
Chapter 1

The Gödel Phenomena in

Mathematics: A Modern View
Avi Wigderson

Herbert Maass Professor

School of Mathematics

Institute for Advanced Study

Princeton, New Jersey, USA

1.1 Introduction

What are the limits of mathematical knowledge? The purpose of this chapter
is to introduce the main concepts from computational complexity theory that
are relevant to algorithmic accessibility of mathematical understanding. In
particular, I’ll discuss the P versus NP problem, its possible impact on research
in mathematics, and how interested Gödel himself was in this computational
viewpoint.

Much of the technical material will be necessarily sketchy. The interested
reader is referred to the standard texts on computational complexity theory,
primarily [5, 25, 43, 61].

1.1.1 Overview

Hilbert believed that all mathematical truths are knowable and set the threshold
for mathematical knowledge at the ability to devise a “mechanical procedure.”
This dream was shattered by Gödel and Turing. Gödel’s incompleteness the-
orem exhibited true statements that can never be proved. Turing formalized
Hilbert’s notion of computation and of finite algorithms (thereby initiating the
computer revolution) and proved that some problems are undecidable—they
have no such algorithms.

While the first examples of such “unknowables” seemed somewhat unnat-
ural, more and more natural examples of unprovable or undecidable problems
were found in different areas of mathematics. The independence of the con-
tinuum hypothesis and the undecidability of Diophantine equations are famous

1

Gödel Book—Wigderson - rev. 2010-0708 2

early examples. This became known as the Gödel phenomena, and its effect on
the practice of mathematics has been debated since. Many argued that while
some of the inaccessible truths above are natural, they are far from what is re-
ally of interest to most working mathematicians. Indeed, it would seem that in
the seventy-five years since the incompleteness theorem, mathematics has con-
tinued thriving, with remarkable achievements such as the recent settlement of
Fermat’s last “theorem” by Wiles and the Poincaré conjecture by Perelman.
So, are there interesting mathematical truths that are unknowable?

The main point of this chapter is that when knowability is interpreted by
modern standards, namely via computational complexity, the Gödel phenomena
are very much with us. We argue that to understand a mathematical struc-
ture, having a decision procedure is but a first approximation, and that a real
understanding requires an efficient algorithm. Remarkably, Gödel was the first
to propose this modern view, in a letter to von Neumann in 1956, which was
discovered only in the 1990s.

Meanwhile, from the mid-1960s on, the field of theoretical computer science
has made formal Gödel’s challenge and has created a theory that enables quan-
tification of the difficulty of computational problems. In particular, a reasonable
way to capture knowable problems (which we can efficiently solve) is the class
P, and a reasonable way to capture interesting problems (which we would like
to solve) is the class NP. Moreover, assuming the widely believed P 6= NP
conjecture, the class NP-complete captures interesting unknowable problems.

In this chapter, I define these complexity classes, explain their intuitive
meaning, and show how Gödel foresaw some of these definitions and connec-
tions. I relate computational difficulty to mathematical difficulty and argue how
such notions, developed in computational complexity, may explain the difficulty
mathematicians have in accessing structural, non-computational information. I
also survey proof complexity—the study of lengths of proofs in different proof
systems.

Finally, I point out that this modern view of the limits of mathematical
knowledge is adopted by a growing number of mathematicians, working on a
diverse set of interesting structures in different areas of mathematics. This
activity increases interaction with computer scientists and benefits both fields.
Results are of two types, as in standard computer science problems. On the one
hand, there is a growing effort to go beyond characterizations of mathematical
structures, and attempts are made to provide efficient recognition algorithms.
On the other, there is a growing number of NP-completeness results, providing
the stamp of difficulty for achieving useful characterizations and algorithms.
This second phenomenon, now ubiquitous in science and mathematics, may
perhaps better capture Gödel’s legacy on what is unknowable in mathematics.

1.1.2 Decision Problems and Finite Algorithms

Which mathematical structures can we hope to understand? Let us focus on the
most basic mathematical task of classification. We are interested in a particular
class of objects and a particular property. We seek to understand which of the
objects have the property and which do not. Let us consider the following

Gödel Book—Wigderson - rev. 2010-0708 3

examples:

(1) Which valid sentences in first-order predicate logic are provable?

(2) Which Diophantine equations have solutions?

(3) Which knots are unknotted?

(4) Which elementary statements about the reals are true?

It is clear that each object from the families above has a finite representation.
Hilbert’s challenge was about the possibility to find, for each such family, a
finite procedure that would solve the decision problem in finite time for every
object in the family. In his seminal paper [63, 64], Turing formulated the
Turing machine, a mathematical definition of an algorithm, capturing such
finite mechanical procedures. This allowed a mathematical study of Hilbert’s
challenge.

Hilbert’s Entscheidungsproblem—problem (1) above—was the first to be
resolved, in the same paper by Turing. Turing showed that problem (1) is
undecidable, namely there is no algorithm that distinguishes provable from
unprovable statements of first-order predicate logic. Hilbert’s 10th problem—
problem (2) above—was shown to be undecidable as well, in a series of works
by Davis, Putnam, Robinson, and Matiasevich [41]. Again, no algorithm can
distinguish solvable from unsolvable Diophantine equations.

The crucial ingredient in those (and all other) undecidability results is show-
ing that each of these mathematical structures can encode computation. This
is known today to hold for many different structures in algebra, topology, ge-
ometry, analysis, logic, and more, even though a priori the structures studied
seem to be completely unrelated to computation. It is as though much of con-
temporary work in mathematics is pursuing, unwittingly and subconsciously,
an agenda with essential computational components. I shall return to refined
versions of this idea later.

The notion of a decision procedure as a minimal requirement for under-
standing of a mathematical problem has also led to direct positive results. It
suggests that we look for a decision procedure as a means, or as a first step for
understanding a problem. For problems (3) and (4) above this was successful.
Haken [30] showed how knots can be so understood, with his decision procedure
for problem (3), and Tarski [62] showed that real-closed fields can be understood
with a decision procedure for problem (4). Naturally, significant mathematical,
structural understanding was needed to develop these algorithms. Haken devel-
oped the theory of normal surfaces and Tarski invented quantifier elimination
for their algorithms, both cornerstones of the respective fields.

This reveals only the obvious: mathematical and algorithmic understanding
are related and often go hand in hand. There are many ancient examples.
The earliest is probably Euclid’s greatest common divisor (GCD) algorithm.
Abel’s proof that roots of real polynomials of degree at least 5 have no formula
with radicals is the first impossibility result (of certain classes of algorithms).
Of course, Newton’s algorithm for approximating such roots is a satisfactory

Gödel Book—Wigderson - rev. 2010-0708 4

practical alternative. What was true in previous centuries is truer in this one:
the language of algorithms is slowly becoming competitive with the language
of equations and formulas (which are special cases of algorithms) for explaining
complex mathematical structures.

Back to our four problems. The undecidability of problems (1) and (2)
certainly suggests that these structures cannot be mathematically understood in
general. This led researchers to consider special cases of them that are decidable.
But does decidability—for example, that of problems (3) and (4)—mean that
we completely understand these structures? Far from it. Both algorithms are
extremely complex and time consuming. Even structurally speaking, there are
no known complete knot invariants or characterizations of real varieties. How
can one explain such mathematical difficulties for decidable problems?

It is natural to go beyond decidability and try to quantify the level of under-
standing. We will use a computational yardstick for it. We argue that better
mathematical understanding goes hand in hand with better algorithms for “ob-
taining” that understanding from the given structures. To formalize this, we
will introduce the computational terms that are central to the theory of com-
putational complexity. There is no better way to start this than with Gödel’s
letter to von Neumann.

1.2 Gödel’s Letter to von Neumann

In Gödel’s letter, which I include below in its entirety for completeness, com-
plexity is discussed only in the second paragraph—it is remarkable how much
this paragraph contains! It defines asymptotic and worst-case time complexity,
suggests the study of the satisfiability problem, discusses the mathematical sig-
nificance of having a fast algorithm for it, and even speculates on the possibility
of the existence of such an algorithm. In the section that follows the letter, I
identify the letter’s contributions and insights in modern language.

1.2.1 The Letter

First, a bit on the context. The letter was written when von Neumann was in
the hospital, already terminally ill with cancer (he died a year later). It was
written in German, and here we reproduce a translation. The surveys by Sipser
[60] and Hartmanis [31] provide the original letter, as well as more details on
the translation.

As far as we know, the discussion Gödel was trying to initiate never contin-
ued. Moreover, we have no evidence of Gödel’s thinking more about the subject.
Again, we will refer later only to the second paragraph, which addresses the
computational complexity issue.

Princeton, 20 March 1956

Dear Mr. von Neumann:

Gödel Book—Wigderson - rev. 2010-0708 5

With the greatest sorrow I have learned of your illness.

The news came to me as quite unexpected. Morgenstern

already last summer told me of a bout of weakness you once

had, but at that time he thought that this was not of any

greater significance. As I hear, in the last months you

have undergone a radical treatment and I am happy that this

treatment was successful as desired, and that you are now

doing better. I hope and wish for you that your condition

will soon improve even more and that the newest medical

discoveries, if possible, will lead to a complete recovery.

Since you now, as I hear, are feeling stronger, I would like

to allow myself to write you about a mathematical problem,

of which your opinion would very much interest me: One can

obviously easily construct a Turing machine, which for every

formula F in first order predicate logic and every natural

number n, allows one to decide if there is a proof of F of

length n (length = number of symbols). Let ψ(F, n) be the

number of steps the machine requires for this and let

φ(n) = maxF ψ(F, n). The question is how fast φ(n) grows for

an optimal machine. One can show that φ(n) ≥ k · n. If there

really were a machine with φ(n) ≈ k · n (or even φ(n) ≈ k · n2),

this would have consequences of the greatest importance.

Namely, it would obviously mean that in spite of the

undecidability of the Entscheidungsproblem, the mental work

of a mathematician concerning Yes-or-No questions (apart

from the postulation of axioms) could be completely replaced

by a machine. After all, one would simply have to choose

the natural number n so large that when the machine does not

deliver a result, it makes no sense to think more about the

problem. Now it seems to me, however, to be completely

within the realm of possibility that φ(n) grows that slowly.

Since 1.) it seems that φ(n) ≥ k · n is the only estimation

which one can obtain by a generalization of the proof of the

undecidability of the Entscheidungsproblem and 2.) after

all φ(n) ≈ k · n (or φ(n) ≈ k · n2) only means that the number of

steps as opposed to trial and error can be reduced from N

to log N (or (log N)2). However, such strong reductions

appear in other finite problems, for example in the

computation of the quadratic residue symbol using repeated

application of the law of reciprocity. It would be

interesting to know, for instance, the situation concerning

the determination of primality of a number and how strongly

in general the number of steps in finite combinatorial

problems can be reduced with respect to simple exhaustive

search.

Gödel Book—Wigderson - rev. 2010-0708 6

I do not know if you have heard that "Post’s problem,"

whether there are degrees of unsolvability among problems of

the form (∃y)φ(y, x), where φ is recursive, has been solved in

the positive sense by a very young man by the name of

Richard Friedberg. The solution is very elegant.

Unfortunately, Friedberg does not intend to study

mathematics, but rather medicine (apparently under the

influence of his father). By the way, what do you think of

the attempts to build the foundations of analysis on

ramified type theory, which have recently gained momentum?

You are probably aware that Paul Lorenzen has pushed ahead

with this approach to the theory of Lebesgue measure.

However, I believe that in important parts of analysis

non-eliminable impredicative proof methods do appear.

I would be very happy to hear something from you personally.

Please let me know if there is something that I can do for

you. With my best greetings and wishes, as well to your

wife,

Sincerely yours,

Kurt Gödel

P.S. I heartily congratulate you on the award that the American

government has given to you.

1.2.2 Time Complexity and Gödel’s Foresight

In this section, I go through the main ingredients of Gödel’s letter, most of
which were independently1 identified and developed in the evolution of com-
putational complexity in the 1960s and 1970s. These include the basic model,
input representation, (asymptotic, worst-case) time complexity,2 brute-force al-
gorithms and the possibility of beating them, proving lower bounds, and last
but not least, Gödel’s choice of a focus problem and its significance. I comment
on the remarkable foresight of some of Gödel’s choices. When introducing some
of these notions, I use common, modern notation.

• Computability vs. complexity: All problems we will discuss here
are computable—that is, they have a finite algorithm. Gödel states that
for his problem, “one can...easily construct a Turing machine.”
We take for granted that the given problem is decidable and ask for the
complexity of the best or optimal algorithm. Gödel is the first on record
to suggest shifting focus from computability to complexity.

1Recall that the letter was discovered only in the 1990s.
2I shall focus on time as the primary resource of algorithms when studying their efficiency.

Other resources, such as memory, parallelism, and more, are studied in computational com-

plexity, but I will not treat them here.

Gödel Book—Wigderson - rev. 2010-0708 7

• The model: Gödel’s computational model of choice is the Turing ma-
chine. Time will be measured as the number of elementary steps on a
Turing machine. We note that this is a nontrivial choice for a discussion
of time complexity back in 1956. The Church-Turing thesis of the equiv-
alence of all feasible computational models was around, and all known
algorithmic models were known to simulate each other. However, that
thesis did not include time bounds, and it seems that Gödel takes for
granted (or knows) that all known models can simulate each other effi-
ciently (something that is now well established).

• The problem: Gödel focuses on one problem to define complexity, a
finite version of the Entscheidungsproblem, in which the task is to de-
termine if a formula F has a proof of length n. This is by no means an
arbitrary choice, and Gödel is well aware of it, as will be discussed below.
Put differently, Gödel’s problem asks if we can satisfy a first-order logic
verifier that F is provable using only n symbols. We shall later meet its
cousin, the problem SAT (abbreviating ”SATisfyability“), in which the
task is to determine if a propositional formula has a satisfying assignment.
It is not hard to see that SAT captures Gödel’s problem,3 and so we will
call it SAT .

• Input representation: Every finite object (formulas, integers, graphs,
etc.) can be represented as a binary string. We let I stand for the set of all
finite binary strings. Let f be a decision problem (“Yes-or-No question”
in Gödel’s letter), like those in Section 1.1.2. Then f : I → {0, 1} is what
we are trying to compute. Thus, we consider Turing machines that for
every input x halt with the answer f(x). In Gödel’s problem the input is
the pair (F, n), and the task is computing whether the first-order formula
F has a proof of length at most n.

• Input length: This is always taken in computational complexity to be
the binary length of the input. Clearly Gödel makes the same choice:
when he talks about the complexity of testing primality of an integer
N , he takes the input length to be log N , the number of bits needed to
describe N . Of course, finite objects may have many representations,
which differ in length, and one must pick “reasonable” encodings 4.

• Time complexity: Complexity is measured as a function of input length.
Adapting Gödel’s notation, we fix any Turing machine M computing f .
We let φ(n) denote the maximum,5 over all inputs x of length n, of the
number of steps M takes when computing f(x). We then consider the

3Simply assign propositional variables to the n possible proof symbols, and encode the

verification process so that indeed they form a proof of F as a Boolean formula.
4For example, in Gödel’s problem it is possible to encode the input using |F |+ log n bits,

where |F | is the encoding length (in bits) of the given first-order formula. However, as we

will later see, it is more natural to take it to be |F | + n, allowing for n variables to encode

the possible values of the potential proof symbols. For this problem Gödel indeed measures

complexity as a function of n.
5This worst-case analysis is the most common in complexity theory, though of course other

measures are important and well studied too. In particular, average-case analysis (typical

Gödel Book—Wigderson - rev. 2010-0708 8

growth of φ(n) for the “optimal machine”6 M . It is quite remarkable that
Gödel selects both the asymptotic viewpoint and worst-case complexity—
neither is an obvious choice but both proved extremely fruitful in the
development of computational complexity.

• Brute-force algorithms: All problems mentioned by Gödel—SAT , pri-
mality testing, and computing quadratic residue—have what Gödel calls
“trial and error” and “simple exhaustive search” algorithms. All
these problems happen to be in the class NP, and these obvious trivial
algorithms require exponential time (in the input length).

• Efficient algorithms: Gödel specifically suggests that time complexity7

O(n) or O(n2) is efficient (or tractable) enough for practical purposes.
This did not change for fifty years, despite enormous changes in computer
speed, and is a gold standard of efficiency. I’ll try to explain why compu-
tational complexity theory chose to call (any) polynomial-time algorithms
efficient and the class P to include all problems with such algorithms.

• The complexity of SAT : Gödel is completely aware of what it would
mean if the problem SAT has an efficient algorithm: “the mental work

of a mathematician concerning Yes-or-No questions (apart from

the postulation of axioms) could be completely replaced by a machine.”
So he realizes that solving this problem will solve numerous others in
mathematics. While not stating precisely that it is NP-complete (“cap-
tures” all problems inNP), he does ask “how strongly in general the

number of steps in finite combinatorial problems can be reduced

with respect to simple exhaustive search,” a set of problems we
naturally identify now with NP.

• Gödel’s speculation: The letter states “Now it seems to me...to be

completely within the realm of possibility that φ(n) grows that

slowly,” namely that SAT ∈ P, which as we shall see implies P = NP.
Gödel suggests this possibility based on the existence of highly nontriv-
ial efficient algorithms that improve exponentially over brute-force search:
“such strong reductions appear in other finite problems, for example

in the computation of the quadratic residue symbol using repeated

application of the law of reciprocity” (the trivial exponential time
algorithm would rely on factoring, while Gauss’s reciprocity allows a
GCD-like polynomial-time algorithm.8) This lesson, that there are some-
times ingenious ways of cutting the exponential search space for many
important problems, was taught again and again in the last half-century.

behavior of algorithms under natural input distributions) is central both for algorithm design

and for cryptography.
6Strictly speaking, this is not well defined.
7We use standard asymptotic notation: g(n) = O(h(n)) if for some constant k and for all

n we have g(n) ≤ kh(n). In this case we also say that h(n) = Ω(g(n)).
8In any reasonable implementation Gödel had in mind, this would take time n3, which

shows that Gödel may have indeed considered the class P for efficiently solved problems.

Gödel Book—Wigderson - rev. 2010-0708 9

• Lower bounds: Gödel tried proving that the complexity of SAT , φ(n),
cannot grow too slowly. But he could only prove a linear lower bound9

φ(n) = Ω(n). And, for Turing machines, not much has changed in this half
century—we still have no superlinear lower bounds. Proving such lower
bounds, namely proving that computational problems are intrinsically
difficult, is a central task of complexity. I shall discuss partial success as
well as the difficulty of this task later.

The next sections elaborate on these and other notions and issues and pro-
vide some historical background on their development in computational com-
plexity theory. I first deal with the complexity of computation, and then move
on to discuss the complexity of proofs.

1.3 Complexity Classes, Reductions and Com-

pleteness

In this section, I define efficient computations, efficient reductions between prob-
lems, efficient verification, and the classes P, NP, coNP, and NP-complete. I
will keep referring back to Gödel’s letter.

1.3.1 Efficient Computation and the Class P
In all that follows, I focus on asymptotic complexity and analyze time spent on
a problem as a function of input length. The asymptotic viewpoint is inherent
to computational complexity theory. We shall see in this chapter that it reveals
structure that would probably be obscured by finite, precise analysis.

Efficient computation (for a given problem) will be taken to be one whose
runtime on any input of length n is bounded by a polynomial function in n. Let
In denote all binary sequences in I of length n.

Definition 1.3.1 (The class P). A function f : I → I is in the class P if there
is an algorithm computing f and positive constants A, c such that for every n

and every x ∈ In the algorithm computes f(x) in at most Anc steps.

Note that the definition applies in particular to Boolean functions (whose
output is {0, 1}), which capture classification problems. For convenience, we will
sometimes think of P as the class containing only these classification problems.
Observe that a function with a long output can be viewed as a sequence of
Boolean functions, one for each output bit.

This definition was suggested by Cobham [15], Edmonds [21], and Ra-
bin [51], all attempting to formally delineate efficient from just finite (in their
cases, exponential time) algorithms. Of course, nontrivial polynomial-time al-
gorithms were discovered earlier, long before the computer age. Many were
discovered by mathematicians, who needed efficient methods to calculate (by

9Note that while this lower bound is trivial in the modern formulation of SAT , in which

the propositional formula has length at least n, it is far from trivial in Gödel’s formulation.

Gödel does not supply a proof, and Buss provides one in [11].

Gödel Book—Wigderson - rev. 2010-0708 10

hand). The most ancient and famous example is Euclid’s GCD algorithm, which
bypasses the need to factor the inputs when computing their greatest common
factor.

Why polynomial? The choice of polynomial time to represent efficient com-
putation seems arbitrary, and different possible choices can be made.10 How-
ever, this particular choice was extremely useful and has justified itself over
time from many points of view. We list some important ones.

Polynomials typify “slowly growing” functions. The closure of polynomials
under addition, multiplication, and composition preserves the notion of effi-
ciency under natural programming practices, such as using two programs in
sequence, or using one as a subroutine of another. This choice removes the ne-
cessity to describe the computational model precisely (e.g., it does not matter
if we allow arithmetic operations only on single digits or on arbitrary inte-
gers, since long addition, subtraction, multiplication, and division have simple
polynomial-time algorithms taught in grade school). Similarly, we need not
worry about data representation: one can efficiently translate between essen-
tially any two natural representations of a set of finite objects.

¿From a practical viewpoint, while a running time of, say, n2 is far more
desirable than n100, very few known efficient algorithms for natural problems
have exponents above 3 or 4. On the other hand, many important natural
problems that so far resist efficient algorithms cannot at present be solved faster
than in exponential time. Thus reducing their complexity to (any) polynomial
is a huge conceptual improvement (and when this is achieved, often further
reductions of the exponent are found).

The importance of understanding the class P is obvious. There are numer-
ous computational problems that arise (in theory and practice) that demand
efficient solutions. Many algorithmic techniques were developed in the past four
decades and enable solving many of these problems (see, for example, the text-
book [18]). These drive the ultra-fast home computer applications we now take
for granted like web searching, spell checking, data processing, computer game
graphics, and fast arithmetic, as well as heavier-duty programs used across in-
dustry, business, math, and science. But many more problems yet (some of
which we shall meet soon), perhaps of higher practical and theoretical value,
remain elusive. The challenge of characterizing this fundamental mathematical
object—the class P of efficiently solvable problems—is far beyond us at this
point.

I end this section with a few examples of nontrivial problems in P of math-
ematical significance. In each the interplay of mathematical and computational
understanding needed for the development of these algorithms is evident.

• Primality testing. Given an integer, determine if it is prime. Gauss
challenged the mathematical community to find an efficient algorithm,
but it took two centuries to solve. The story of this recent achievement
of [3] and its history are beautifully recounted in [26].

10And indeed such choices are studied in computational complexity.

Gödel Book—Wigderson - rev. 2010-0708 11

• Linear programming. Given a set of linear inequalities in many vari-
ables, determine if they are mutually consistent. This problem and its
optimization version capture numerous others (finding optimal strategies
of a zero-sum game is one), and the convex optimization techniques used
to give the efficient algorithms [38, 35] for it do much more (see, for ex-
ample, [58].)

• Factoring polynomials. Given a multivariate polynomial with rational
coefficients, find its irreducible factors over Q. Again, the tools developed
in [39] (mainly regarding “short” bases in lattices in Rn) have numerous
other applications.

• Hereditary graph properties. Given a finite graph, test if it can
be embedded on a fixed surface (like the plane or the torus). A vastly
more general result is known, namely testing any hereditary property (one
that is closed under vertex removal and edge contraction). It follows the
monumental structure theory [56] of such properties, including a finite
basis theorem and its algorithmic versions.11

• Hyperbolic word problem. Given any presentation of a hyperbolic
group by generators and relations, and a word w in the generators, de-
termine if w represents the identity element. The techniques give isoperi-
metric bounds on the Cayley graphs of such groups and more [27].

1.3.2 Efficient Verification and the Class NP
Now we change our view of classification problems from classifying functions
to classifying sets. We shall see that some subtle (and highly relevant mathe-
matical) aspects of complexity come to life when we focus on classifying sets.
Thus, a classification problem will be any subset C ⊂ I. It is convenient for this
section to view C as defining a property; x ∈ C are objects having the property,
and x 6∈ C are objects that do not. While this is formally equivalent to having
a Boolean function f : I → {0, 1} that gives opposite values on C and I \ C,
this view allows us to distinguish between the complexity of these two sets.

We are given an input x ∈ I (describing a mathematical object) and are
supposed to determine if x ∈ C or not. If we had an efficient algorithm for C,
we could simply apply it to x. But if we don’t, what is the next best thing?
One answer is: a convincing proof that x ∈ C. Before defining it formally, let
us see a motivating example.

As Gödel points out, the working mathematician meets such examples daily,
reading a typical math journal paper. In it, we typically find a (claimed) theo-
rem, followed by an (alleged) proof. Thus, we are verifying claims of the type
x ∈ THEOREMS, where THEOREMS is the set of all provable statements in,
say, set theory. It is taken for granted that the written proof is short (page limit)

11To be fair, while running in polynomial time, the algorithms here have huge exponents.

We expect that further, deeper structural understanding will be needed for more efficient

algorithms.

Gödel Book—Wigderson - rev. 2010-0708 12

and easily verifiable (otherwise the referee/editor would demand clarifications),
regardless of how long it took to discover.

The classNP contains all properties C for which membership (namely state-
ments of the form x ∈ C) have short, efficiently verifiable proofs. As before, we
use polynomials to define both terms. A candidate proof y for the claim x ∈ C

must have length at most polynomial in the length of x. And the verification
that y indeed proves this claim must be checkable in polynomial time. Finally,
if x 6∈ C, no such y should exist.

Definition 1.3.2 (The class NP). The set C is in the class NP if there is a
function VC ∈ P and a constant k such that

• If x ∈ C then ∃y with |y| ≤ |x|k and VC(x, y) = 1

• If x 6∈ C then ∀y we have VC(x, y) = 0

Thus each set C in NP may be viewed as a set of theorems in the complete
and sound proof system defined by the verification process VC .

A sequence y that “convinces” VC that x ∈ C is often called a witness or
certificate for the membership of x in C. Again, we stress that the definition
of NP is not concerned with how difficult it is to come up with a witness y.
Indeed, the acronym NP stands for “nondeterministic polynomial time,” where
the nondeterminism captures the ability of a hypothetical “nondeterministic”
machine to “guess” a witness y (if one exists) and then verify it deterministically.

Nonetheless, the complexity of finding a witness is of course important, as it
captures the search problem associated with NP sets. Every decision problem
C (indeed every verifier VC for C) in NP comes with a natural search problem
associated with it: Given x ∈ C, find a short witness y that “convinces” VC . A
correct solution to this search problem can be easily verified by VC .

While it is usually the search problems that occupy us, from a computational
standpoint it is often more convenient to study the decision versions. Almost
always both versions are equivalent.12

These definitions of NP were first given (independently and in slightly dif-
ferent forms) by Cook [16] and Levin [40], although Edmonds discusses “good
characterization” that captures the essence of efficient verification already in
[20]. There is much more to these seminal papers than this definition, and we
shall discuss it later at length.

It is evident that decision problems in P are also in NP. The verifier VC is
simply taken to be the efficient algorithm for C, and the witness y can be the
empty sequence.

Corollary 1.3.3. P ⊆ NP.

A final comment is that problems in NP have trivial exponential time algo-
rithms. Such algorithms search through all possible short witnesses and try to

12A notable possible exception is the set COMPOSITES (with a verification procedure that

accepts as witness a nontrivial factor). Note that while COMPOSITES ∈ P as a decision

problem, the related search problem is equivalent to Integer Factorization, which is not known

to have an efficient algorithm.

Gödel Book—Wigderson - rev. 2010-0708 13

verify each. Now we can make Gödel’s challenge more concrete! Can we always
speed up this brute-force algorithm?

1.3.3 The P versus NP Question, Its Meaning and Im-

portance

The class NP is extremely rich (we shall see examples a little later). There
are literally thousands of NP problems in mathematics, optimization, artificial
intelligence, biology, physics, economics, industry and other applications that
arise naturally out of different necessities and whose efficient solutions will ben-
efit us in numerous ways. They beg for efficient algorithms, but decades of effort
(and sometimes more) has succeeded for only a few. Is it possible that all sets
in NP possess efficient algorithms, and these simply were not discovered yet?
This is the celebrated P vs. NP question, which appeared explicitly first in the
aforementioned papers of Cook and Levin and was foreshadowed by Gödel.

Open Problem 1.3.4. Is P = NP?

What explains the abundance of so many natural, important problems in the
class NP? Probing the intuitive meaning of the definition of NP, we see that it
captures many tasks of human endeavor for which a successful completion can
be easily recognized. Consider the following professions and the typical tasks
they are facing (this will be extremely superficial, but nevertheless instructive):

• Mathematician: Given a mathematical claim, come up with a proof for
it.

• Scientist: Given a collection of data on some phenomena, find a theory
explaining it.

• Engineer: Given a set of constraints (on cost, physical laws, etc.) come
up with a design (of an engine, bridge, laptop, . . .) that meets these
constraints.

• Detective: Given the crime scene, find “who done it.”

What is common to all these tasks is that we can typically tell a good
solution when we see one (or we at least think we can). In various cases “we”
may be the academic community, the customers, or the jury, but we expect the
solution to be short and efficiently verifiable, just as in the definition of NP.

The richness of NP follows from the simple fact that such tasks abound,
and their mathematical formulation is indeed an NP-problem. For all these
tasks, efficiency is paramount, and so the importance of the P vs. NP problem
is evident. The colossal implications of the possibility that P = NP are evident
as well: every instance of these tasks can be solved, optimally and efficiently.

One (psychological) reason people feel that P = NP is unlikely is that tasks
such as those described above often seem to require a degree of creativity that
we do not expect a simple computer program to have. We admire Wiles’ proof
of Fermat’s last theorem, the scientific theories of Newton, Einstein, Darwin,

Gödel Book—Wigderson - rev. 2010-0708 14

and Watson and Crick, the design of the Golden Gate bridge and the Pyramids,
and sometimes even Hercule Poirot’s and Miss Marple’s analysis of a murder,
precisely because they seem to require a leap that cannot be made by everyone,
let alone by a simple mechanical device. My own view is that when we finally
understand the algorithmic processes of the brain, we may indeed be able to
automate the discovery of these specific achievements, and perhaps many others.
But can we automate them all? Is it possible that for every task for which
verification is easy, finding a solution is not much harder? If P = NP, the
answer is positive, and creativity (of this abundant, verifiable kind) can be
completely automated. Most computer scientists believe that this is not the
case.

Conjecture 1.3.5. P 6= NP.

Back to mathematics! Given the discussion above, one may wonder why it
is so hard to prove that indeed P 6= NP—it seems completely obvious. We
shall discuss attempts and difficulties soon, developing a methodology that will
enable us to identify the hardest problems in NP. But before that, we turn
to discuss a related question with a strong relation to mathematics: the NP
versus coNP question.

1.3.4 The NP versus coNP Question, Its Meaning and

Importance

Fix a property C ⊆ I. We already have the interpretations

• C ∈ P if it is easy to check that object x has property C,

• C ∈ NP if it is easy to certify that object x has property C,

to which we now add

• C ∈ coNP if it is easy to certify that object x does not have property C,

where we formally define:

Definition 1.3.6 (The class coNP). A set C is in the class coNP if and only
if its complement C̄ = I \ C is in NP.

While the definition of the class P is symmetric,13 the definition of the class
NP is asymmetric. Having nice certificates that a given object has property C

does not automatically entail having nice certificates that a given object does
not have it.

Indeed, when we can do both, we are achieving a mathematics’ holy grail of
understanding structure, namely necessary and sufficient conditions, sometimes
phrased as a duality theorem. As we know well, such results are rare. When we
insist (as we shall do) that the given certificates are short, efficiently verifiable
ones, they are even rarer. This leads to the conjecture:

13Having a fast algorithm to determine if an object has a property C is obviously equivalent

to having a fast algorithm for the complementary property C̄.

Gödel Book—Wigderson - rev. 2010-0708 15

Conjecture 1.3.7. NP 6= coNP.

First note that if P = NP then P = coNP as well, and hence this conjecture
above implies P 6= NP. We shall discuss at length refinements of this conjecture
in Section 1.5 on proof complexity.

Despite the shortage of such efficient complete characterizations, namely
properties that are simultaneously in NP∩coNP, they nontrivially exist. Here
is a list of some exemplary ones.

• Linear programming. Systems of consistent linear inequalities.14

• Zero-sum games.15 Finite zero-sum games in which one player can gain
at least (some given value) v.

• Graph connectivity. The set of graphs in which every pair of vertices
is connected by (a given number) k disjoint paths.

• Partial order width. Finite partial orders whose largest anti-chain has
at most (a given number) w elements.

• Primes. Prime numbers.

These examples of problems in NP ∩ coNP were chosen to make a point.
At the time of their discovery (by Farkas, von Neumann, Menger, Dilworth,
and Pratt, respectively) the mathematicians working on them were seemingly
interested only in characterizing these structures. It is not known if they at-
tempted to find efficient algorithms for these problems. However all of these
problems turned out to be in P, with some solutions entering the pantheon of
efficient algorithms—for example: the Ellipsoid method of Khachian [38] and
the Interior-Point method of Karmarkar [35], both for linear programming, and
the recent breakthrough of Agrawal, Kayal, and Saxena [3] for Primes.16

Is there a moral to this story? Only that sometimes, when we have an effi-
cient characterization of structure, we can hope for more—efficient algorithms.
And conversely, a natural stepping stone toward an elusive efficient algorithm
may be to first get an efficient characterization.

Can we expect this magic to always happen? Is NP ∩ coNP = P? There
are several natural problems in NP ∩ coNP that have resisted efficient algo-
rithms for decades, and for some (e.g., factoring integers, computing discrete
logarithms) humanity literally banks on their difficulty for electronic commerce
security. Indeed, the following is generally believed:

Conjecture 1.3.8. NP ∩ coNP 6= P.

Note again that conjecture 1.3.8 implies P 6= NP, but that it is independent
of conjecture 1.3.7.

We now return to develop the main mechanism that will help us study such
questions: efficient reductions.

14Indeed this generalizes to other convex bodies given by more general constraints, like

semi-definite programming.
15This problem was later discovered to be equivalent to linear programming.
16It is interesting that a simple polynomial-time algorithm, whose correctness and effi-

ciency rely on the (unproven) extended Riemann hypothesis, was given thirty years earlier

by Miller [42].

Gödel Book—Wigderson - rev. 2010-0708 16

1.3.5 Reductions—A Partial Order of Computational Dif-

ficulty

In this section, I deal with relating the computational difficulty of problems for
which we have no efficient solutions (yet).

Recall that we can regard any classification problem (on finitely described
objects) as a subset of our set of inputs I. Efficient reductions provide a natural
partial order on such problems that capture their relative difficulty.

Definition 1.3.9 (Efficient reductions). Let C,D ⊂ I be two classification
problems. f : I → I is an efficient reduction from C to D if f ∈ P and for every
x ∈ I we have x ∈ C if and only if f(x) ∈ D. In this case we call f an efficient
reduction from C to D. We write C ≤ D if there is an efficient reduction from
C to D.

The definition of efficient computation allows two immediate observations
on the usefulness of efficient reductions. First, that indeed ≤ is transitive, and
thus defines a partial order. Second, that if C ≤ D and D ∈ P then also C ∈ P.

Intuitively, C ≤ D means that solving the classification problem C is com-
putationally not much harder than solving D. In some cases one can replace
computationally by the (vague) term mathematically. Often such usefulness in
mathematical understanding requires more properties of the reduction f than
merely being efficiently computable (e.g., we may want it to be represented as
a linear transformation or a low dimension polynomial map), and indeed in
some cases this is possible. When such a connection between two classification
problems (which look unrelated) can be proved, it can mean the portability of
techniques from one area to another.

The power of efficient reductions to relate “seemingly unrelated” notions will
unfold in later sections. We shall see that they can relate not only classification
problems, but such diverse concepts as hardness to randomness; average-case
to worst case difficulty; proof length to computation time; the relative power
of geometric, algebraic, and logical proof systems; and last but not least, the
security of electronic transactions to the difficulty of factoring integers. In a
sense, efficient reductions are the backbone of computational complexity. Indeed,
given that polynomial-time reductions can do all these wonders, it may not be
surprising that we have a hard time characterizing the class P!

1.3.6 Completeness

We now return to classification problems. The partial order of their difficulty,
provided by efficient reductions, allows us to define the hardest problems in a
given class. Let C be any collection of classification problems (namely every
element of C is a subset of I). Of course, here we shall mainly care about the
class C = NP.

Definition 1.3.10 (Hardness and completeness). A problem D is called
C-hard if for every C ∈ C we have C ≤ D. If we further have that D ∈ C then
D is called C-complete.

Gödel Book—Wigderson - rev. 2010-0708 17

In other words, if D is C-complete, it is a hardest problem in the class C: if
we manage to solve D efficiently, we have done so for all other problems in C.
It is not a priori clear that a given class has any complete problems! On the
other hand, a given class may have many complete problems, and by definition,
they all have essentially the same complexity. If we manage to prove that any
of them cannot be efficiently solved, then we automatically have done so for all
of them.

It is trivial, and uninteresting, that every problem in the class P is in fact
P-complete under our definition. It becomes interesting when we find such
universal problems in classes of problems for which we do not have efficient
algorithms. By far, the most important of all such classes is NP.

1.3.7 NP-completeness

As mentioned earlier, the seminal papers of Cook [16] and Levin [40] defined
NP, efficient reducibilities, and completeness, but the crown of their achieve-
ment was the discovery of a natural NP-complete problem.

Definition 1.3.11 (The problem SAT). A Boolean formula is a logical ex-
pression over Boolean variables (that can take values in {0, 1}) with connectives
∧,∨,¬, for example: (x1 ∨ x2) ∧ (¬x3). Let SAT denote the set of all satis-
fiable Boolean formulas (namely those formulas for which there is a Boolean
assignment to the variables that gives it the value 1).

Theorem 1.3.12 ([16, 40]). SAT is NP-complete.

It is a simple exercise to show that Gödel’s original problem, as stated
in his letter, is NP-complete as well. Moreover, he clearly understood, at
least intuitively, its universal nature, captured formally by NP-completeness,
a concept discovered fifteen years later.

We recall again the meaning of this theorem. For every set C ∈ NP there is
an efficient reduction f : I → I such that x ∈ C if and only if the formula f(x)
is satisfiable! Furthermore, the proof gives an extra bonus which turns out to
be extremely useful: given any witness y that x ∈ C (via some verifier VC), the
same reduction converts the witness y to a Boolean assignment satisfying the
formula f(x). In other words, this reduction translates not only between the
decision problems, but also between the associated search problems.

You might (justly) wonder how one can prove a theorem like that. Certainly
the proof cannot afford to look at all problems C ∈ NP separately. The gist
of the proof is a generic transformation, taking a description of the verifier
VC for C and emulating its computation on input x and hypothetical witness
y to create a Boolean formula f(x) (whose variables are the bits of y). This
formula simply tests the validity of the computation of VC on (x, y) and that
this computation outputs 1. Here the locality of algorithms (say, described as
Turing machines) plays a central role, as checking the consistency of each step
of the computation of VC amounts simply to a constant size formula on a few
bits. To summarize, SAT captures the difficulty of the whole class NP. In
particular, the P vs. NP problem can now be phrased as a question about the
complexity of one problem, instead of infinitely many.

Gödel Book—Wigderson - rev. 2010-0708 18

Corollary 1.3.13. P = NP if and only if SAT ∈ P.

A great advantage of having one complete problem at hand (like SAT) is
that now, to prove that another problem (say D ∈ NP) is NP-complete, we
only need to design a reduction from SAT to D (namely prove SAT ≤ D). We
already know that for every C ∈ NP we have C ≤ SAT, and transitivity of ≤
takes care of the rest.

This idea was used powerfully in Karp’s seminal paper [36]. In his paper, he
listed twenty-one problems from logic, graph theory, scheduling, and geometry
that are NP-complete. This was the first demonstration of the wide spectrum
of NP-complete problems and initiated an industry of finding more. A few
years later, Garey and Johnson [24] published their book on NP-completeness,
which contains hundreds of such problems from diverse branches of science,
engineering, and mathematics. Today, thousands are known, in a remarkably
diverse set of scientific disciplines.

1.3.8 The Nature and Impact of NP-Completeness

It is hard to do justice to this notion in a couple of paragraphs, but I shall try.
More can be found in, for example, [45].

NP-completeness is a unique scientific discovery—there seems to be no par-
allel scientific notion that pervaded so many fields of science and technology.
It became a standard for hardness for problems whose difficulty we have yet
no means of proving. It has been used both technically and allegorically to
illustrate a difficulty or failure to understand natural objects and phenomena.
Consequently, it has been used as a justification for channeling efforts to less
ambitious (but more productive) directions. We elaborate below on this effect
within mathematics.

NP-completeness has been an extremely flexible and extensible notion, al-
lowing numerous variants that enabled capturing universality in other (mainly
computational, but not only) contexts. It led to the ability of defining whole
classes of problems by single, universal ones, with the benefits mentioned above.
Much of the whole evolution of computational complexity, the theory of algo-
rithms, and most other areas in theoretical computer science has been guided
by the powerful approach of reduction and completeness.

It would be extremely interesting to explain the ubiquity ofNP-completeness.
Being highly speculative for a moment, we can make the following analo-
gies of this mystery with similar mysteries in physics. The existence of NP-
completeness in such diverse fields of inquiry may be likened to the existence of
the same building blocks of matter in remote galaxies, begging for a common
explanation of the same nature as the Big Bang theory. On the other hand, the
near lack of natural objects in the (seemingly huge) void of problems in NP
that are neither in P nor NP-complete raises questions about possible “dark
matter,” which we have not developed the means of observing yet.

Gödel Book—Wigderson - rev. 2010-0708 19

1.3.9 Some NP-complete Problems in Mathematics

Again, I note that all NP-complete problems are equivalent in a very strong
sense. Any algorithm solving one can be simply translated into an equally effi-
cient algorithm solving any other. Conversely, if one is difficult then all of them
are. I’ll explore the meaning of these insights for a number of mathematical
classification problems in diverse areas that are NP -complete.

Why did Gödel’s incompleteness theorem seemingly have such small effect
on working mathematicians? A common explanation is that the unprovable
and undecidable problems are far too general compared to those actively being
studied. As we shall see below, this argument will not apply to theNP-complete
problems we discuss. Indeed, many of these NP-completeness results were
proven by mathematicians!

We exemplify this point with two classification problems: 2DIO, of quadratic
Diophantine equations, and KNOT, of knots on three-dimensional manifolds.

2DIO: Consider the set of all equations of the form Ax2 + By + C = 0
with integer coefficients A,B, C. Given such a triple, does the corresponding
polynomial have a positive integer root (x, y)? Let 2DIO denote the subset
of triples for which the answer is “yes.” Note that this is a very restricted
subproblem of the undecidable Hilbert’s 10th problem, problem (2) from the
Introduction, indeed simpler than even elliptic curves. Nevertheless:

Theorem 1.3.14 ([1]). The set 2DIO is NP-complete.

KNOT: Consider the set of all triples (M, K,G), representing17 respectively
a three-dimensional manifold M , a knot K embedded on it, and an integer G.
Given a triple (M, K, G), does the surface that K bounds have genus at most
G? Let KNOT denote the subset for which the answer is “yes.”

Theorem 1.3.15 ([2]). The set KNOT is NP-complete.

Recall that to prove NP-completeness of a set, one has to prove two things:
that it is in NP and that it is NP-hard. In almost all NP-complete problems,
membership in NP (namely the existence of short certificates) is easy to prove.
For example, for 2DIO one can easily see that if there is a positive integer
solution r to the equation Ax2 + By + C = 0, then indeed there is one whose
length (in bits) is polynomial in the lengths of A,B,C, and given such r it is
easy to verify that it is indeed a root of the equation. In short, it is very easy to
see that 2DIO ∈ NP. But KNOT is an exception, and proving KNOT∈ NP
is highly nontrivial. The short witnesses that a given knot has a small genus
requires Haken’s algorithmic theory of normal surfaces, considerably enhanced
(even short certificates for unknottedness in R3 are hard to obtain, see [33]).

Let us discuss what these NP-completeness results mean, first about the
relationship between the two and then about each individually.

The two theorems above and the meaning of NP-completeness together
imply that there are simple translations (in both directions) between solving

17A finite representation can describe M by a triangulation (finite collection of tetrahedra

and their adjacencies), and the knot K will be described as a link (closed path) along edges

of the given tetrahedra.

Gödel Book—Wigderson - rev. 2010-0708 20

2DIO and problem KNOT. More precisely, it provides efficiently computable
functions f, h : I → I performing these translations:

(A,B, C) ∈ 2DIO if and only if f(A,B, C) ∈ KNOT,

and

(M,K, G) ∈ KNOT if and only if h(M, K, G) ∈ 2DIO.

So, if we have gained enough understanding of topology to solve, for ex-
ample, the knot genus problem, it means that we automatically have gained
enough number theoretic understanding for solving these quadratic Diophan-
tine problems (and vice versa).

The proofs that these problems are complete both follow by reductions from
(variants of) SAT. The combinatorial nature of these reductions may cast doubt
on the possibility that the computational equivalence of these two problems
implies the ability of real “technology transfer” between topology and number
theory. Nevertheless, now that we know of the equivalence, perhaps simpler
and more direct reductions can be found between these problems. Moreover,
we stress again that for any instance, say (M, K, G) ∈ KNOT, if we translate
it using this reduction to an instance (A,B, C) ∈ 2DIO and happen (either by
sheer luck or special structure of that equation) to find an integer root, the same
reduction will translate that root back to a description of a genus G manifold
that bounds the knot K. Today, many such NP-complete problems are known
throughout mathematics, and for some pairs the equivalence can be mathe-
matically meaningful and useful (as it is between some pairs of computational
problems).

But regardless of the meaning of the connection between these two problems,
there is no doubt what their individual NP-completeness means. Both are
mathematically “nasty,” as both embed in them the full power of NP. If
P 6= NP, there are no efficient algorithms to describe the objects at hand.
Moreover, assuming the stronger NP 6= coNP, we should not even expect
complete characterization (e.g., above we should not expect short certificates
that a given quadratic equation does not have a positive integer root).

In short, NP-completeness suggests that we lower our expectations of fully
understanding these properties and study perhaps important special cases, vari-
ants, etc. Note that such reaction of mathematicians may anyway follow the
frustration of unsuccessful attempts at general understanding. However, the
stamp of NP-completeness may serve as moral justification for this reaction.
I stress the word may, as the judges for accepting such a stamp can only be
the mathematicians working on the problem and how well the associated NP-
completeness result captures the structure they try to reveal. I merely point out
the usefulness of a formal stamp of difficulty (as opposed to a general feeling)
and its algorithmic meaning.

The two examples above come from number theory and topology. I list below
some more NP-complete problems from algebra, geometry, optimization, and
graph theory. There are numerous other such problems. This will hopefully
demonstrate how wide this modern Gödel phenomena is in mathematics. The
discussion above is relevant to them all.

Gödel Book—Wigderson - rev. 2010-0708 21

• Quadratic equations. Given a system of multivariate polynomial equa-
tions of degree at most 2, over a finite field (say GF(2)), do they have a
common root?

• Knapsack. Given a sequence of integers a1, . . . , an and b, decide if there
exists a subset J such that

∑
i∈J ai = b.

• Integer programming. Given a polytope in Rn (by its bounding hy-
perplanes), does it contain an integer point?

• Shortest lattice vector. Given a lattice L in Rn and an integer k, is
the shortest nonzero vector of L of (Euclidean) length ≤ k?

• 3Color. Given a graph, can its vertices be colored from {Red, Green,
Blue} with no adjacent vertices having the same color?

• Clique. Given a graph and an integer k, are there k vertices with all
pairs mutually adjacent?

1.4 Lower Bounds, and Attacks on P versus NP
To prove that P 6= NP, we must show that for a given problem in NP, no
efficient algorithm exists. A result of this type is called a lower bound (limiting
from below the computational complexity of the problem). Several powerful
techniques for proving lower bounds have emerged in the past decades. They
apply in two (very different) settings. Below, I describe both and try to explain
our understanding of why they seem to stop short of proving P 6= NP. I
mention the first, diagonalization, only very briefly and concentrate on the
second, Boolean circuits.

1.4.1 Diagonalization and Relativization

The diagonalization technique goes back to Cantor and his argument that there
are more real numbers than algebraic numbers. It was used by Gödel in his
incompleteness theorem, and by Turing in his undecidability results, and then
refined to prove computational complexity lower bounds. A typical theorem in
this area is that more time buys more computational power—for example, there
are functions computable in time n3, say, that are not computable in time n2.
The heart of such arguments is the existence of a “universal algorithm,” which
can simulate every other algorithm with only small loss in efficiency.

Can such arguments be used to separate P from NP? This depends on
what we mean by “such arguments.” The paper by Baker, Gill, and Solovay [6]
suggests a formal definition, by exhibiting a feature shared by many similar
complexity results, called relativization. For example, the result mentioned
above separating Turing machines running in time n3 from those with runnning
time n2 would work perfectly well of all machines in questions we supplied with
an “oracle” for any fixed function f , which would answer queries of the form
x by f(x) in unit time. So, relativizing lower bounds hold in a “relativized

Gödel Book—Wigderson - rev. 2010-0708 22

world” in which any fixed such f is an easy function for the algorithms we
consider, and so should hold in all such worlds. The [6] paper then proceeded
to show that relativizing arguments do not suffice to resolve the P vs. NP
question. This is done by showing that equipping the machines with different
functions f give different answers to the P vs. NP question in the respective
“relativized worlds” In the three decades since that paper, complexity theory
grew far more sophisticated, but nevertheless almost all new results obtained
do relativize (one of the few exceptions is in [65]). More on this subject can be
found in Chapter 14.3 in [43], Chapter 9.2 of [61], and even more in [22].

1.4.2 Boolean Circuits

A Boolean circuit may be viewed as the “hardware analog” of an algorithm
(software). Computation on the binary input sequence proceeds by a sequence
of Boolean operations (called gates) from the set {∧,∨,¬} (logical AND, OR,
and NEGATION) to compute the output(s). We assume that ∧,∨ are applied
to two arguments. We note that while an algorithm can handle inputs of any
length, a circuit can handle only one input length (the number of input “wires”
it has). A circuit is commonly represented as a (directed, acyclic) graph, with
the assignments of gates to its internal vertices. We note that a Boolean formula
is simply a circuit whose graph structure is a tree.

Recall that I denotes the set of all binary sequences, and that Ik is the set
of sequences of length exactly k. If a circuit has n inputs and m outputs, it
is clear that it computes a function f : In → Im. The efficiency of a circuit is
measured by its size, which is the analog of time in algorithms.

Definition 1.4.1 (Circuit size). Denote by S(f) the size of the smallest
Boolean circuit computing f .

As we care about asymptotic behavior, we shall be interested in sequences
of functions f = {fn}, where fn is a function on n input bits. We shall study
the complexity S(fn) asymptotically as a function of n, and denote it S(f). For
example, let PAR be the parity function, computing if the number of 1’s in a
binary string is even or odd. Then PARn is its restriction to n-bit inputs, and
S(PAR) = O(n).

It is not hard to see that an algorithm (say a Turing machine) for a function
f that runs in time T gives rise to a circuit family for the functions fn of
sizes (respectively) (T (n))2, and so efficiency is preserved when moving from
algorithms to circuits. Thus proving lower bounds for circuits implies lower
bounds for algorithms, and we can try to attack the P vs. NP question this
way.

Definition 1.4.2 (The class P/poly). Let P/poly denote the set of all func-
tions computable by a family of polynomial-size circuits.

Conjecture 1.4.3. NP 6⊆ P/poly.

Is this a reasonable conjecture? As mentioned above, P ⊆ P/poly. Does
the reverse inclusion hold? It actually fails badly! There exist undecidable

Gödel Book—Wigderson - rev. 2010-0708 23

functions f (which cannot be computed by Turing machines at all, regardless of
their running time) that have linear-size circuits. This extra power comes from
the fact that circuits for different input lengths share no common description
(and thus this model is sometimes called “non-uniform”).

So one might expect that proving circuit lower bounds is a much harder task
than proving P 6= NP. However, there is a strong sentiment that the extra
power provided by non-uniformity is irrelevant to P vs. NP. This sentiment
comes from a result of Karp and Lipton [37], proving that NP ⊆ P/poly implies
a surprising uniform “collapse,” not quiteNP = coNP, but another (somewhat
similar but weaker) unlikely collapse of complexity classes.

Still, what motivates replacing the Turing machine by the stronger circuit
model when seeking lower bounds? The hope is that focusing on a finite model
will allow the use of combinatorial techniques to analyze the power and lim-
itations of efficient algorithms. This hope has been realized in the study of
interesting, though restricted classes of circuits! The resulting lower bounds
for such restricted circuits fall short of resolving the big questions above, but
nevertheless have had important applications to computational learning theory,
pseudorandomness, proof complexity, and more!

Basic Results and Questions

We have already mentioned several basic facts about Boolean circuits, in par-
ticular the fact that they can efficiently simulate Turing machines. The next
basic fact, first observed by Shannon [59], is that most Boolean functions require
exponential size circuits.

This lower bound follows from the gap between the number of functions and
the number of small circuits. Fix the number of inputs bits n. The number of
possible functions on n bits is precisely 22n

. On the other hand, the number of
circuits of size s is (via a crude estimate of the number of graphs of that size) at
most 2s2. Since every circuit computes one function, we must have s >> 2n/3

for most functions.

Theorem 1.4.4 ([59]). For almost every function f : In → {0, 1}, S(f) ≥ 2n/3.

Therefore hard functions for circuits (and hence for Turing machines) abound.
However, the hardness above is proved via a counting argument, and thus sup-
plies no way of putting a finger on one hard function. I shall return to the
nonconstructive nature of this problem in Section 1.5. So far, we cannot prove
such hardness for any explicit function f (e.g., for an NP-complete function
like SAT).

Conjecture 1.4.5. S(SAT) = 2Ω(n).

The situation is even worse: no nontrivial lower bound is known for any
explicit function.18 Note that for any function f on n bits (which depends on

18The notion “explicit,” which we repeatedly use here, is a bit elusive and context-dependent

at times. But in all cases we seek natural functions, usually of independent mathematical,

scientific, or technological interest, rather than functions whose existence is shown by some

counting or simulation arguments.

Gödel Book—Wigderson - rev. 2010-0708 24

all its inputs), we trivially must have S(f) ≥ n, just to read the inputs. The
main open problem of circuit complexity is beating this trivial bound.

Open Problem 1.4.6. Find an explicit function f : In → In for which S(f) 6=
O(n).

Here natural explicit candidate functions may be the multiplication of two
(n/2)-bit integers, or of two

√
n×√n matrices over GF (2). But for any function

in NP, such a lower bound would be a breakthrough. Unable to prove any
nontrivial lower bound, we now turn to restricted models. There has been
some remarkable successes in developing techniques for proving strong lower
bounds for natural restricted classes of circuits. I discuss in some detail only
one such model.

The 1980s saw a flurry of new techniques for proving circuit lower bounds
on natural, restricted classes of circuits. Razborov developed the Approxima-
tion Method, which allowed proving exponential circuit lower bounds for mono-
tone circuits, for such natural problems as CLIQUE. The Random Restriction
method, initiated by Furst, Saxe, and Sipser [23] and Ajtai [4] was used to
prove exponential lower bounds on constant depth circuits, for such natural
problems as PARITY. The Communication Complexity method of Karchmer
and Wigderson [34] was used to prove lower bounds on monotone formulas—
for example, for the PERFECT MATCHING problem. See the survey [9] for
these and more. But they all fall short of obtaining any nontrivial lower bounds
for general circuits, and in particular of proving that P 6= NP.

Why Is It Hard to Prove Circuit Lower Bounds?

Is there a fundamental reason for this failure? The same may be asked about
any longstanding mathematical problem (e.g., the Riemann hypothesis). A
natural (vague!) answer would be that, probably, the current arsenal of tools
and ideas (which may well have been successful at attacking related, easier
problems) does not suffice.

Remarkably, complexity theory can make this vague statement into a theo-
rem! Thus we have a “formal excuse” for our failure so far: we can classify a
general set of ideas and tools, which are responsible for virtually all restricted
lower bounds known, yet must necessarily fail for proving general ones. This
introspective result, developed by Razborov and Rudich [55], suggests a frame-
work called Natural Proofs. Very briefly, a lower bound proof is natural if it
applies to a large, easily recognizable set of functions. They first show that this
framework encapsulates all known lower bounds. Then they show that natural
proofs of general circuit lower bounds are unlikely, in the following sense: any
natural proof of a lower bound surprisingly implies (as a bi-product) subex-
ponential algorithms for inverting every candidate one-way function. Again I
stress this irony—natural lower bounds lead to efficient algorithms for the type
of problems we want to prove hard!

Specifically, a natural (in this formal sense) lower bound would imply subex-
ponential algorithms for such functions as Integer Factoring and Discrete Log-
arithm, generally believed to be difficult (to the extent that the security of

Gödel Book—Wigderson - rev. 2010-0708 25

electronic commerce worldwide relies on such assumptions). This connection
strongly uses pseudorandomness, which will be discussed later. A simple corol-
lary is that no natural proof exists to show that integer factoring requires cir-
cuits of size 2n1/100

(the best current upper bound is 2n1/3
).

One interpretation of the aforementioned result is an “independence result”
of general circuit lower bounds from a certain natural fragment of Peano arith-
metic. This may suggest that the P vs. NP problem may be independent from
Peano arithmetic, or even set theory, which is certainly a possibility.

One final note: it has been over ten years since the publication of the Natural
Proof paper. The challenge it raised: prove a non-natural lower bound, has not
yet been met!

1.5 Proof Complexity

Gödel’s letter focuses on lengths of proofs. This section highlights some of the
research developments within complexity theory in the last couple of decades
on the many facets of this issue. For extensive surveys and different “takes” on
this material and its relation to proof theory, independence results, and Gödel’s
letter, see [7, 11, 46, 47, 48, 50, 57].

The concept of proof is what distinguishes the study of mathematics from
all other fields of human inquiry. Mathematicians have gathered millennia of
experience to attribute such adjectives to proofs as “insightful,” “original,”
“deep,” and most notably, “difficult.” Can one quantify, mathematically, the
difficulty of proving various theorems? This is exactly the task undertaken in
proof complexity. It seeks to classify theorems according to the difficulty of
proving them, much like circuit complexity seeks to classify functions accord-
ing to the difficulty of computing them. In proofs, just like in computation,
there will be a number of models, called proof systems, capturing the power of
reasoning allowed to the prover.

Proof systems abound in all areas of mathematics (and not just in logic).
Let us see some examples:

1. Hilbert’s Nullstellensatz is a (sound and complete) proof system in which
theorems are inconsistent sets of polynomial equations. A proof expresses
the constant 1 as a linear combination of the given polynomials.

2. Each finitely presented group can be viewed as a proof system, in which
theorems are words that reduce to the identity element. A proof is the
sequence of substituting relations to generate the identity.

3. Reidemeister moves are a proof system in which theorems are trivial, un-
knotted, knots. A proof is the sequences of moves reducing the given plane
diagram of the knot into one with no crossings.

4. von Neumann’s Minimax theorem gives a proof system for every zero-
sum game. A theorem is an optimal strategy for White, and its proof is a
strategy for Black with the same value.

Gödel Book—Wigderson - rev. 2010-0708 26

In these and many other examples, the length of the proof plays a key role,
and the quality of the proof system is often related to how short the proofs are
that it can provide.

1. In the Nullstellensatz (over fields of characteristic 0), length (of the “coef-
ficient” polynomials, measured usually by their degree and height) usually
plays a crucial role in the efficiency of commutative algebra software (e.g.,
Gröbner basis algorithms).

2. The word problem in general is undecidable. For hyperbolic groups, Gro-
mov’s polynomial upper bound on proof length has many uses, of which
perhaps the most recent is in his own construction of finitely presented
groups with no uniform embedding into Hilbert space [28].

3. Reidemeister moves are convenient combinatorially, but the best upper
bounds on length of such proofs (namely on the number of moves) that
a given knot is unknotted, are exponential in the description of the knot
[32]. Whether one can improve this upper bound to a polynomial is an
open question. We note that stronger proof systems were developed to
give polynomial upper bounds for proving unknottedness [33].

4. In zero-sum games, happily all proofs are of linear size.

I stress that the asymptotic viewpoint—considering families of “theorems”
and measuring their proof length as a function of the description length of the
theorems—is natural and prevalent. As for computation, this asymptotic view-
point reveals structure of the underlying mathematical objects, and economy
(or efficiency) of proof length often means a better understanding. While this
viewpoint is appropriate for a large chunk of mathematical work, you may ob-
ject that it cannot help explain the difficulty of single problems, such as the
Riemann hypothesis or P vs. NP. This is of course a valid complaint. We
note however that even such theorems (or conjectures) may be viewed asymp-
totically (though not always illuminating them better). The Riemann hypoth-
esis has equivalent formulations as a sequence of finite statements, (e.g., about
cancelations in the Möbius function). More interestingly, we shall see later a
formulation of the P/poly vs. NP problem as a sequence of finite statements
that are strongly related to the Natural Proofs paradigm mentioned above.

All theorems that will concern us in this section are universal statements
(e.g., an inconsistent set of polynomial equations is the statement that every
assignment to the variables fails to satisfy them). A short proof for a universal
statement constitutes an equivalent formulation that is existential—the exis-
tence of the proof itself (e.g., the existence of the “coefficient” polynomials in
Nullstellensatz that implies this inconsistency). The mathematical motivation
for this focus is clear: the ability to describe a property both universally and ex-
istentially constitutes necessary and sufficient conditions—the afore-mentioned
holy grail of mathematical understanding. Here we shall be picky and quantify
that understanding according to our usual computational yardstick: the length
of the existential certificate.

Gödel Book—Wigderson - rev. 2010-0708 27

We shall restrict ourselves to propositional tautologies. This will automat-
ically give an exponential (thus a known, finite) upper bound on the proof
length and will restrict the ballpark (as with P vs. NP) to the range between
polynomial and exponential. The type of statements, theorems, and proofs we
shall deal with is best illustrated by the following example.

1.5.1 The Pigeonhole Principle—A Motivating Example

Consider the well-known “pigeonhole principle,” stating that there is no injec-
tive mapping from a finite set to a smaller one. While trivial, this principle was
essential for the counting argument proving the existence of exponentially hard
functions (Theorem 1.4.4)—this partially explains our interest in its proof com-
plexity. More generally, this principle epitomizes non-constructive arguments
in mathematics, such as Minkowski’s theorem that a centrally symmetric con-
vex body of sufficient volume must contain a lattice point. In both results,
the proof does not provide any information about the object proved to ex-
ist. Other natural tautologies capture the combinatorial essence of topological
proofs (e.g., Brauer’s fixed point theorem, the Borsuk–Ulam theorem, Nash’s
equilibrium)—see [44] for more.

Let us formulate it and discuss the complexity of proving it. First, we turn
it into a sequence of finite statements. Fix m > n. Let PHPm

n stand for the
statement there is no one-to-one mapping of m pigeons to n holes. To formulate
it mathematically, imagine an m×n matrix of Boolean variables xij describing
a hypothetical mapping (with the interpretation that xij = 1 means that the
ith pigeon is mapped to the jth hole).19

Definition 1.5.1 (The pigeonhole principle). The pigeonhole principle
PHPm

n now states that

• either pigeon i is not mapped anywhere (namely, all xij for a fixed i are
zeros),

• or some two are mapped to the same hole (namely, for some different i, i′,
and some j we have xij = xi′j = 1).

These conditions are easily expressible as a formula in the variables xij

(called a propositional formula), and the pigeonhole principle is the statement
that this formula is a tautology (namely satisfied by every truth assignment to
the variables).

Even more conveniently, the negation of this tautology (which is a contradic-
tion) can be captured by a collection of constraints on these Boolean variables
that are mutually contradictory. These constraints can easily be written in
different languages:

• Algebraic: as a set of constant degree polynomials over GF(2).

19Note that we do not rule out the possibility that some pigeon is mapped to more than

one hole—this condition can be added, but the truth of the principle remains valid without

it.

Gödel Book—Wigderson - rev. 2010-0708 28

• Geometric: as a set of linear inequalities with integer coefficients (to
which we seek a {0, 1} solution).

• Logical: as a set of Boolean formulas.

We shall see soon that each setting naturally suggests (several) reasoning tools,
such as variants of the Nullstellensatz in the algebraic setting, of Frege systems
in the logical setting, and Integer Programming heuristics in the geometric
setting. All of these can be formalized as proof systems that suffice to prove
this (and any other) tautology. Our main concern will be in the efficiency of
each of these proof systems and their relative power, measured in proof length.
Before turning to some of these specific systems, we discuss this concept in full
generality.

1.5.2 Propositional Proof Systems and NP versus coNP
Most definitions and results in this section come from the paper by Cook and
Reckhow [17] that initiated this research direction. I define proof systems and
the complexity measure of proof length for each and then relate these to com-
plexity questions we have already met.

All theorems we shall consider will be propositional tautologies. Here are
the salient features that we expect20 from any proof system:

• Completeness. Every true statement has a proof.

• Soundness. No false statement has a proof.

• Verification efficiency. Given a mathematical statement T and a pur-
ported proof π for it, it can be easily checked if indeed π proves T in the
system. Note that here efficiency of the verification procedure refers to its
running-time measured in terms of the total length of the alleged theorem
and proof.

Remark 1.5.2. Note that we dropped the requirement used in the definition
of NP, limiting the proof to be short (polynomial in the length of the claim).
The reason is, of course, that proof length is our measure of complexity.

All these conditions are concisely captured, for propositional statements, by
the following definition.

Definition 1.5.3 (Proof systems [17]). A (propositional) proof system is a
polynomial-time Turing machine M with the property that T is a tautology if
and only if there exists a (“proof ”) π such that M(π, T) = 1.21

As a simple example, consider the following “Truth-Table” proof system
MTT. Basically, this machine will declare a formula T a theorem if evaluating

20Actually, even the first two requirements are too much to expect from strong proof sys-

tems, as Gödel famously proved in his incompleteness theorem. However, for propositional

statements that have finite proofs, there are such systems.
21In agreement with standard formalisms (see below), the proof is seen as coming before

the theorem.

Gödel Book—Wigderson - rev. 2010-0708 29

it on every possible input makes T true. A bit more formally, for any formula
T on n variables, the machine MTT accepts (π, T) if π is a list of all binary
strings of length n, and for each such string σ, T (σ) = 1.

Note that MTT runs in polynomial time in its input length, which is the
combined length of formula and proof. But in the system MTT proofs are
(typically) of exponential length in the size of the given formula. This leads
us to the definition of the efficiency (or complexity) of a general propositional
proof system M—how short is the shortest proof of each tautology.

Definition 1.5.4 (Proof length [17]). For each tautology T , let SM (T) de-
note the size of the shortest proof of T in M (i.e., the length of the shortest
string π such that M accepts (π, T)). Let SM (n) denote the maximum of
SM (T) over all tautologies T of length n. Finally, we call the proof system M

polynomially bounded if and only if for all n we have SM (n) = nO(1).

Is there a polynomially bounded proof system (namely one that has polynomial-
size proofs for all tautologies)? The following theorem provides a basic con-
nection of this question with computational complexity and the major ques-
tion of Section 1.3.4. Its proof follows quite straightforwardly from the NP-
completeness of SAT, the problem of satisfying propositional formulas (and the
fact that a formula is unsatisfiable if and only if its negation is a tautology).

Theorem 1.5.5 ([17]). There exists a polynomially bounded proof system if
and only if NP = coNP.

In the next section I focus on natural restricted proof systems. A notion of
reduction between proof systems, called polynomial simulation, was introduced
in [17] and allows us to create a partial order of the relative power of some sys-
tems. This is but one example of the usefulness of the methodology developed
within complexity theory after the success of NP-completeness.

1.5.3 Concrete Proof Systems

All proof systems in this section are familiar to every mathematician, ever since
The Elements of Euclid, who formulated a deductive system for plane geometry.
In all deductive systems, one starts with a list of formulas, and using simple
(and sound!) derivation rules, infers new ones (each formula is called a line in
the proof).

Normally the initial formulas are taken to be (self-evident) axioms, and the
final formula derived is the desired theorem. However, here it will be useful
to reverse this view and consider refutation systems. In the refutation systems
below, I start with a contradictory set of formulas and derive a basic contra-
diction (e.g., ¬x ∧ x, 1 = 0, 1 < 0), depending on the setting. This serves as
proof of the theorem that the initial formulas are mutually inconsistent. I high-
light some results and open problems on the proof length of basic tautologies
in algebraic, geometric, and logical systems.

Gödel Book—Wigderson - rev. 2010-0708 30

Algebraic Proof Systems

We restrict ourselves to the field GF(2). Here a natural representation of a
Boolean contradiction is a set of polynomials with no common root. We always
add to such a collection the polynomials x2−x (for all variables x) that ensure
Boolean values (and so we can imagine that we are working over the algebraic
closure).

Hilbert’s Nullstellensatz suggests a proof system. If f1, f2, . . . , fn (with
any number of variables) have no common root, there must exist polynomi-
als g1, g2, . . . , gn such that

∑
i figi ≡ 1. The gi’s constitute a proof, and we

may ask how short its description is.
A related, but far more efficient system (intuitively based on computations

of Gröbner bases) is Polynomial Calculus, abbreviated PC, which was introduced
in [14]. The lines in this system are polynomials (represented explicitly by all
coefficients), and it has two deduction rules, capturing the definition of an ideal:
For any two polynomials g, h and variable xi, we can use g, h to derive g + h,
and we can use g and xi to derive xig. It is not hard to see (using linear algebra)
that if this system has a proof of length s for some tautology, then this proof
can be found in time polynomial in s.

Recalling our discussion on P vs. NP, we do not expect such a property
from really strong proof systems.

The PC is known to be exponentially stronger than Nullstellensatz. More
precisely, there are tautologies that require exponential length Nullstellensatz
proofs, but only polynomial PC proofs. However, strong size lower bounds
(obtained from degree lower bounds) are known for PC systems as well. Indeed,
the pigeonhole principle is hard for this system. For its natural encoding as a
contradictory set of quadratic polynomials, Razborov [53] proved:

Theorem 1.5.6 ([53]). For every n and every m > n, SPC(PHPm
n) ≥ 2n/2,

over every field.

Geometric Proof Systems

Yet another natural way to represent Boolean contradictions is by a set of
regions in space containing no integer points. A wide source of interesting
contradictions are Integer Programs from combinatorial optimization. Here,
the constraints are (affine) linear inequalities with integer coefficients (so the
regions are subsets of the Boolean cube carved out by halfspaces). A proof
system infers new inequalities from old ones in a way that does not eliminate
integer points.

The most basic system is called Cutting Planes (CP), introduced by Chvátal
[12]. Its lines are linear inequalities with integer coefficients. Its deduction
rules are (the obvious) addition of inequalities and the (less obvious) dividing
the coefficients by a constant (and rounding, taking advantage of the integrality
of the solution space).22

22For example, from the inequality 2x+4y ≥ 1 we may infer x+2y ≥ 1
2
, and by integrality,

x + 2y ≥ 1.

Gödel Book—Wigderson - rev. 2010-0708 31

Let us look at the pigeonhole principle PHPm
n again. It is easy to express

it as a set of contradictory linear inequalities: For every pigeon, the sum of its
variables should be at least 1. For every hole, the sum of its variables should
be at most 1. Thus adding up all variables in these two ways implies m ≤ n, a
contradiction. Thus, the pigeonhole principle has polynomial-size CP proofs.

While PHPm
n is easy in this system, exponential lower bounds were proved

for other tautologies. Consider the tautology CLIQUEk
n: No graph on n nodes

can simultaneously have a k-clique and a legal k − 1-coloring. It is easy to
formulate it as a propositional formula. Notice that it somehow encodes many
instances of the pigeonhole principle, one for every k-subset of the vertices.

Theorem 1.5.7 ([49]). SCP

(
CLIQUE

√
n

n

) ≥ 2n1/10
.

The proof of this theorem by Pudlak [49] is quite remarkable. It reduces this
proof complexity lower bound to a circuit complexity lower bound. In other
words, he shows that any short CP proof of tautologies of certain structure yields
a small circuit computing a related Boolean function. You probably guessed
that for the tautology at hand the function is indeed the CLIQUE function
mentioned earlier. Moreover, the circuits obtained are monotone, but of the
following, very strong form. Rather than allowing only ∧,∨ as basic gates, they
allow any monotone binary operation on real numbers! Pudlak then goes to
generalize Razborov’s approximation method for such circuits and proves an
exponential lower bound on the size they require to compute CLIQUE.

Logical Proof Systems

The proof systems in this section will all have lines that are Boolean formu-
las, and the differences between them will be in the structural limits imposed
on these formulas. We introduce the most important ones: Frege, capturing
“polynomial-time reasoning,” and Resolution, the most useful system used in
automated theorem provers.

The most basic proof system, called the Frege system, puts no restriction on
the formulas manipulated by the proof. It has one derivation rule, called the
cut rule: from the two formulas A∨C, B∨¬C we may infer the formula A∨B.
Every basic book in logic has a slightly different way of describing the Frege

system—one convenient outcome of the computational approach, especially the
notion of efficient reductions between proof systems, is a proof (in [17]) that
they are all equivalent, in the sense that the shortest proofs (up to polynomial
factors) are independent of which variant you pick!

The Frege system can polynomially simulate both the PC and the CP systems.
In particular, the counting proof described above for the pigeonhole principle
can be carried out efficiently in the Frege system (not quite trivially!), yielding:

Theorem 1.5.8 ([10]). SFrege(PHPn+1
n) = nO(1).

Frege systems are basic in the sense that they are the most common in
logic and in the sense that polynomial-length proofs in these systems naturally
correspond to “polynomial-time reasoning” about feasible objects. In short,
this is the proof analog of the computational class P. The major open problem

Gödel Book—Wigderson - rev. 2010-0708 32

in proof complexity is to find any tautology (as usual we mean a family of
tautologies) that has no polynomial-size proof in the Frege system.

Open Problem 1.5.9. Prove superpolynomial lower bounds for the Frege

system.

As lower bounds for Frege are hard, we turn to subsystems of Frege that
are interesting and natural. The most widely studied system is Resolution.
Its importance stems from its use by most propositional (as well as first-order)
automated theorem provers, often called Davis–Putnam or DLL procedures [19].
This family of algorithms is designed to find proofs of Boolean tautologies,
arising in diverse applications from testing computer chips or communication
protocols to basic number theory results.

The lines in Resolution refutations are clauses, namely disjunctions of literals
(like x1 ∨x2 ∨¬x3). The inference cut rule simplifies to the resolution rule: for
two clauses A,B and variable x, we can use A ∨ x and B ∨ ¬x to derive the
clause A ∨B.

Historically, the first major result of proof complexity was Haken’s23 [29]
exponential lower bound on Resolution proofs for the pigeonhole principle.

Theorem 1.5.10 ([29]). SResolution(PHPn+1
n) = 2Ω(n).

To prove it, Haken developed the bottleneck method, which is related to both
the random restriction and approximation methods mentioned in the circuit
complexity chapter. This lower bound was extended to random tautologies
(under a natural distribution) in [13]. The width method of [8] provides much
simpler proofs for both results.

1.5.4 Proof Complexity versus Circuit Complexity

These two areas look like very different beasts, despite the syntactic similar-
ity between the local evolution of computation and proof. To begin with, the
number of objects they care about differs drastically. There are doubly expo-
nentially number of functions (on n bits), but only exponentially many tautolo-
gies of length n. Thus a counting argument shows that some functions (albeit
nonexplicit) require exponential circuit lower bounds (Theorem 1.4.4), but no
similar argument can exist to show that some tautologies require exponential
size proofs. So while we prefer lower bounds for natural, explicit tautologies,
existence results of hard tautologies for strong systems are interesting in this
setting as well.

Despite the different nature of the two areas, there are deep connections
between them. Quite a few of the techniques used in circuit complexity, most
notably Random Restrictions, were useful for proof complexity as well. The
lower bound we saw in the previous section is extremely intriguing: a monotone
circuit lower bound directly implies a (nonmonotone) proof system lower bound!
This particular type of reduction, known as the Interpolation Method, was suc-
cessfully used for other, weak proof systems, like Resolution. This leads to the

23Armin Haken, the son of Wolfgang Haken, cited earlier for his work on knots.

Gödel Book—Wigderson - rev. 2010-0708 33

question: can reductions of a similar nature be used to obtain lower bounds for
a strong system (like Frege) from (yet unproven) circuit lower bounds?

Open Problem 1.5.11. Does NP 6⊆ P/poly imply superpolynomial Frege

lower bounds?

Why are Frege lower bounds hard? The truth is, we do not know. The Frege

system (and its relative, Extended Frege), capture polynomial-time reasoning, as
the basic objects appearing in the proof are polynomial-time computable. Thus
superpolynomial lower bounds for these systems is the proof complexity analog
of proving superpolynomial lower bounds in circuit complexity. As we saw, for
circuits we at least understand to some extent the limits of existing techniques,
via Natural Proofs. However, there is no known analog of this framework for
proof complexity.

I conclude with a tautology capturing the P/poly vs. NP question, thus
using proof complexity to try to show that proving circuit lower bounds is
difficult.

This tautology, suggested by Razborov, simply encodes the statementNP 6⊆
P/poly, namely that SAT does not have small circuits. More precisely, fix
n, an input size to SAT, and s, the circuit size lower bound we attempt to
prove.24 The variables of our “Lower Bound” formula LBs

n encode a circuit
C of size s, and the formula simply checks that C disagrees with SAT on at
least one instance φ of length n (namely that either φ ∈ SAT and C(φ) = 0
or φ 6∈ SAT and C(φ) = 1). Note that LBs

n has size N = 2O(n), so we seek a
superpolynomial in N lower bound on its proof length.25

Proving that LBs
n is hard for Frege will in some sense give another expla-

nation to the difficulty of proving circuit lower bound. Such a result would be
analogous to the one provided by Natural Proofs, only without relying on the
existence of one-way functions. But paradoxically, the same inability to prove
circuit lower bounds seems to prevent us from proving this proof complexity
lower bound! Even proving that LBs

n is hard for Resolution has been extremely
difficult. It involves proving hardness of a weak pigeonhole principle26—one
with exponentially more pigeons than holes. It was finally achieved with the
tour-de-force of Raz [52], and further strengthening of [54].

Acknowledgements

I am grateful to Scott Aaronson and Christos Papadimitriou for carefully read-
ing and commenting on an earlier version this manuscript. I acknowledge sup-
port from NSF grant CCR-0324906. Some parts of this paper are revisions of
material taken from my ICM 2006 paper “P,NP and Mathematics: A Com-
putational Complexity View.”

24For example, we may choose s = nlog log n for a superpolynomial bound, or s = 2n/1000

for an exponential one.
25Of course, if NP ⊆ P/poly then this formula is not a tautology, and there is no proof at

all.
26This explicates the connection mentioned between the pigeonhole principle and the count-

ing argument proving existence of hard functions.

Bibliography

[1] L. Adleman and K. Manders. Computational complexity of decision prob-
lems for polynomials. Proceedings of 16th IEEE Symposium on Foundations
of Computer Science. Los Alamitos (CA): IEEE Comput. Soc. Press, 1975,
pp. 169–77.

[2] I. Agol, J. Hass, and W. P. Thurston. The computational complexity of
knot genus and spanning area. Trans. Amer. Math. Sci. 358 (2006), 3821–
50.

[3] M. Agrawal, N. Kayal, and N. Saxena. Primes is in P. Ann. of Math. 160
(2) (2004), 781–93.

[4] M. Ajtai. Σ1-formulae on finite structures. Ann. Pure Appl. Logic 24 (1)
(1983), 1–48.

[5] S. Arora and B. Barak. Computational Complexity: A Modern Approach.
New York: Cambridge University Press, 2009.

[6] T. Baker, J. Gill, and R. Solovay. Relativizations of the P = ?NP question.
SIAM J. Comput. 4 (1975), 431–42.

[7] P. Beame and T. Pitassi. Propositional proof complexity: past, present,
and future. Bull. EATCS 65 (1998), 66–89.

[8] E. Ben-Sasson and A. Wigderson. Short proofs are narrow—resolution
made simple. In Proceedings of the 31st Annual ACM Symposium on The-
ory of Computing. New York: ACM Press, 1999, pp. 517–26.

[9] R. Boppana and M. Sipser The complexity of finite functions. In Handbook
of Theoretical Computer Science, Volume A, Algorithms and Complexity,
ed. J. van Leeuwen. Amsterdam: Elsevier Science Publishers, B.V.; Cam-
bridge (MA): MIT Press, 1990, pp. 757–804.

[10] S. Buss. Polynomial size proofs of the propositional pigeonhole principle.
J. Symbolic Logic 52 (1987), 916–27.

[11] S. Buss. On Gödel’s theorems on lengths of proofs II: Lower bounds for
recognizing k symbol provability. In Feasible Mathematics II, ed. P. Clote
and J. Remmel. Boston: Birkhauser, 1995, pp. 57–90.

34

Gödel Book—Wigderson - rev. 2010-0708 35

[12] V. Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems.
Discrete Math. 4 (1973), 305–37.

[13] V. Chvátal and E. Szemerédi. Many hard examples for resolution. J. ACM
35 (4) (1988), 759–68.

[14] M. Clegg, J. Edmonds, and R. Impagliazzo. Using the Groebner basis al-
gorithm to find proofs of unsatisfiability. In Proceedings of the 28th Annual
ACM Symposium on Theory of Computing. New York: ACM Press, 1996,
pp. 174–83.

[15] A. Cobham. The intrinsic computational difficulty of functions. In Logic,
Methodology, and Philosophy of Science. North Holland, Amsterdam, 1965,
pp. 24–30.

[16] S. A. Cook. The complexity of theorem-proving procedures. Proceedings
of the 3rd Annual ACM Symposium on Theory of Computing. New York:
ACM Press, 1971, pp. 151–8.

[17] S. A. Cook and R. A. Reckhow. The relative efficiency of propositional
proof systems. J. Symbolic Logic 44 (1979), 36–50.

[18] T. H. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms.
2nd edn. Cambridge (MA): MIT Press; New York: McGraw-Hill Book
Co., 2001.

[19] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem
proving. J. ACM 5 (7) (1962), 394–7.

[20] J. Edmonds. Minimum partition of a matroid into independent sets. Jour-
nal of Research of the National Bureau of Standards (B), 69 (1965), 67–72.

[21] J. Edmonds. Paths, trees, and flowers. Canad. J. Math. 17 (1965), 449–67.

[22] L. Fortnow. The role of relativization in complexity theory. Bull. EATCS
52 (1994), 229–44.

[23] M. Furst, J. Saxe, and M. Sipser. Parity, circuits and the polynomial time
hierarchy. Math. Systems Theory 17 (1984), 13–27.

[24] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. New York: W.H. Freeman and Company,
1979.

[25] O. Goldreich Computational Complexity: A Conceptual Perspective. New
York: Cambridge University Press, 2008.

[26] A. Granville. It is easy to determine whether a given integer is prime. Bull.
Amer. Math. Soc. 42 (2005), 3–38.

[27] M. Gromov. Hyperbolic groups. In Essays in Group Theory, ed. S. M.
Gersten, Math. Sci. Res. Inst. Publ. 8. New York: Springer-Verlag, 1987,
pp. 75–264.

Gödel Book—Wigderson - rev. 2010-0708 36

[28] M. Gromov. Random walk in random groups. Geom. Funct. Anal. 13 (1)
(2003), 73–146.

[29] A. Haken. The intractability of resolution. Theor. Comput. Sci. 39 (1985),
297–308.

[30] W. Haken. Theorie der Normalflächen: ein Isotopiekriterium für den
Kreisknoten. Acta Math. 105 (1961), 245–375.

[31] J. Hartmanis. Gödel, von Neumann and the P = ?NP problem. Bull.
EATCS 38 (1989), 101–7.

[32] J. Hass and J. C. Lagarias. The number of Reidemeister moves needed for
unknotting. J. Amer. Math. Soc. 14 (2001), 399–428.

[33] J. Hass, J. C. Lagarias, and N. Pippenger. The computational complexity
of knot and link problems. J. ACM 46 (1999), 185–211.

[34] M. Karchmer and A. Wigderson, Monotone circuits for connectivity require
super-logarithmic depth. SIAM J. Discrete Math. 3 (2) (1990), 255–65.

[35] N. Karmarkar. A new polynomial-time algorithm for linear programming.
Combinatorica 4 (1984), 373–94.

[36] R. Karp. Reducibility among combinatorial problems. In Complexity of
Computer Computations, ed. R. E. Miller and J. W. Thatcher. New York:
Plenum Press, 1972, pp. 85–103.

[37] R. Karp and R. J. Lipton. Turing machines that take advice. Enseign.
Math. (2) 28 (1982), 191–209

[38] L. Khachian. A polynomial time algorithm for linear programming. Soviet
Math. Doklady 10 (1979), 191–4.

[39] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. Factoring polynomials
with rational coefficients. Math. Ann. 261 (1982), 515–34.

[40] L. A. Levin. Universal search problems. Probl. Peredaci Inform. 9 (1973),
115–6; English transl. Probl. Inf. Transm. 9 (1973), 265–6.

[41] Y. V. Matiasevich. Hilbert’s Tenth Problem. Cambridge (MA): MIT Press,
1993.

[42] G. L. Miller. Riemann’s hypothesis and tests for primality. J. Comput.
System Sci. 13 (3) (1976), 300–17.

[43] C. H. Papadimitriou. Computational Complexity. Reading (MA): Addison
Wesley, 1994.

[44] C. H. Papadimitriou. On the complexity of the parity argument and other
inefficient proofs of existence. J. Comput. System Sci. 48 (3) (1994), 498–
532.

Gödel Book—Wigderson - rev. 2010-0708 37

[45] C. H. Papadimitriou. NP-completeness: A retrospective. In Automata,
Languages and Programming (ICALP 1997), Lecture Notes in Com-
puter Science, vol. 1256, ed. P. Degano, R. Gorrieri, and A. Marchetti-
Spaccamela. Berlin: Springer-Verlag, 1997, pp. 2-6.

[46] P. Pudlak. Logic and complexity: independence results and the complexity
of propositional calculus. In Proceedings of International Congress of Math-
ematicians 1994, 3–11 Aug 1994, Zurich, Switzerland, ed. S. D. Chatterji.
Basel: Birkhäuser Verlag, 1995, pp. 288–97.

[47] P. Pudlak. A bottom-up approach to foundations of mathematics. In Gödel
’96: Logical Foundations of Mathematics, Computer Science and Physics—
Kurt Godel’s Legacy (Proceedings), Lecture Notes in Logic, vol. 6, ed. P.
Hajek. Berlin: Springer-Verlag, 1996, pp. 81–97.

[48] P. Pudlak. On the lengths of proofs of consistency. Collegium Logicum,
Annals of the Kurt-Godel-Society 2 (1996), pp. 65–86.

[49] P. Pudlak. Lower bounds for resolution and cutting planes proofs and
monotone computations. J. Symbolic Logic 62 (3) (1997), 981–98.

[50] P. Pudlak. The lengths of proofs. In Handbook of Proof Theory, ed. S.R.
Buss. Amsterdam: Elsevier, 1998, pp. 547–637.

[51] M. Rabin. Mathematical theory of automata. In Mathematical Aspects of
Computer Science, Proceedings of Symposia in Applied Mathematics, vol.
19. Providence (RI): American Mathematical Society, 1967, pp. 153–75.

[52] R. Raz. Resolution lower bounds for the weak pigeonhole principle. J. ACM
51 (2) (2004), 115–38.

[53] A. A. Razborov. Lower bounds for the polynomial calculus. Comput. Com-
plexity 7 (4) (1998), 291–324.

[54] A. A. Razborov. Resolution lower bounds for perfect matching principles.
J. Comput. System Sci. 69 (1) (2004), 3–27.

[55] A. A. Razborov and S. Rudich. Natural proofs. J. Comput. System Sci. 55
(1) (1997), 24–35.

[56] N. Robertson and P. Seymour. Graph Minors I–XIII. J. Combin. Theory
B (1983–1995).

[57] S. Rudich and A. Wigderson (eds.). Computational Complexity Theory,
IAS/Park City Mathematics Series, vol. 10. American Mathematical Soci-
ety/Institute for Advanced Studies, 2000.

[58] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, Al-
gorithms and Combinatorics, vol. 24. Berlin: Springer-Verlag, 2003.

[59] C. E. Shannon. The synthesis of two-terminal switching circuits,. Bell Sys-
tems Technical Journal, 28 (1949), 59–98.

Gödel Book—Wigderson - rev. 2010-0708 38

[60] M. Sipser. The history and status of the P versus NP question. In Proceed-
ings of the 24th Annual ACM Symposium on Theory of Computing. New
York: ACM Press, 1992, pp. 603–18.

[61] M. Sipser. Introduction to the Theory of Computation. Boston (MA): PWS
Publishing Co., 1997.

[62] A. Tarski. A Decision Method for Elementary Algebra and Geometry. Uni-
versity of California Press, 1951.

[63] A. M. Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proc. London Math. Soc., Ser. 2, 42 (1936), 230–
65.

[64] A. M. Turing. On computable numbers, with an application to the
Entscheidungsproblem. A correction. Proc. London Math. Soc., Ser. 2, 43
(1937), 544–6.

[65] N. V. Vinodchandran. AMexp 6⊆ (NP∩ coNP)/poly. Inform. Process. Lett.
89 (2004), 43–7.

