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ABSTRACT

In this paper we propose two new multi-layer grid models for
VLSI layout, both of which take into account the number of
contact cuts used. For the first model in which nodes "exist"
only on one layer, we prove a tight area x (number of contact
cuts) = 0(n?) trade-off for embedding any degree 4 n-node
planar graph in two layers. For the second model in which
nodes "exist" simultaneously on all layers, we prove a number
of bounds on the area needed to embed graphs using no con-
tact cuts. For cxample we prove that any n-node graph which
is the union of two planar subgraphs can be embedded on two
layers in O(n?) area without contact cuts. This bound is tight
even if more layers and an unbounded number of contact cuts
are allowed. We also show that planar graphs of bounded
degree can be embedded on two layers in O(n!-6) area without
contact cuts.

These results use some interesting new results on embedding
graphs in a single layer. In particular we give an O(n?) area
embedding of planar graphs such that each edge makes a con-
stant number of turns, and each exterior vertex has a path to
the perimeter of the grid making a constant number of turns.
We also prove a tight 92(n3) lower bound on the area of grid
n-permutation networks.

1. INTRODUCTION

The problem of embedding bounded degree graphs in rectili-
near grids has been studied extensively in recent years [Leig0,
Th80, Va81). In these papers, the grid graph in which a graph
G is to be embedded consists of nodes on plane points with
integer coordinates, and the edges of the grid join exactly those
nodes which are unit distance apart, Consequently, an
“embedded edge" of G consists of a path of horizontal and/or
vertical segments such that a horizontal segment of an embed-
ded edge can only intersect a vertical segment of some otter
embedded edge. Here the cost of the embedding is usually
measured by either its area, maximum edge length, or the
minimum number of crossings. This notion of embedding is
particularly useful in the fabrication of VLSI chips and in the
design of printed circuit boards. However, it ignores the im-
portant problem of layer changes. In practice, the wires that
cross each other must be on different layers. Thus whenever
they are on the same layer, one of them must change its layer
before the crossing occurs. This layer change is achieved by
making a "via" or a "contact cut” between the two layers.
Usually, the presence of too many contact cuts leads to a larg-
er area, requires the design of expensive masking strategies,
and leads to a deterioration in performance with a higher
probability of faulty chips. Hence, most design automation
systems such as the Placement-Interconnect system {Ri182)
perform the arduous task of minimizing the number of contact
cuts in a given layout. These design automation systems sepa-
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rate the problem of layer assignment from the geometrical
issue regarding area consumption and wire lengths. However,
in this paper, we study the two issues together, and obtain
some interesting bounds and tradeoffs.

This paper is divided into seven sections. In section 2, we
introduce two models corresponding to VLSI chips and printed
circuit boards, and discuss some basic properties and relations
between these models. In section 3, we establish a tight area-
cut tradeoff for embedding planar graphs in the first model.

Section 4 deals with two types of grid permutation networks,
n-path permutation graphs and n-cycle permutation graphs.
We demonstrate an O(n3) area grid n-cycle permutation graph
similar to Cutler and Shiloach’s O(n3) area grid n-path permu-
tation graph [CS78]. Using a lemma on the crossing number of
expanding graphs we prove a matching lower bound on the
area of both types of grid permutation networks.

Section 5 contains new results on embedding planar graphs in
the one layer grid (with no crossings allowed). The first is an
O(n?) area embedding guaranteeing that each edge makes at
most 6 turns, and each exterior vertex has a path to the perim-
eter of the grid making at most 2 turns. Applying this with
results on permutation networks, we obtain planar graph em-
bedding algorithms which respect a fixed placement of the
nodes in the grid.

In section 6, the results of sections 4 and § are combined to
prove results about the area needed to embed various classes of
graphs in the second model. For two active layers we prove a
tight ©(n?) bound on the area needed to embed n-node graphs
of thickness 2. For k > 3 we show that n-node graphs of
thickness k can be embedded in O(n?) area in k active layers,
and also that n-node graphs of degree at most 2k can be em-
bedded in O(n?) area in k active layers. Finally we show that
n-node planar graphs of bounded degree hay. an O(n!-€) area
embedding in two active layers. The last section, 7, contains
open problems.

II. MODELS

An embedding of a graph G in the (one layer) grid is a map-
ping of the nodes of G to nodes of the grid, and edges of G to
paths in the grid. The paths representing edges are disjoint
except for the necessary intersections at their endpoints. Since
the grid is planar and every node in the grid has degree at most
four, only planar graphs of degree at most four can be embed-
ded in this manner. In order to embed a planar graph G of
arbitrary degree we sometimes use a rake embedding, namely
we embed each node of G as a horizontal line segment with all
incident edges entering from below. An example is shown in
Figure 1. It is easy to sec that a rake embedding of a graph of
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degree at most 4 can easily be converted into an ordinary grid
embedding without increasing the area by more than a con-
stant factor.
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Figure 1. A rake embedding

The first multi-layer model, which we will call the single acrive
layer or SAL model, consists of two grid layers which we will
refer to as green and blue. All the nodes of G are embedded
on the green layer, and edges are represented by paths in the
grid which begin and end on the green layer, but may change
layers any number of times at contact cuts. Within each layer
no paths cross each other except for the obvious intersections
at endpoints in the green layer. This model captures the pres-
ent fabrication technology used in VLSI circuits, where the
blue and green layers represent the metallic and polysilicon
layers in a VLSI chip (for details see Mead and Conway
{MC80]). Figure 2(a) shows an embedding of K (the com-
plete graph on five nodes) in this model. The blue and green
segments of the edge paths are drawn as dashed and solid lines,

" cespectively, and contact cuts are denoted by small squares.

(a) (b)
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Figure 2. SAL and 2AL embeddings of Ks

Leiserson [Lei80] gave a simple technique for embedding any
graph with m edges in the SAL model with O(m2) area and
O(m) contact cuts. He also showed that n-node planar graphs
have an O(n log?n) area embedding in this model. Leighton
{Leig81] proved an Q(n log n) area lower bound for embedding
planar graphs in the SAL model.

We now define the k active layer or kAL model, where k is a
positive integer. This model consists of k grid layers, each
node of G is embedded in the same position on each layer, and
edges are embedded as paths in the grid which may change
layers at contact cuts. An edge path may begin and end on
any layer, but as before, wi'hin each layer the paths must not
cross except at their endpoints. It is easy to see that a AL
embedding is just a one layer grid embedding in the usual
sense. The kAL model corresponds to k layer printed circuit
boards in which the pins of a mounted chip are present on all
layers. Figure 2(b) shows an embedding of Ky in the 2AL
model.

The thickress of a graph G is the minimum number k such that
G is the union of k planar graphs. (Here, by "union of k pla-
nar graphs" we mean that the edges of G can be partitioned
into k sets so that the graph induced by each set is planar.)

Observation 2.1. A graph can be embedded in the kAL model
without contact cuts if and only if it has thickness k.
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Proof. It is clear that the number of layers needed to embed a
graph G is at least its thickness, and a simrle homotopy argu-
ment proves the opposite direction. [0

Some of our results on the KAL model can be applied to a
variant model in which each node of the graph must be embed-
ded in a specified position. This is referred to as a fixed place-
ment model, and is of importance for printed circuit boards
since often the designer has no say regarding the placement of
the nodes.

We close this section with some comments on the differences
between the SAL and kAL models. First, without contact cuts
only planar graphs can be embedded in the SAL mode! where-
as graphs of thickness k can be embedded in the kAL model.
Moreover, it can be shown that some important interconnec-
tion networks such as shuffle exchange networks, cube con-
nected cycles, and meshes of trees have an embedding without
contact cuts in the 2AL model with no increase in area relative
to the standard model. In contrast, shuffle exchange networks
and cube connected cycles require 2(n/log?n) contact cuts in
the SAL model, regardless of the area spent. There are also
examples of degree 4, n-node graphs with constant size separa-
tors which require (n) contacts cuts for any SAL embedding.
This shows that separator size is not a useful concept for the
SAL model.

3. PLANAR AREA-CUT TRADEOFF IN THE SAL MODEL

In this section we show that for each C with 1 < C < n/logzn,
every n-node planar graph of degree at most 4 has an SAL
embedding in O(n2/C) area with O(C) contact cuts. Moreo-
ver, for each n and C £ n/4 there is an n-node planar graph
for which every SAL embedding with C contact cuts has area
2(n?/C). This result can easily be generalized to planar graphs
of bounded degree using rake embeddings. The upper bound is
obtained using a hybrid algorithm, based on three different
embedding t:chniques, namely [Lei80], [DLT81) and {LT80].
The lower vound extends the work of Shileach [Sh76] and
Valiant [Va81], which gives a bound for one extreme of the
tradeoff spectrum, to the whole spectrum.

Before proving this section’s main result we present the three
embedding techniques and a useful lemma.

A planar graph is said to have gauge at most g if there is a
planar embedding of the graph such that every node has a path
of length at most g to a node on the outside face. Dolev,
Leighton and Trickey prove the following result in [DLT84].
(In [DLT84] gauge is called width but in this paper we use the
term width in a more conventional sense.)

Theorem 3.1. [DLT84] Every n-node bounded degree planar
graph of gauge g has a (one layer) embedding in a square grid
with O((ng)!/2) side length, hence O(ng) area.

We will use the following lemma to subdivide the graph into
subgraphs of small gauge. In fact we prove a slightly stronger
version than needed here, as we will use the stronger version in
section 6.

Lemma 3.2. Let G be an n-node planar graph of bounded
degree and let g > 1. Then the edges of G can be partitioned
into two sets, E; and E,, such that the subgraphs, G; and G,
induced by E; and E; have the following properties. The
gauge of G; is at most g, the gauge of G, is at most 4, and
1E,| = O(n/g).




Proof.
nodes in G whose shortest path to a node on the outside face

Fix a planar embedding of G. Let V; be the set of

has length i. For each j = t,...,.[2n/g] find the V; with (j-
1)g/2 < i < jg/2 such that V; has the smallest cardinality, and
place all the edges incident with its nodes in E,. | E{| is taken
to be the set of edges which remain, It is easy to see that
[E;! = O(n/g), that none of the connected components of
1 G, | have gauge more than g, and that none of the connected
components of G, have gauge more than 4. The proof is com-
pleted by observing that the gauge of a graph is the maximum
of the gauges of its connected components. [J

The second embedding strategy, using a simple technique of
Leiserson [Lei80)], adds edges to a SAL embedding of a sub-
graph using a constant number of contact cuts per edge.

Lemma 3.3. [Lei80] Let G’ be a subgraph of a degree 4 planar
graph G and suppose G' has a SAL embedding in a square of
side S such that all horizontal segments of edges lie on the
green layer. Then e edges of G can be added to the embedding
using at most 4e contact cuts so that the resulting embedding is
contained in a square of side S + 3e. Moreover all horizontal
segments of the added edges will also lie on the green layer.

The final strategy, also used by Leiserson in [Lei80], is a tradi-
tional divide and conquer technique based on iterating a vari-
ant of the planar separator theorem, then recombining the
pieces using the preceding lemma.

Lemma 3.4. There is a constant k such that any degree 4,

n-node planar graph can be partitioned into four disconnected
subgraphs of size (approximately) n/4 by the removal of kn!/2
edges.

Proof. This is easily deduced from the usual version of the
planar separator theorem (Lipton and Tarjan [LT79]}. O

Theorem 3.5. For any C with 1 € C £ n/log?n, every n-node
planar graph of degree at most 4 has an SAL embedding in
0O(n?/C) area with O(C) contact cuts. Moreover, for each n
and C < n/4 there is an n-node planar graph for which every

SAL embedding with C contact cuts has area § (n2/C).

Proof. The proof of the lower bound goes as follows. Shiloach
[Sh76] proved that the n-node planar graph shown in Figure 3
requires © (n2) wire area if no contact cuts are allowed. We
will call this graph a triangle graph. (Valiant [Va81] men-
tioned a similar result for a diamond shaped graph.) Given an
embedding of the triangle graph with C contact cuts delete all
edges in the graph which use a contact cut. The embedding of
the remaining graph uses no contact cuts, and it is easy to see
that the remaining graph contains C disjoint triangle subgraphs
containing a total of at least n - 3C nodes. Now the total area
for the remaining graph is at least the sum of the wire areas of
the C triangle subgraphs, and it easy to see that this sum is
minimized when all the triangle subgraphs have the same size,
yielding a lower bound of approximately C((n - 3C)/C)? = (n
-3C)2/C = Q(n%/C).

Due to space limitations, we only sketch the proof of the upper
bound. Moreover we will omit floors and ceilings, treating all
quantities that obviously need to be integers as though they
already are. To prove the upper bound we show how to em-
bed any degree 4 planar graph with O(C) contact cuts and
O(n?/C) area. This construction mixes embedding strategies
according to the number of contact cuts allowed.
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Figure 3. The n-node triangle graph

Case 1:

First suppose that C < n2/3, Let g = n/C. Remove O(n/g) =
O(C) edges so that each connected component has gauge at
most g. Use Theorem 3.1 to embed each component G' in the
green layer in a square grid of side O((n'g)!/2), where n' is the
number of nodes in G'. Using a simple 2 dimensional bin pack-
ing algorithm, these "small" square grids can be packed into a
"large" square grid whose area is at most a constant factor
greater than the sum of the areas of the “small" square grids.
Thus the large square has area O(ng) and hence side length
O((ng)}/?) = O(n/C!/2). Now we have an embedding of all
of G on the green layer, except for the O(C) edges we re-
moved. Using the construction in Lemma 3.3 to embed these
edges yields a rectangle of height and width O(n/C!/2 4+ C},
and hence area O(n2/C + C2) = O(n2/C) since C < n2/3,
Moreover all horizontal segments of edges lic on the green
layer.

Case 2:

Let n2/3 < C < n/{log n)2. We recursively apply Lemma 3.4 j
times where 4] = C3/n2. This process corresponds to con-
structing a complete quad tree of depth j, where the root is the
original graph, and the four children of an internal node H are
the four components into which H is partitioned by applying
Lemma 3.4. Now we prove by backwards induction on i that
there is a constant K, such that for any graph H of depth i in
the tree, H has an SAL embedding in a square of side
2iikn2/C? + (j-i)3kn!/2/2i. The base case uses the embed-
ding in case 1 with O((n/4))%/3) contact cuts per leaf graph.
For the inductive step we place the embeddings of the four
children of H in a 2 x 2 square. Then using Lemma 3.3 we add
in the kn1/2/2i edges which were removed in partiticning H
into its "children''. Simple algebra verifies that at the root the
tota] number of contact cuts used is O(C) and the area is
O(n2/C) as long as C < n/log?n. O

4, PERMUTATION NETWORKS

In this section we study one layer grid embeddings of two
types of permutation networks. An a-parh permutation graph is
a graph with two sets of n distinguished nodes called inputs
and outputs such that for every one-to-one mapping from the
inputs to the outputs there is a set of node disjoint paths join-
ing each input to the output specified by the mapping. We say
that such a set of paths realizes the mapping. Similarly an
n-cycle permutation graph is a graph with n distinguished nodes
called terminals, such that for every permutation on the termi-
nals, the graph contains a set of node disjoint cycles which
realize the permutation. Cutler and Shiloach [CS78] showed
that there is a grid with O(n3) area which is an n-path permu-
tation graph. We include (essentially) their construction here
as we will need to refer to its details in the next section. Using




similar techniques we will also show that there is a grid with
O(n?) area which is an n-cycle permutation graph. Finally
using a lemma on the crossing number of expanding graphs we
prove matching lower bounds, namely that any grid which is
an n-permutation graph (of either variety) must have Qn?)
area. This improves on the result in [CS78] which proved a
lower bound of Q(n25) area for the special case of n-path
permutation graphs which have all inputs on a single line and
all outputs on a single line.

Proposition 4.1 (Cutler and Shiloach). The n2 x 2n grid is an
n-path permutation graph.

Proof. The inputs are placed on the top line in the first n
positions. The outputs are placed on the middle vertical line at
intervals of length n beginning at the (n+1)-st position. Given
a one-to-one mapping o from the inputs to the outputs the
paths realizing o are as follows. The paths leave the inputs
forming a "ribbon" of width n. The ribbon immediately jogs
right far enough so that the path from the input which ¢ maps
to the first output is on the middle vertical line and thus can
run down and connect to the first output, Between the first
and second outputs, the remaining paths in the ribbon jog
horizontally so that the path to be connected to the second
output is on the middle vertical line and thus can be connected.
The process continues with the ribbon making an appropriate
horizontal jog after passing each output so that the next output
can be connected to its path. Since the width of the ribbon is
at most n at all times, there are enough horizontal lines be-
tween each pair of outputs to make the jog, and the ribbon
always stays within the vertical boundaries of the rectangle.
An example of such a set of paths is shown in Figure 4. []
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Figure 4. Routing paths in the 5-path permutation graph

_Remark 4.2. Let us call a placement of n inputs and n outputs
In a rectangle well-spaced if all the inputs lie on one horizontal
line, all outputs lie at least n lines below the inputs and at least
N lines away from both the vertical edges of the rectangle, and
if there is a vertical gap of at least n between any pair of out-
Puts. It is easy to see that the same idea as in 4.1 can be used
to prove that any rectangular grid with a well-spaced place-
ment of n inputs and n outputs is an n-path permutation graph.

Proposition 4.3. The 4n? x 4n grid is an n-cycle permutation
graph.

Proof. The terminals 1,2,...,n are placed in order down the
middle vertical line at intervals of 4n. Clearly it suffices to
show how to embed any set of disjoint cycles on 1,2,...,n given
this placement. The general idea is that the cycles are embed-
ded one at a time, and the cycle edges are embedded in the
order they occur in the cycle, beginning with an edge leaving
the topmost node in the cycle. At any given time the embed-
ding is comb shaped, and those nodes whose cycle edges have
not been embedded are exposed between teeth of the comb.
The spine of the comb is initialized to be the rightmost vertical
line of the grid. Routing a cycle edge (x,y) consists of running
the edge horizontally right from x until reaching the current
spine of the comb, then following the outline of the comb until
level with y, then left to y (thus beginning a new tooth at y
except when (x,y) is the last edge of the cycle). In the case
that x = y, i.e. the edge is a loop, after running across to the
spine the edge runs vertically for one unit then back across to
the middle line and into x. Each cycle edge uses at most 2
horizontal lines between any pair of adjacent nodes so the 4n
spacing between nodes suffices. Moreover for any cycle edge
which is not a loop, none of its vertical segments overlap.
From this it is easy to see that at most 2n vertical lines on
either side of the middle vertical line are needed. [J

Figure 5(a) shows the embedding of the cycle (1,5,3,8) and
Figure 5(b) shows how the cycles (2,7,4) and (6) are added to

this embedding.
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Figure 5. Routing cycles in the 8-cycte permutation graph

We now prove a lemma on the crossing number of an expand-
ing graph. This lemma will be a key ingredient in the lower
bounds for permutation graphs and for embedding graphs in
the kAL models. Letd > 0. We say that an n-node graph is a
d-expanding graph if every subset A of at most n/2 nodes is
adjacent to at least d| A| nodes outside A. It is well known
that for any d < 1 there exist d-expanding n-node graphs of
bounded degree for any n (see {C78] for exampie). For exam-
ple, if n is even, a random bipartite graph of degree 3 between
two sets of n/2 nodes is almost always an expanding graph. In




particular, [M] proves the existence of a 1/6-expanding graph
of degree 3.

Lemma 4.4. Every embedding of an n-node expanding graph
in the plane with the property that at most two edges intersect
at any point which is not a node, must have 2(n?) edge cross-
ings.

Proof. Let G be an n-node d-expanding graph. Given an
embedding of G in the plane with the above property, we
construct a planar graph G' by placing a new node at each
edge crossing. Let n’ be the total number of nodes in G’. We
assign each original node of G the weight 1, and the weight 0
to all the new nodes. By the weighted planar separator theo-
rem [LT79, Corollary 3] there is a set C of nodes which sepa-
rates G' into two sets A and B, such that both A and B have
total weight at most n/2, and n' = Q(1C1?). It suffices to
show that C has at least dn/(10+d) nodes since |C| 2
dn/(10+4d) implies n’ = Q(n?), and hence the number of edge
crossings, n’ - n, is also Q(n?). Suppose |C| < dn/(10+d).
Then the weight of C is less than dn/(10+d) so one of A and
B, say A, has weight at least n(1 - d/(10+d))/2 and hence at
least this many original nodes of G. Since G is d-expanding,
there are at least dn(1 - d/(10+d))/2 original nodesin B u C
which are adjacent in G to nodes in A. By the assumption
about the size of C, at least dn(1 - d/(10+d) - 2/(10+d})/2 =
4dn/(10+d) of these are in B. Thus there are 4dn/(10+d)
edge disjoint paths from A to B in G’. As C separates A from
B there are at least this many edges adjacent to new nodes
which are in C. Finally each new node has degree 4 so that
are at least dn/(10+4+d) new nodes in C, a contradiction. [

Theorem 4.5. Every n-cycle permutation graph which is a
subgraph of the grid has area 2(n?).

Proof. Clearly it suffices to prove the theorem for those n
which are divisible by 18 so we will assume n/18 is integral.
Let W and H be the width and height of the smallest rectangle,
R, enclosing the n-permutation graph. The basic idea is to find
line segments which are intersected by many disjoint edges of
the permutation graph. Every intersection must be a different
grid node on the line segment thus providing a lower bound on
the length of the segment.

For example we first observe that H > n/3, since either there
is some vertical line with n/3 terminals on it, or R can be
sliced by a vertical line L into two regions containing at least
n/3 terminals each. In the second case any permutation alter-
nating between the n/3 terminals on the left and the n/3 ter-

minals on the right, provides n/3 disjoint edges which intersect
L.

A slightly more complicated example is as follows. Suppose we
have a set of k disjoint paths P|,...,P, in the grid such that each
path contains 3 terminals. We will call these paths terminal
paths. We will see that if there is an expanding graph of de-
gree three on k nodes with crossing number K then some ter-
minal path must have length at least K/k. Let G be an ex-
panding graph of degree 3 on k nodes V1.,V With crossing
number K. Choose a permutation o such that whenever v; and
v; are adjacent in G, there is some terminal t on P; such that
o(t) is on Pj. Consider the cycles which realize 0. If each
terminal path were contracted to a single node, the resulting
graph would contain G and hence would have at least K edge
crossings. Since the embeddings of the cycles are disjoint, this
implies that there must be at least K intersections between
terminal paths and cycles. Thus some terminal path must have
length at least K/k.
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The height of a terminal path is defined to be the vertical
distance between the highest and lowest points on the path.
Our goal is to find a set of terminal paths all with length at
least Q(n), constructed in such a way that we can add together
sufficiently many of their heights to prove that H = Q(n3/W).

By Lemma 4.4 there is a constant ¢ with 0 < ¢ < 1/3 such that
for each n there is an expanding graph on Ln/37J nodes with
crossing number at least cn?. We will show that HW > c2n3,
We may assume that W < ¢n? since otherwise, as H > n/3 >
cn we clearly would have HW > ¢2n3,

Let w = 18cn. Since n/18 is integral this implies that [W/w]
< n/18. We slice R vertically into [ W/w 1 slices of width at
most w, and in each slice connect all of its terminals by a
descending path of minimal length. We now define the termi-
nal paths as the subpaths joining triples of terminals along the
descending path. This is illustrated in Figure 6. It is easy to
check that the number of terminal paths is at least n/3 -
fW/w1l > n/3 -n/18 = 5n/18. Also note that for each ter-
minal path its height is at least its length - 2w since it is a
subpath of a descending path of minimal length.
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Figure 6. Constructing terminal paths

Next we discard all terminal paths that are in slices with less
than nw/6W terminal paths. Since this removed at most n/6
terminal paths, at least n/9 terminal paths remain., Each re-
maining terminal path that is one of the [nw/12W1 longest
terminal paths in its slice is labelled a long terminal path, and
also removed. Now w = 18cn and W < cn? imply that nw/6W
> 3. Thus if there were x terminal paths in a slice before
removing the long terminal paths and x > 0, the number re-
maining after removing the long paths is x - Tnw/12W1 > x -
x/27 2 x/3 because x > 3. From this it is easy to check
that removing the long terminal paths still leaves at least n/27
terminal paths. It follows from our previous observations that
since n/27 > n/37, one of these terminal paths, say P, must
have length at least 37cn since there is a degree 3 expanding
graph on n/371 nodes with crossing number at least cn?.
Now consider the long terminal paths removed from the slice
containing P. Since they are all at least as long as P they each
have length at least 37cn and hence height at least 37cn - 2w >
cn. Moreover as these terminal paths are disjoint subpaths of a
descending path, the height of the slice is at least the sum of
their heights, i.e. at least (nw/12W)(cn) > ¢2n3/W. Thus HW
> ¢2n3 as desired. [

The proof of the 2(n%) lower bound for the area of n-path
permutations is very similar though slightly more complicated.
Because of space limitations we merely sketch how the preced-
ing proof must be modified. The set of k node disjoint termi-
nal paths must be replaced by k/2 input paths and k/2 output




paths such that the k paths are node disjoint. Moreover the
k-node expanding graph chosen must be a bipartite graph
between two sets of k/2 nodes. In order to construct the input
paths and output paths, we find a set of disjoint rectangular
regions of bounded width, such that the union of a subset of
the regions contains a fixed fraction of the inputs, and the
union of the other regions contains the same fraction of the
outputs. In each "input containing”" region, input paths are
formed exactly as the terminal paths were, by taking subpaths
of a descending path of minimal length connecting all the in-
puts in that region. OQutput paths are constructed similarly in
"output containing” regions. Otherwise the proof is entirely
analogous.

5. PLANAR GRAPHS IN ONE LAYER

In this section we prove results about embedding planar graphs
in the grid. The first is an algorithm which given an embed-
ding of a planar graph in the plane, constructs a topologically
equivalent O(n?) area (rake) grid embedding with two impor-
tant properties. First, every edge makes a bounded number of
turns, and secondly every exterior node has a path with a
bounded number of turns to an edge of the rectangle enclosing
‘the embedding. In fact if the exterior face is not a simple
cycle and hence some exterior nodes appear more than once on
the exterior face, there is such a path to an edge of the rectan-
gle from every exterior "side” of an exterior node. Figure 7
illustrates an embedding with these properties.
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Figure 7 Paths from exterior nodes to the perimeter

In his thesis [Sh76], Shiloach gives an 0O(n?) area grid embed-
ding algorithm for planar graphs but the embeddings produced
have neither of these properties. Valiant [Va81] also claims an
O(n?) area embedding for planar graphs but in order for his
idea to work it is necessary to ensure that his embedding has
the second property (which Valiant does not do). In fact,
using the ideas in the proof of Theorem 4.5, it can be shown
that Valiant's scheme may produce an O(n®) area embedding
in the worst case.

We will use our O(n2) area embedding technique directly :
proving our upper bounds for the 2AL r odel in the next sec-
tion. However it is also implicitly neede. 1 Theorem 3.5 since
(although this observation is missing in their paper [DLT84])
Dolev, Leighton, and Trickey need an O(n2) area embedding
with the second property in order to prove that every n-node
planar graph of gauge at most g has an O(ng) area grid emhed-
ding.

The second result in this section shows that for any fixed
placement of the nodes, a planar graph of gauge g can be em-
bedded with this placement, so long as the specified placement
blaces the nodes sufficiently far apart.

Although the actual O(n2?) area embedding algorithm is quite
simple, in order to accurately describe it and prove that it has
‘the desired properties, we must first introduce some notation.
Given a planar embedding r of a connected planar graph G, we
use the term ciockwise boundary walk produced by r for the or-
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dered list of nodes visited by a complete tour of the exterior
face. When the exterior face is not a simple cycle, some nodes
will appear in the list more than once. Moreover the list de-
pends on where in the exterior face the tour is started. Name-
ly, changing the starting point results in a cyclic shift of the
list. We will use the term corner to refer to two adjacent
edges on the boundary of the exterior face, and refer to the
corner formed by the first edge and last edge of a boundary
walk as the starting corner. If the two adjacent edges are (u,v)
and (v,w) we denote the corner by {u,v,w). For example
1,2,1,3,1,4,56,4 is a clockwise boundary walk of the graph
shown in Figure 8(a), and its starting corner is (4,1,2). If the
graph G is a single vertex, {v,}, we use the convention that it
has no corners and denote the starting corner of the boundary
walk v; by ¢ (i.e. the empty corner).

Suppose vy,...,vy is a clockwise boundary walk produced by a
planar embedding 7 of G with starting corner (v,v,,v5). We
define (G,7,(vy,v|,¥,)) to be the planar supergraph of G ob-
tained by adding k+1 new leaf nodes x,,...,.x; | with x; adja-
cent to v; for i = 1,...k and x;,, adjacent to v,. We define the
natural embedding of (G,7,(vy,v{,v3)) as the planar embedding
of (G,r,(vy.v1,v,)) obtained by first embedding G with r and
adding the new edges in the exterior face so that the edge
(vi,x;) lies in the exterior corner (v ;,v;,v;,1), and (v Xg 1)
lies in the (new) exterior corner (vy,vy,x}. This is illustrated
in Figure 8(b). We will call the new nodes x; the corner leaves
of (G,7,(vy,v1,¥3)). The edges (v;,xy ) and (v;,x{) can be
thought of as marking the starting corner of the clockwise
boundary walk. We use them to mark the corner where we
wish an edge to join a node. If G is the single node, vy, we
define (G,r,¢) to be the edge (v;,x;). This is consistent with
the definition for larger G as the number of corner leaves
added is always one more than the number of corners.

{a)

Figure 8. G and (G,r,(4,1,2))

We say that a path in the grid is J-shaped if from the leftmost
endpoint the path runs down, then right, and then up to the
rightmost endpoint. Figure 9(a) shows a J-shaped path P, and
two other paths P; and P, which we will describe as running
along the inside and the outside of P respectively. A path is
double-J-shaped if it consists of two nested J-shaped paths
whose rightmost endpoints are on the same horizontal line, and
a horizontal segment joining those endpoints. Figure 9(b)
shows a double-J-shaped path.
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Figure 9. J-shaped and double-J-shaped paths




Recall from section 2 (see figure 1) that a rake grid embedding
of a planar graph is a one layer grid embedding where nodes
are represented by horizontal line segments, and edges connect
into these segments from below. In a rake grid embedding, the
clockwise order of edges at a node is understood to be the right
to left order along the line segment representing the node.

If ~ is a planar embedding of G with starting corner (v vi.v2),
we define a (r,(vy,vq,v)) embedding of G to be a rake grid
embedding of (G,7.(vy,v},v3)) with the following properties:

1. It is (up to topological equivalence) the natural embedding
of (G.T,(kavpvz))-

2. The top horizontal line contains the corner leaf nodes
X}, Xy 4 i0 Jeft to right order, but no other nodes or edges.

3. The nodes of G lie on one horizontal line with v; as the
leftmost node.

4. Each edge (v;.x;) is J-shaped and (vy,xy ) is also. Moreo-
ver the corner leaf is always the rightmost endpoint of the
edge.

5. All edges of G are either J-shaped or double-J-shaped.

An example is shown below in Figure 10. If G = fvil,a (1,¢)
embedding of G is simply an embedding of the edge (vy,x) as
a J-shaped path so that vy is to the left of, and below, xy.

X, XX % X5 X%

X;  Xg X¢ Xyo

Figure 10. A (1,(4,1,2)) embedding of G

Lemma 5.1, If G has a {r,(vy,vq,v,)) embedding then it has
one in O(n?) area where n is the number of nodes of G.

Proof. Let m be the number of edges of G. As G is planar, m
= O(n). Since each edge has a bounded number of segments
the number of horizontal and vertical lines actually used by
edges is O(m) = O(n). Thus unused horizontal and vertical
lines can be deleted to obtain an O(n2) area (r,(vy,vq,¥2))
embedding of G. [

Lemma 5.2. In any (7,(vy,v;,v;)) embedding of G all nodes
and edges lie within the region R which is bounded by the edge
from Xy, to vy, the edge from v, to x,, and the segment of
the top line running from x; to x, ;.

Proof. By property (1) in clockwise order around v; the edge
to Xy 41 immediately precedes the edge to x; and hence no
other edge adjacent to v, can leave v, in the complement of R.
Clearly no edge can cross the boundary of R and so it suffices
to show that no nodes lie in the complement of R. Suppose
some node lies in the complement. Let v be the node whose
distance (in the graph sense) from vy is minimal, and let v’ be
the neighbor of v on a shortest path joining v to v;. Now if v’
= v, then the edge from v; to v’ leaves v, in the complement
of R which is impossible as we observed above. On the other

hand if v’ is not v;, then as the edge (v,v') cannot cross the
boundary of R, v’ also lies in the complement of R. However
v’ is closer to v,, contradicting our choice of v. [J

Theorem 5.3. For any planar embedding r of a connected
planar graph G and clockwise boundary walk v;,...,vy, there is
a (7,(vy,v},v3)) embedding of G.

Proof. The proof is by induction on the number of edges of G.
If G has no edges then G = {v;}, and constructing a (r,¢)
embedding of G is trivial. Namely we embed v, to the left of,
and below x,, and connect them with a J-shaped path.

Suppose G has at least one edge and that the theorem is true
for all connected planar graphs with fewer edges. Let G’ be
the graph obtained by removing the edge (vy,vy) from G.
There are two cases to consider depending on whether G’ is
connected.

If G’ is disconnected it has two connected components, say G,
and G,, with v; in G, and v in G,. For i = 1,2 let 7; be the
planar embedding of G; obtained by restricting v to G;. Since
the removal of (v;,v}) disconnects G, there exists j with 1 < j
< k such that v; = vy and vj; = vy. To see this note that the
walk v;,...,v, must contain the edge (v;,v,) since otherwise the
walk would connect v; and vy in G’ and hence G’ would be
connected. Also (vy,v;) must be traversed from v, to vy since
otherwise again v; and v, would be connected in G'. It is easy
to see that vy,...,vj is a clockwise boundary walk of G; prod-
uced by 7, and VigtrVkel is a clockwise boundary walk of
G, produced by 7. To obtain a (7,(vy,v,v2)) embedding of
G, we take the (-rl,(vj_l,vl,vz)) embedding of G; and the
(12,(vk_1,vj,vj+2)) embedding of G,, and lay them side by side
with G, on the left so that all the nodes of G are on the same
horizontal line. If necessary one of the embeddings is
stretched at the top so that the corner leaves of both graphs
are embedded on the top line. Label (in left to right order) the
j corner leaves of the left graph xy,...x; and the k-j corner
leaves of the right graph Xj,y,...Xx. Figure 11(a) illustrates
the placement of these graphs. Note that by Lemma 5.2 all
edges and nodes lie within the two shaded regions shown in
Figure 11(a). The final corner node is added at the top right
corner and the two remaining edges, (vy,vy) and (v, x; ) are
routed as shown in Figure 11(b).

X, X; X1 X
(a) /
\'A Vic
X, Xj X1 Xie  Xictl

Figure 11. The (7,(vg,v;,v;)) embedding when G’ disconnected

It is not hard to see that the graph we have embedded is
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(G,7,(v¢,v{,v5)), and the embedding is the natural embedding.
It is also easy to check that the remainder of the properties are
satisfied, so that indeed this is a (r,(vy,v|,v,)) embedding of G.

Now suppose G’ is connected, and let ' be the restriction of =
to G Then r' produces a clockwise boundary walk
ViV Ves1renYy  where  (in  counter-clockwise order)
V1Vki Vg 4101, 1S the interior face of G containing the edge
(v,vi). To obtain the (,(vy,v,,v,)) embedding of G, we take
the (+’,(v,,v;,v;3)) embedding of G', delete the corner leaves
Xy 415X, and the edges incident to them, change the name of
X¢41 to Xy 4, and route the edge from v, to v, along the inside
of edge (v,,x ), left until just before x,, then along the
outside of the edge (xy,vy) until reaching v,. Finally, the
corner leaf nodes x;,x,,...,Xy , are raised up one line so that
property 2 is satisfied. This is illustrated in Figure 12. Again
it is easy to see that this is the natural embedding of
(G,7,(v,v{,v,)), and that all the other properties are satisfied.

X X

Vi

Figure 12. The (7,(v{,v,,v,)) embedding when G’ connected

The proof we have just given obviously yields an algorithm for
embedding a planar graph in O(n?) area such that each edge
makes at most 6 turns, and such that each exterior corner of
the graph has a path with at most 2 turns to the boundary of
the enclosing rectangle. We will call this embedding the J
embedding of the graph. Given an embedding r and a starting
corner (u,v,w) we define the (7,{(u,v,w)) ordering of the nodes
of G to be the left to right order given by the J embedding. (If
G is disconnected choose some arbitrary left to right ordering
of its connected components.)

+

Figure 13. A stretched J embedding

Remark 5.4. Let r be a planar embedding of an n-node planar
graph G and let (u,v,w) be a starting corner. Then for any
grid placement of the nodes of G such that the left to right
ordering of the nodes is the (r,(u,v,w)) ordering, after
"stretching” the grid placement by inserting O(n) new horizon-
tal and vertical lines, G can be embedded with the stretched
placement.

Proof. Since the J embedding only uses O(n) vertical lines and
O(n) horizontal lines, it suffices to show how the J embedding

can be vertically stretched so that the top to bottom ordering
of the nodes agrees with that of the grid placement. To the J
embedding, add n new horizontal lines immediately above the
horizontal line containing the nodes of G. Now each node is
slid up onto one of the new horizontal lines so that each node
lies on a different horizontal line and so that the top to bottom
ordering agrees with the grid placement. An example is shown
in Figure 13. O

Lemma 5.5. Let G be an n-node planar graph of bounded
degree with gauge g. Then for any grid placement of G with at
most one node position of G on each horizontal line, after
stretching the placement by inserting O(gn?) new horizontal
lines and O{g?n) new vertical lines, G can be embedded with
the stretched placement.

Proof. First insert O(nz) new horizontal lines so that each
node position is at least n lines below the top of the rectangle
and each pair of node positions is separated by a vertical gap of
at least n lines. Next, add n new vertical lines on both sides of
the rectangle. Call the top line the gluing line, and this rectan-
gle the extended rectangle. Let r be an embedding of G such
that each node in G has a path of length at most g to the exte-
rior face. Next take the J embeddiang of G with respect to r
and any starting corner, turn it upside down, and place it on
top of the gluing line. Since every node has a path of length at
most g to an exterior node it is easy to see that in the inverted
J embedding of G, every node has a path to the gluing line
with O(g) turns. Moreover each path only crosses O(g) edges
in the inverted J embedding. By inserting O(gn) new vertical
and horizontal lines these paths to the gluing line can be taken
to be disjoint (though they will still generally intersect edges of
the inverted J embedding). Thinking of the endpoints of these
paths on the gluing line as the n inputs and the node positions
in the extended rectangle as the n outputs, Remark 4.2 ob-
serves that the extended rectangle is an n-path permutation
graph. Thus using the ideas of 4.1 it is possible to extend the
paths from the nodes in the inverted J embedding to the node
positions in the extended rectangle so that all the paths are
disjoint and each path connects the node in the inverted J
embedding to its correct position in the extended rectangle.
Figure 14 illustrates our progress so far.
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Figure 14. Preliminary stages of the embedding




Now for each path, the edges of the invert.ed J embe_ddir.\g
which cross it are pulled around its node position epdpom} in
the extended rectangle so that they no longer cross it. fI‘ms is
shown in Figure 15. Of course in doing this new .horlzonta]
and vertical lines must be inserted. Within the mv‘erted J
embedding O(g?n) new vertical lines and horizontal lines are
needed as there are n paths, each path makes O(g) turns and
crosses O(g) edges. Within the extended rectangle O(gn) new
vertical lines and O(gn?) new horizontal lines are need;d.
Since g < n, at most O(gn?) new horizontal lines and O(g*n)
new vertical lines are needed altogether.

-

b

5‘&*%

Figure 15. Removing edge crossings

Finally each node of G in the inverted J embedding and the
edges leaving it are pulled along its path to its position in the
extended rectangle. Since there are O{n) edges in G, in the
inverted J embedding O(gn) new vertical and horizontal lines
are needed and in the extended rectangle O(n) new vertical
lines and O(n?) new horizontal lines are needed. Putting all
this together we see that O(gn?) new horizontal lines and
O(g?n) vertical lines were inserted. [

Remark 5.6. Let G be an n-node planar graph. Then for any
grid placement of G with at most one node position of G on
each horizontal line, after stretching the placement by inserting
O(n?) new horizontal lines and O(n2) new vertical lines, G can
be embedded with the stretched placement.

Proof. The embedding is identical to that described in the
proof of 5.5 except that in constructing the paths joining the
nodes in the inverted J embedding to their positions in the
extended rectangle, the initial part of the path lying inside the
inverted J embedding is taken just to be the straight vertical
line joining the node to the gluing line. This line has at most
O(n) crossings with edges in. the inverted J embedding since G
has O(n) edges and each edge makes a bounded number of
turns. Pulling these edges around the paths requires O(n?) new
vertical lines within the inverted J embedding, and in the ex-
tended rectangle O(n3) new horizontal lines and O(n?) new
vertical lines are needed. The requirements for pulling the
edges connected to a node along its path are as above except
that only O(n) new vertical lines are needed in the inverted J
embedding. (O

6. EMBEDDING GRAPHS IN k ACTIVE LAYERS

Theorem 6.1. Every n-node graph of thickness at most 2 can
be rake embedded in two active layers in O(n?) area using no
contact cuts,

Proof. Let G be an n-node graph which is the union of two
planar n-node graphs, G; and G,. For i = 1,2 choose an em-
bedding 7; of G; in the plane and a starting corner (u;,v;,wy).
Let o; be the (7;,(v;,v;,w;)) ordering of the nodes of G. It
suffices to find a placement of the nodes of G in the n x n grid
such that the left to right ordering is 0, and the top to bottom
ordering is o,, since by 5.4 with the insertion of O(n) new
vertical and horizontal lines we can embed G; in the first
layer. Since inserting the new lines does not change the top to
bottom ordering (nor left to right for that matter), we can now
apply 5.4 again (rotated 90 degrees) to embed G, in the second
layer with the insertion of another O(n) new vertical and
horizontal lines. Let r; and ¢; be the position of the i-th node
of G in 0, and o, respectively. It is easy to see that placing the
i-th node in row r; and column ¢; achieves the desired left to
right and top to bottom orderings. O

Theorem 6.2. “There are n-node graphs of degree at most 3 and
thickness at most 2 such that for any fixed k every k active
layer embedding requires 0(n?) area, regardless of the number
of contact cuts.

Proof. It suffices to find such a graph of degree at most 3,
since we will see in 6.4 and 6.5 that every graph of degree at
most 3 has thickness at most 2. Let G be an n-node expanding
graph of degree at most 3, and assume we have an embedding
of Gin k active layers. By increasing the area by at most a
factor of k2, we may assume that no pair of horizontal
[vertical] segments on different layers occupy the same hori-
zontal [vertical] line. By projecting each layer onto the first
layer, we obtain a planar embedding of G such that any pair of
distinct edges only intersect at grid nodes, and at most 2 edges
intersect at any grid node. Now since G has £(n?) crossing
number by Lemma 4.4, there must be Q(n2?) grid nodes where
two edges cross each other, which shows that the embedding
has 2(n?) area. O

The reason we can embed graphs of thickness 2 in O(n?) area
in 2 active layers ®ithout contact cuts, is that since the grid is
two dimensional we can achieve two different orderings of the
nodes simultaneously. However for graphs of thickness k in k
active layers when k > 3, the situation seems to be more diffi-
cult. If G is an n-node graph which is the union of k n-node
planar graphs, the best we can do at the moment is to position
each node on a different horizontal line and then by Remark
5.6, with the insertion of at most O(n3) horizontal lines and
O(n?) vertical lines, we can embed one of the planar graphs on
each layer. This yields the following theorem.

Theorem 6.3. Every graph of thickness at most k has an 0(n%)
area rake embedding in k active layers without contact cuts.

For graphs of bounded degree we can do somewhat better by
partitioning the edges into cycle covers and using the fact that
there is an O(n3) area grid which is an n-cycle permutation
graph. More precisely, a cycle cover of a graph is a set of node
disjoint cycles such that every node of the graph is in some
cycle. We assume that the graph may have loops and multiple
edges and that cycles of length one or two are permitted. The
following theorem is due to J. Peterson [Pe91].

Theorem 6.4. 1f G is a 2k-regular graph then its edges can be
partitioned into k edge disjoint cycle covers.

e e N . ad v ed o
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Simple arguments yield the following lemma.

Lemma 6.5. If G is an n-node graph of degree at most 2Kk,
there is an n-node 2k-regular graph (which may have multiple
edges and loops) which contains G as a subgraph.

Theorem 6.6. Any n-node graph of degree at most 2k can be
embedded in the k active layer model in O(n3) area using no
contact cuts.

Proof. By 6.5 we may assume the graph is 2k-regular, and
hence by 6.4 the edges can be partitioned into k cycle covers.
We position the n nodes in the 4n? x 4n grid exactly as the
terminals are positioned in the proof of 4.3. Now using 4.3 we
can embed each cycle cover in a different layer. O

Remark 6.7. It is easy to see how these ideas can be extended
to give an O(nb?) embedding for graphs of bandwidth b. Thus
graphs with small separators can be embedded much more
efficiently.

Since planar graphs can be embedded in O(n?) area on one
layer, one expects that there should be better embeddings
without contact cuts for planar graphs in several active layers.
The remainder of this section outlines an O(nl) area embed-
ding for n-node planar graphs of bounded degree in two active
layers without contact cuts.

The basic idea is as follows. The edges of the graph are parti-
tioned into two sets, say E| and E,, which will be embedded
on the first and second layers respectively. The edges in E;
are embedded using the Dolev-Leighton-Trickey algorithm
which embeds any n-node planar graph of gauge g in a square
with Q(ng) area (see 3.1). Since some nodes are endpoints of
edges in both E; and E,, the embedding of the edges in E, on
the first layer places constraints on how the edges of E, are to
be embedded in the second layer. Fortunately the edges in E,
form a graph of constant gauge and we can use Lemma 5.5 to
embed them without too disastrous an effect on the area.

Theorem 6.8. Every n-node planar graph of bounded degree
has an O{n!-%) area embedding in two active layers without
contact cuts.

Proof. Let G be an n-node planar graph of bounded degree.
Applying 3.4 with g = n-® we can partition the edges of G into
E, and E; so that the induced subgraphs, G; and G,, have
gauges at most n'® and 4 respectively, and E, has O(n*) edges.
By 3.1 G| can be embedded on the first layer in a square with
side S where S = O(n'8). Let N be the set of nodes of G inci-
dent with edges in E,. Since |[N| = O(n?) we may assume
also that the embedding of G, places each node of N on a
different horizontal line. Now by 5.5 we can embed the edges
in E, on the second layer with the insertion of at most O(n'8)
new horizontal lines and O(n*) new horizontal lines, thus
achieving the promised O(n!8) area. O

7. OPEN PROBLEMS

As the results in this paper show, many questions about these
models remain to be answered. Here we mention a few open
problems which we consider important.

T.1. Close the gap between the Q(n2) lower bound and O(n%)
upper bound for the area required to embed a graph of thick-
ness k in k active layers when k > 3.

7.2, Leighton’s Q(n log n) bound for the area required to
embed planar graphs in the grid, when crossings of horizontal
and vertical segments of edges are allowed [Leig81], can be
used to prove an Q(n log n) lower bound on the area required
to embed planar graphs in k active layers even with contact
cuts, for any fixed k. Can planar graphs be embedded without
contact cuts in less than O(n!-®) area when more than two
active layers are allowed? Can the @{(n log n) lower bound on
the area needed to embed planar graphs in two layers be im-
proved when contact cuts are not allowed?

7.3. Give upper bounds on the area needed to embed planar
graphs in k active layers which depend on the gauge of the
planar graph.

7.4. How large must a planar {not necessarily embedded in the
grid) permutation network be? Without the grid embedding
assumption the current lower bound is the obvious one of
Q(n?) which follows directly from the planar separator theo-
rem. On the other hand all known examples of planar permu-
tation networks have size 2(n3).
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