CSDM Seminars
Computer Science/Discrete Mathematics Seminar II
Computer Science/Discrete Mathematics Seminar I
For all practical purposes, the Micali-Vazirani algorithm, discovered in 1980, is still the most efficient known maximum matching algorithm (for very dense graphs, slight asymptotic improvement can be obtained using fast matrix multiplication). However, this has remained a ``black box" result for the last 32 years.
Computer Science/Discrete Mathematics Seminar II
Computer Science/Discrete Mathematics Seminar I
Computer Science/Discrete Mathematics Seminar II
Computer Science/Discrete Mathematics Seminar I
Computer Science/Discrete Mathematics Seminar II
The PCP theorem (Arora et. al., J. ACM 45(1,3)) asserts the existence of proofs that can be verified by reading a very small part of the proof. Since the discovery of the theorem, there has been a considerable work on improving the theorem in terms of the length of the proofs, culminating in the construction of PCPs of quasi-linear length, by Ben-Sasson and Sudan (SICOMP 38(2)) and Dinur (J. ACM 54(3)). One common theme in the aforementioned PCP constructions is that they all rely heavily on sophisticated algebraic machinery. The aforementioned work of Dinur (J.
Computer Science/Discrete Mathematics Seminar I
In this talk we will discuss information complexity -- a measure of the amount of information Alice and Bob need to exchange to solve a problem over distributed inputs. We will present an information-theoretically optimal protocol for computing the AND of two bits distributed between Alice and Bob. We prove that the information complexity of AND is ~1.4923 bits. We use the optimal protocol and its properties to obtain tight bounds for the Disjointness problem, showing that the randomized communication complexity of Disjointness on n bits is ~0.4827n ± o(n).