Definition 2: A random variable Z = Z,,7;,....Z,,
with Z; € {0,1} is said to be (m,tp)-uniform if
for all 1<i<m P{Z =1]=p and for every
t-subset I of [m], the variables {Z |/ e I} are
mutually independent. When p = .5 we say that
Z is (m,)-uniform.

The key fact about (m,)-uniform sequences is
that they can be simply generated from only
tlog m random bits by PC circuits, using polyno-
mials over finite fields. (e.g. see [KUW]).

Definition 3: Let W< 4 and integer ¢ be fixed.
A random variable Y e {0,1}" is called (W,r)-lo-
cal if Y|y is (| W] f)-uniform, Y| _u is uni-
form, and these two restricted random variables
are independent.

Corollary 5: Let dlu,er be as in lemma 1. For
each possible W of size n'~¢let Y be (W,0)-local.
Then (1) if W s t-local, then

€

1p(C) = — PAC(Yw) = 1]] <27, @) If W is

chosen uniformly at random, then we have
1p(C) = PHC(Yy) = 1]] € 1—n7"

We are now in a situation where, if given a r-local
set W, we can replace its n' ™ random bits by
O(logn) random bits. Corollary 1 shows that
most B will work, but to use that we need as
many as (n' ““logn) bits. Our next step will be
to generate (-local sets W pseudo-randomly, us-
ing only O(logn) random bits. This is done by
extracting from the proof of lemma 1 only the
essential properties of the random variable W
that are actually used.

Definition 4: Let X be a random variable whose
values are subsets of a set 4 of size n. We say
that X has the small intersection property with
parameters o3, if for every set ¥V c 4 with
| V] <n® we have that if s <t, then
PAIVNX| €s]2 1 —ntme P

Definition 5: The random variable X ¢ 4 has the
d-iterated small intersection property with pa-
rameters a,fB,t if there exists a sequence of ran-
dom variables X, X:..X; so that X=X,
X+ ©X, and for any possible fixed values
B,,...,B, of the variables Xj,...,.X, we have that X1
with the conditions Xj = By,....X; = B, has the
small intersection propetry with parameters

a, Bt

Lemma 2: The conseguences of lemma 1 and
corollary 5 hold if we replace a randomly chosen

W of size n' ¢ by a random variable W that has
the d-iterated small intersection property with

parameters 1 — c,%,t.

Note that in definition 4, only intersections of
cardinality r or less are important. From this it
is easy to deduce:

Lemma 3: Y W is an (n,n ¢)-uniform random
variable, then W has the small intersection prop-

erty with parameters 1 — s,%,t.

Again, such a random variable can be construct-
ed from rlogn random bits by PC circuits. To
get a random variable with the d-iterated small
intersection property one can use d independent
constructions as above, which require only
ditlog n random bits.

To summarize the first part of the proof, we have
shown how to replace n'™* random bits by
O(log n) random bits, thus reducing the number
1—-¢

of inputs by roughly n
PART 1I

At this point it is natural to iterate the construc-

tion roughly n“ times. However, this presents
some difficulties. For example, if we implement
the construction in the first part, the depth of
the circuit increases by a constant, and so we
cannot repeat that more than a constant number
of times. Another problem is that bounds the
number of iterations is that we must keep the
circuit polynomial in the number of remaining
inputs, so we have to stop when at least a polyno-
mial fraction remains.

Conceptually performing this iterative process,
we obtain a sequence of roughly n¢ pseudo-
random subsets of variables, that together with
the remaining part (of size roughly n) form a
partition of the set of variables. To each pseudo
random subset we assign (independently) a
pseudo-random assignment (requiring total of
O(n‘logn) bits, and to the remaining subset
assign random values (only n®).

In order to perform this process in constant
depth, we shall generate all parts in the partition
together with their assignments simultanously.
We first define the partition-assignment pair
abstractly, as random variables, and then show

how they can be generated from »° random bits.

Definition 6: Let du, be integers and § > 0. For
every n and O < pu < n define <FP> to be a

fooling pair of random variables if the following
conditions hold:

(1) each value of Fis 0,1 assignment to the
variables in 4, {|A| = n.

(2) each value P = < P,,...,P, > is a sequence of
subsets of 4 so that F,....P, form a partititon
of A.

(3) forall 0 < i < uif Ag,....4;_ are fixed subsets
of A then the random variable P, with the condi-
tion Py = Ag,....Pi_; = A;_; has the d-iterated
small intersection property with parameters
1 —288,.

(4) for all 0 <i < p if Ag,...,4; are fixed subsets
of A then with the condition Py = Ao,....P = 4;
the random variables F| 4,....F| 4, are indepen-
dent.

(5) for all 0 <i<p if 4,4 then F|A4; with
condition P, = 4; is an (|4;| s)-uniform random
variable,

(6) for each A4, s.t. that the random variable P,

can take, F|,, with the condition P, = A, may

have a uniform distribution over over all assign-
ments to A, or not. The probability that it does

—u—2

is at least 1 —n
(M 1P| 2n°

The technical properties of the fooling pair guar-
antee that it fools any PC circuit with the appro-
priate parameters.

Lemma 4: For all d,[,u,5 there exists a r such that
for all sufficiently large n,u € nand a fooling pair
<F P> we have the following. For every
(n' d)-circuit C with n inputs,
[p(C) = PAC(F) = 1]] £ n7"

The proof of this lemma will be by induction,
that will show that the simultaneous
construction/definition of the fooling partition-

assignment pair actually simulates the natural
iterative construction. For this we need the fol-
lowing definition and lemma.

Definition 7: For all 0 < i < p let Y, be the assign-
ment to the variables in 4 which coincides to
Fon u{P/|j<i} and takes random values uni-
formly and independently of <F.P> on
A-UuiPlj<i}.

Lemma 5: For all but a fraction n *"* of the
values B that P may take, and for all
O0<i<pu~1 we have

| PAC(Y) = 1] = PAC(¥;1) = 1]] €n77%,
when these probabilities are conditioned by the
event P = B.

Note that, conditioned on the event P = B, we
have P{C(Yy) = 1] = p(C) and PAC(Y,_) = 1]
= Pr(C(F) = 1) so Lemma 5 implies Lemma 4.

Proof of Leanma 5: In the following proof all
probabilities are considered with the condition
P=B.Let F, = F| WiP) | <il- Then for every value
B that Pmay take Pr(C(¥})=1) =
?Pr(Fi =)Pr(C(Y,) = 1 | F;= f) where [takes

all of the possible values for F,.

Suppose now that f is fixed. We may consider
C as a circuit with the variables 4 — u {P,|j < i}
only, if we evaluate the remaining variables
according to f. Since P, has the d-iterated small
intersection property (even if F is fixed) then
lemma 2 implies that for all but a fraction nv 3
of values B that P may take, given the event
F=f we have

| PAC(Y) = 1] = PAC(Y;py) = 11] s a7

Lemma 6 deals with the explicit construction
of a fooling pair from a small number of random
bits.

Lemma 6: Let dtu be integers and 0 < 8§ £ .01,
Then for every large enough n, a fooling pair

<F,,P,> with p = n'% can be constructed by a

LOGSPACE uniform PC family of circuits, given

as inputs O(ulogn) + n°® random bits. (The

implicit constant depends only on the fixed pa-
rameters above.)

The proof of lemma 6 is a messy exercise in logic
design.

The main theorem, except property (ii})b now
follows by choosing 6 = .01« and lemmas 4 and
6. The proof of this property follows the same
outline, only using the stronger assertion in
lemma 1.

S. DEPTH-2 CIRCUITS

The two results in this section are algorithms for
the problems of approximate counting and find-
ing a satisfying assignment, respectively, in
depth-2 circuits (CNF/DNF formulae). The two
important parameters which affect the running
time of the algorithms are the fraction of satisfy-
ing assignments and the sizes of clauses.

Recall that p(F) = PAF(x) = 1] = 2£ it n is the

n?

number of variables in F. A CNF formula F is
k-CNF if every clause is of size at most k.
Similarly we define a k-DNF formula.

Theorem 1 deals with the approximation of
depth 2 circuits. It shows that the output almost
always depends on a small subset of the input
variables,

Theorem 1: Let F be a k-DNF formula on inputs
A4, and m any number sufficiently bigger than
k. (2" > (km2k+l)k will do) Then there exists

asubset Sc4, st. |S| < m"2 with the follow-
ing property. If v is a random, uniformly chosen
binary string of size | S| then
PAFs, is non constant] < 2™™. Moreover, such a

subset § can be found in DTIME(n"Z).

This theorem can be used as an algorithm for
approximate counting (see section 3.1).

Corollary 6: Let F be any k-CNF or k-DNF
formula, and assume wlog that p = p(F) < .5.
Then the f-approximation problem for F can be
2
2 tegh)
solved in DTIME(n* +2

).

For example, for 3-CNF formulas with a fixed
fraction of assignments, the B-approximation
problem can be solved in polynomial time for
every fixed > 0.

Theorem 2 gives an algorithm for finding a satis-
fying assignment.

Thevrem 2: Let F be a k-CNF formula on n

variables with p = p(F). Then we can find a

satisfying assignment of F in
k2%(logp~1) :

DTIME(n). (p is unknown to the algo-

rithm)

For example, this theorem says that 3-CNF
instances of SAT with a fixed fraction of satisfy-
ing assignments are easy, as we can find one in
polynomial time!

REFERENCES

[4d] L. Adleman, "Two theorems on random
polynomial time", 19th FOCS (1978), 75-83.

[4/1 M. Ajtai, "S!-formulae on finite structures",
Annals of Pure and Applied Logic 24 (1983),
1-48.

[4n] R. Anderson, "Set splitting", manuscript.

[4B] M. Ajtai and M. Ben-Or, "A theorem on
probabilistic constant depth computations", 16th
STOC (1984), 471-474.

[ACGS] W. Alexi, B. Chor, O. Goldreich and C.
P. Schnorr, "RSA/Rabin bits are 1 + 1

poly(log n)
secure, 25th FOCS (1984), 449-457.

R S R .« B

[BBS] L. Blum, M. Blum and M. Shub, "A
simple, secure pseudo-random number genera-
tor", Advances in Cryptography, Proc. of
CRYPTO-82 (1982), 61-78.

[BAM] M. Blum and S. Micali, "How to generate
cryptographically strong sequences of pseudo-
random bits", Proc of the 23rd FOCS, (1982)
112-117.

[ES] P. Erdos and P. Spencer, "Probabilistic
methods in Combinatorics”, Academic Press,
(1974).

[FLSI M. Furst, R. J. Lipton and L. Stockmeyer,
"Pseudo-random number generation and space
complexity", Information and Control, to ap-
pear.

[FSS] M. Furst, J. B. Saxe and M. Sipser, 'Pari-
ty, Circuits, and the polynomial time hierarchy",
22nd FOCS (1981), 260-270.

{Gi] J. Gill, "Complexity of probabilistic Turing
machines”, SIAM J. of Computing 6 (1977),
675-695.

[GG] O. Gaber and Z. Galil, "Explicit construc-
tion of linear sized superconcentrators", J.
Comp. Sys Sci. 22 (1981), 407-420.

[KUW] R. M. Karp, E. Upfal and A. Wigderson,
"The complexity of parallel computation on
matroids'', submitted to the 26th FOCS.

[KW] R. M. Karp and A. Wigderson, "A fast
parallel algorithm for the maximal independent
set problem’, 24th STOC, (1984), 266-272.

[Lu] M. Luby, "A simple parallel algorithm for
the maximal independent set problem”, 17th
STOC (1985).

[Ma] G.A. Margulis, "Explicit constructions of
graphs without short cycles and low density
codes", Combinatorica 2, 1 (1982), 71-78.

[Ru] W. L. Ruzzo, "On uniform circuit complex-
ity", J. Comput. Sys. Sci., 22, 3, (1981), 365-383.

[RT] J. H. Reif and J. D. Tygar, "Towards a
theory of parallel randomized computation”,
TR-07-84, Aiken Computation Lab., Harvard
University (1984).

[Si] M. Sipser, " A complexity theoretic approach
to randomness'', 15th STOC (1983), 330-335.

[SK] A. Shamir, "On the generation of
cryptographically strong pseudo-random se-
quences, 8th ICALP, Lecture notes in Comp.
Sci., 62, Springer-Verlag (1981), 544-550.

[S1] L. Stockmeyer, "The complexity of approxi-
mate counting”, 15th STOC (1983), 118-126.

[VV] L. G. Valiant and V. V. Vazirani, "NP is
as easy as detecting unique solutions", 17th
STOC (1985).

[Yal] A. C. Yao, "Theory and applications of
trapdoor functions”, Proc. of the 23rd FOCS,
(1982), 80-91.

