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Tentative Plan

Lecture 1. Background. Testing properties of images and lists.

Lecture 2. Testing properties of lists. Sublinear-time 
approximation for graph problems.

Lecture 3. Testing properties of functions. Linearity testing.

Lecture 4. Techniques for proving hardness. Other models for 
sublinear computation.



Query Complexity

• Query complexity of an algorithm is the maximum number of queries the 

algorithm makes.

– Usually expressed as a function of input length (and other parameters)

– Example: the test for sortedness (from Lecture 2) had query complexity O(log 

n) for constant �.
– running time ≥ query complexity

• Query complexity of a problem �, denoted  � � , is the query 

complexity of the best algorithm for the problem.

– What is �(testing	sortednes�)? How do we know that there is no better 

algorithm?

Today: Two techniques for proving lower bounds on � � .
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Yao’s Principle

A Method for Proving Lower Bounds



A Lower Bound Game
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Players: Evil algorithms designer Al and poor lower bound prover Lola.

Yao’s Minimax Principle (easy direction): Lola can perform in Game1 at least 

as well as she can perform in Game2.

Game1

Move 1. Al selects a randomized algorithm for the problem.

Move 2. Lola selects an input on which the algorithm is as slow as possible.

Game2

Move 1. Lola selects a distribution on inputs.

Move 2. Al selects a deterministic algorithm which works on Lola’s distribution as 

fast as possible.



A Lower Bound for Testing Sortedness

Input: a list of n numbers  x1 , x2 ,..., xn

Question: Is the list sorted or �-far from sorted? 

Already saw: two different O((log n)/�) time testers. 

Known [Ergün Kannan Kumar Rubinfeld Viswanathan 98, Fischer 01]:

Ω(log n) queries are required for all constant  � ≤ 1/2
Today:   Ω(log n) queries are required for all constant  � ≤ 1/2

for every 1-sided error nonadaptive test.

• A test has 1-sided error if it always accepts all

YES instances.

• A test is nonadaptive if its queries that do not

depend on answers to previous queries.
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1-sided Error Property Tester

Far from

YES

YES

Reject with 

probability ≥ �/�

Don’t care 

Accept with 

probability ≥ �/�

				�



1-Sided Error Tests Must Catch “Mistakes”

• A pair (�� , ��)	is violated if �� < ��

Proof: Every sorted partial list can be extended to a sorted list.
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Claim. A 1-sided error test can reject only if it finds a violated pair.

1 ? ? 4 … 7 ? ? 9



Yao’s Principle Game [Jha]

Lola’s distribution is uniform over the following log � lists:

8

Claim 2. Every pair (�� , ��) is violated in exactly one list above.

1 1 1 1 1 1 1 1 0 00 0 0 0 0 0ℓ!
ℓ" 1 1 1 1 0 0 0 0 2 22 2 1 1 1 1

1 1 0 0 2 2 1 1 3 23 2 4 4 3 3ℓ#

1 0 2 1 3 2 4 3 5 64 5 7 6 8 7ℓ$%& '

...

Claim 1. All lists above are 1/2-far from sorted.



Yao’s Principle Game: Al’s Move

Al picks a set ( = {+!, +", … , +|.|} of positions to query.

• His test must be correct, i.e., must find a violated pair with probability ≥ 2/3
when input is picked according to Lola’s distribution.

• ( contains a violated pair   ⇔ (+� , +�3!) is violated for some 4
Pr

ℓ←Lola′s	distribution[ +� , +�3! 	for	some	4	is	vilolated	in	list	ℓ] ≤ ( − 1
log �

• If ( ≤ "
# log �	then this probability is  < "

#
• So, ( = Ω(log �)
• By Yao’s Minimax Principle, every randomized 1-sided error nonadaptive test 

for sortedness must make Ω(log �)	queries.
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+! +" +# +|.|…

By the Union Bound



Communication Complexity

A Method for Proving Lower Bounds [Blais

Brody Matulef 11]

Use known lower bounds 

for other models of computation

Partially based on slides by Eric Blais



(Randomized) Communication Complexity
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Compute C �, D

0100

11

001

⋯
0011

BobAlice

F�GHI: 	� Input: D

1101000101110101110101010110…
KL+MNO	M+�OPQ	�IM4�R

Goal:  minimize the number of bits exchanged.

• Communication complexity of a protocol is the	maximum number of bits 

exchanged by the protocol.

• Communication complexity of a function C, denoted T(C), is the communication 

complexity of the best protocol for computing C.



Example: Set Disjointness UFKVW
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Theorem [Hastad Wigderson 07]

T DISJ\ ≥ Ω ] for all ] < '
". 

Compute UFKV\ K, ^
= _`aabcd		if	K ∩ ^ = ∅

gbhbad					otherwise

BobAlice

F�GHI: K ⊆ [�], K = ]. Input: ^ ⊆ [�], ^ = ]

1101000101110101110101010110…



k-Parity Functions
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Recall: k ∶ 0,1 ' → {0,1} is  linear if k �!, … , �' = ∑ ���∈q for some K ⊆ � .
Last time: linearity is testable in r 1/� time.

]-Parity Functions
A function k ∶ 0,1 ' → {0,1} is a ]-parity if

k � = st � = ∑ ���∈t
for some set K ⊆ � of size K = ]. 



Testing if a Boolean Function is a k-Parity
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Input: Boolean function k: 0,1 ' → {0,1} and an integer ]
Question: Is the function a ]-parity or �-far from a ]-parity 

(≥ �2' values need to be changed to make it a ]-parity)?

Time:

						O min(] log ], � − ] log � − ] , �) [Chakraborty Garcia−Soriano Matsliah]	
Ω min	(], � − ] ) [Blais Brody Matulef 11]

• Today:  Ω(]) for ] < �/2
• Today’s bound implies   Ω min	(], � − ] )



Reduction from UFKVW/� to Testing k-Parity

• Let ^ be the best tester for the ]-parity property for � = 1/2
– query complexity of T is � testing	]−parity .

• We will construct a communication protocol for UFKVW/� that runs ^
and has communication complexity 	2 ⋅ �(testing ]−parity).

• Then	2 ⋅ �(testing ]−parity) ≥ T DISJ\/" ≥ Ω ]/2 for ] ≤ �/2
⇓

�(testing ]-parity) ≥ Ω ] for ] ≤ �/2
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UFKVW
holds for CC of every 

protocol for UFKVW [Hastad Wigderson 07]



Reduction from UFKVW/� to Testing k-Parity
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BobAlice

F�GHI: K ⊆ [�], K = ]/2.
Compute: k = st

Input: ^ ⊆ [�], ^ = ]/2
Compute: R = sz

1101000101110101110101010110…

Output T’s answer

T

L = k { R	(QPO	2)

`aabcd/gbhbad

L � ? k � { R � 		QPO	2

k(�)
R(�)

• ^ receives its random bits from the shared random string.



Analysis of the Reduction

Queries: Alice and Bob exchange 2 bits for every bit queried by ^
Correctness:

• L = k { R	 QPO	2 = st { sz 	 QPO	2 = st}z
• KΔ^ = K { ^ − 2 K ∩ ^

• SΔ^ = _ 	]										if		S∩T	=	∅
≤ 	] − 2		if		S∩T ≠ ∅

L	is _]−parity																																				if		S∩T	=	∅]�−parity	where	]� ≠ ]								if		S∩T ≠ ∅

• Recall that  two different linear functions disagree on half of the values:

st, sz = 1 − 2 ⋅ fraction	of	disagreements	between	st	and	sz = 0				for		K ≠ ^
Summary: �(testing ]-parity) ≥ Ω ] for ] ≤ �/2
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]1/2-far from every ]-parity



Summary of Lower Bounds

• Yao’s Principle

– testing sortedness

• Reductions from communication complexity problems

– testing if a function is a ]-parity
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Other Models of Sublinear
Computation
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Tolerant Property Tester

�-close to YES

�-far from
YES

YES

Reject with 

probability    2/3 

Don’t care 

Accept with 

probability ≥ �/�

≥

Tolerant Property Tester [Rubinfeld Parnas Ron]

Randomized Algorithm

YES Accept with 

probability ≥ �/�

Reject with 

probability     2/3 

NO

≥

				



Sublinear-Time “Restoration” Models

Local Decoding

Program Checking

Local Reconstruction
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Input: Function k nearly satisfying some property �
Requirement: Reconstruct function k to ensure that the 

reconstructed function R satisfies �, changing k only 

when necessary. For a given argument  �, compute R(�)
with a few queries to k.

k

�Input: a program � computing k with a small error 

probability.  

Requirement: self-correct program � – for a given 

argument �, compute k(�) by making a few calls to P.

Input: a slightly corrupted codeword

Requirement: recover a given bit of the closest codeword

with a constant number of queries.

k



Sublinear-Space Algorithms

What if we cannot get a sublinear-time algorithm?

Can we at least get sublinear space?

Note: sublinear space is broader (for any algorithm, space 

complexity ≤ time complexity)
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Data Stream Model

• Motivation: network traffic, database transactions, sensor networks, satellite data 

feed

Model the stream as Q elements from [�], e.g.,

�!, �", … , �� = 3, 5, 3, 7, 5, 4, …	
Goal: Compute a function of the stream, e.g., median, number of distinct elements, 

longest increasing sequence.
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B L A - B L A - B L A - B L A - B L A - B L A - B L A -

(2)  Limited working memory
(3) Quickly produce output

(1) Quickly process each elementStreaming 

Algorithm

Based on Andrew McGregor’s slides: http://www.cs.umass.edu/~mcgregor/slides/10-jhu1.pdf



Streaming Puzzle

A stream contains � − 1 distinct elements from � in arbitrary order. 

Problem: Find the missing element, using r(log	�) space.
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Sampling from a Stream of Unknown Length

Problem: Find a uniform sample � from a stream �!, �", … , �� of 

unknown length Q

Analysis:

What is the probability that �	 = 	 �� at some time I ≥ 4?
Pr � = �� = 1

4 ⋅ 1 − 1
4 { 1 ⋅ … ⋅ 1 − 1

I
											= 1

4 ⋅
4

4 { 1 ⋅ … ⋅ I − 1
I = 1

I
Space: r(]	log	�) bits to get ] samples.
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Algorithm

1. Initially,  � ← 	�!
2. On seeing the Ith element, � ← �� with probability 1/I



Conclusion

Sublinear algorithms are possible in many settings

• simple algorithms, more involved analysis

• nice combinatorial problems

• unexpected connections to other areas

• many open questions
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