Internal Conflict in a Computational System
| COMPUTER SCIENCE/DISCRETE MATH I | |
| Topic: | Internal Conflict in a Computational System |
| Speaker: | Adi Livnat |
| Affiliation: | Princeton University |
| Date: | Monday, January 16 |
| Time/Room: | 11:15am - 12:15pm/S-101 |
Internal conflict is considered to be a fundamental psychological phenomenon, and many behaviors in both humans and animals have been attributed to it. However, from a biological standpoint, internal conflict is counterintuitive, in that it appears maladaptive relative to a seamless decision-making process that could have possibly evolved. This raises the following theoretical question: is it possible for a well-designed computational system to manifest internal conflict? We provide a new mathematical framework within which this question can phrased in precise terms, including a game-theoretic definition of conflict, and a method by which internal conflict can be inferred. We show that, in a restricted circuit model, the boundedly-optimal circuit (subject to a computational complexity limitation) can be composed of conflicting agents. The result may have implications for our understanding of the brain.
Joint work with Nicholas Pippenger