Sublinear Algorithms Lecture 3

Sofya Raskhodnikova
Penn State University

Thanks to Madhav Jha (Penn State) for help with creating these slides.

Tentative Plan

Lecture 1. Background. Testing properties of images and lists.
Lecture 2. Testing properties of lists. Sublinear-time approximation for graph problems.

Lecture 3. Testing properties of functions. Linearity testing.
Lecture 4. Techniques for proving hardness. Other models for sublinear computation.

Testing Linearity

Linear Functions Over Finite Field \mathbb{F}_{2}

A Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is linear if

$$
f\left(x_{1}, \ldots, x_{n}\right)=a_{1} x_{1}+\cdots+a_{n} x_{n} \text { for some } a_{1}, \ldots, a_{n} \in\{0,1\}
$$

no free term
－Work in finite field \mathbb{F}_{2}
－Other accepted notation for $\mathbb{F}_{2}: G F_{2}$ and \mathbb{Z}_{2}
example
－Addition and multiplication is mod 2
－ $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right), \boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$ ，that is， $\boldsymbol{x}, \boldsymbol{y} \in\{0,1\}^{n}$ $\boldsymbol{x}+\boldsymbol{y}=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)$
$\begin{array}{r}001001 \\ +\begin{array}{r}011001 \\ \hline 010000 \\ \hline\end{array} ⿳ 亠 口 子 \\ \hline\end{array}$

Testing if a Boolean function is Linear

Input: Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$
Question:
Is the function linear or ε-far from linear
($\geq \varepsilon 2^{n}$ values need to be changed to make it linear)?
Today: can answer in $O\left(\frac{1}{\varepsilon}\right)$ time

Motivation

- Linearity test is one of the most celebrated testing algorithms
- A special case of many important property tests
- Computations over finite fields are used in
- Cryptography
- Coding Theory
- Originally designed for program checkers and self-correctors
- Low-degree testing is needed in constructions of Probabilistically Checkable Proofs (PCPs)
- Used for proving inapproximability
- Main tool in the correctness proof: Fourier analysis of Boolean functions
- Powerful and widely used technique in understanding the structure of Boolean functions

Equivalent Definitions of Linear Functions

Definition. f is linear if $f\left(x_{1}, \ldots, x_{n}\right)=a_{1} x_{1}+\cdots+a_{n} x_{n}$ for some $a_{1}, \ldots, a_{n} \in \mathbb{F}_{2}$
$\| \quad[n]$ is a shorthand for $\{1, \ldots n\}$ $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i \in S} x_{i}$ for some $S \subseteq[n]$.

Definition'. f is linear if $f(\boldsymbol{x}+\boldsymbol{y})=f(\boldsymbol{x})+f(\boldsymbol{y})$ for all $\boldsymbol{x}, \boldsymbol{y} \in\{0,1\}^{n}$.

- Definition \Rightarrow Definition ${ }^{\prime}$
$f(\boldsymbol{x}+\boldsymbol{y})=\sum_{i \in S}(\boldsymbol{x}+\boldsymbol{y})_{i}=\sum_{i \in S} x_{i}+\sum_{i \in S} y_{i}=f(\boldsymbol{x})+f(\boldsymbol{y})$.
- Definition ${ }^{\prime} \Rightarrow$ Definition

Let $\alpha_{i}=f((\overbrace{0, \ldots, 0,1,0, \ldots, 0}^{e_{i}}))$
Repeatedly apply Definition':

$$
f\left(\left(x_{1}, \ldots, x_{n}\right)\right)=f\left(\sum x_{i} e_{i}\right)=\sum x_{i} f\left(e_{i}\right)=\sum \alpha_{i} x_{i} .
$$

Linearity Test [Blum Luby Rubinfeld 90]

BLR Test ($\mathrm{f}, \mathrm{\varepsilon}$)

1. Pick \boldsymbol{x} and \boldsymbol{y} independently and uniformly at random from $\{0,1\}^{n}$.
2. Set $\boldsymbol{z}=\boldsymbol{x}+\boldsymbol{y}$ and query f on $\boldsymbol{x}, \boldsymbol{y}$, and \boldsymbol{z}. Accept iff $f(\boldsymbol{z})=f(\boldsymbol{x})+f(\boldsymbol{y})$.

Analysis
If f is linear, BLR always accepts.

Correctness Theorem [Bellare Coppersmith Hastad Kiwi Sudan 95]
If f is ε-far from linear then $>\varepsilon$ fraction of pairs \boldsymbol{x} and \boldsymbol{y} fail BLR test.

- Then, by Witness Lemma (Lecture 1), $2 / \varepsilon$ iterations suffice.

Analysis Technique: Fourier Expansion

Representing Functions as Vectors

Stack the 2^{n} values of $f(\boldsymbol{x})$ and treat it as a vector in $\{0,1\}^{2^{n}}$.

$$
f=\left[\begin{array}{l}
0 \\
1 \\
1 \\
0 \\
1 \\
\cdot \\
. \\
. \\
1 \\
0 \\
0
\end{array}\right]
$$

$\left[\begin{array}{c}f(0000) \\ f(0001) \\ f(0010) \\ f(0011) \\ f(0100) \\ \cdot \\ \cdot \\ f(1101) \\ f(1110) \\ f(1111)\end{array}\right]$

Linear functions

There are 2^{n} linear functions: one for each subset $S \subseteq[n]$.

Parity on the positions indexed by set S is $\chi_{S}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i \in S} x_{i}$

Great Notational Switch

Idea: Change notation, so that we work over reals instead of a finite field.

- Vectors in $\{0,1\}^{2^{n}} \quad \rightarrow \quad$ Vectors in $\mathbb{R}^{2^{n}}$.
- $0 /$ False $\longrightarrow 1$

1 True $\longrightarrow-1$.

- Addition $(\bmod 2) \quad \longrightarrow \quad$ Multiplication in \mathbb{R}.
- Boolean function: $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$.
- Linear function $\chi_{S}:\{-1,1\}^{n} \rightarrow\{-1,1\}$ is given by $\chi_{S}(x)=\prod_{i \in S} x_{i}$.

Benefit 1 of New Notation

- The dot product of f and g as vectors in $\{-1,1\}^{2^{n}}$:
(\# \boldsymbol{x} 's such that $f(\boldsymbol{x})=g(\boldsymbol{x}))-(\# \boldsymbol{x}$'s such that $f(\boldsymbol{x}) \neq g(\boldsymbol{x}))$

$$
=2^{n}-2 \cdot(\underbrace{\left.\# \boldsymbol{x}^{\prime} \text { s such that } f(\boldsymbol{x}) \neq g(\boldsymbol{x})\right)}_{\text {disagreements between } f \text { and } g}
$$

$$
\begin{aligned}
& \text { Inner product of functions } f, g:\{-1,1\} \rightarrow\{-1,1\} \\
& \langle f, g\rangle=\frac{1}{2^{n}} \text { (dot product of } f \text { and } g \text { as vectors) } \\
& =\underset{x \in\{-1,1\}^{n}}{\operatorname{avg}}[f(\boldsymbol{x}) g(\boldsymbol{x})]=\underset{x \in\{-1,1\}^{n}}{\mathrm{E}}[f(\boldsymbol{x}) g(\boldsymbol{x})] .
\end{aligned}
$$

$\langle f, g\rangle=1-2 \cdot($ fraction of disagreements between f and g)

Benefit 2 of New Notation

Claim. The functions $\left(\chi_{S}\right)_{s \subseteq[n]}$ form an orthonormal basis for $\mathbb{R}^{2^{n}}$.

- If $S \neq T$ then χ_{S} and χ_{T} are orthogonal: $\left\langle\chi_{S}, \chi_{T}\right\rangle=0$.
- Let i be an element on which S and T differ (w.l.o.g. $i \in S \backslash T$)
- Pair up all n-bit strings: $\left(\boldsymbol{x}, \boldsymbol{x}^{(i)}\right)$ where $x^{(i)}$ is x with the $i^{\text {th }}$ bit flipped.
- Each such pair contributes $a b-a b=0$ to $\left\langle\chi_{S}, \chi_{T}\right\rangle$.
- Since all \boldsymbol{x}^{\prime} s are paired up, $\left\langle\chi_{S}, \chi_{T}\right\rangle=0$.
- Recall that there are 2^{n} linear functions χ_{S}.
- $\left\langle\chi_{S}, \chi_{S}\right\rangle=1$
- In fact, $\langle f, f\rangle=1$ for all $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$.
- (The norm of f, denoted $|f|$, is $\sqrt{\langle f, f\rangle}$)

	[+1	[-1
	-1	+1
	+1	+1
x	+a	b
	+1	+1
	.	
$\boldsymbol{x}^{(i)}$	-a	b
	+1	-1
	-1	+1
	-1	

Fourier Expansion Theorem

Idea: Work in the basis $\left(\chi_{S}\right)_{S \subseteq[n]}$, so it is easy to see how close a specific function f is to each of the linear functions.

Fourier Expansion Theorem

Every function $f:\{-1,1\} \rightarrow \mathbb{R}$ is uniquely expressible as a linear combination (over \mathbb{R}) of the 2^{n} linear functions:

$$
f=\sum_{S \subseteq[n]} \hat{f}(S) \chi_{S}
$$

where $\hat{f}(S)=\left\langle f, \chi_{S}\right\rangle$ is the Fourier Coefficient of f on set S.
Proof: f can be written uniquely as a linear combination of basis vectors:

$$
f=\sum_{S \subseteq[n]} c_{S} \cdot \chi_{S}
$$

It remains to prove that $c_{S}=\hat{f}(S)$ for all S.

$$
\hat{f}(S)=\left\langle f, \chi_{S}\right\rangle=\left\langle\sum_{T \subseteq[n]} c_{T} \cdot \chi_{T}, \chi_{S}\right\rangle=\sum_{T \subseteq[n]} c_{T} \cdot\left\langle\chi_{T}, \chi_{S}\right\rangle=c_{S}
$$

Examples: Fourier Expansion

\boldsymbol{f}	Fourier transform
$f(\boldsymbol{x})=1$	1
$f(\boldsymbol{x})=x_{i}$	x_{i}
$\operatorname{AND}\left(x_{1}, x_{2}\right)$	$\frac{1}{2}+\frac{1}{2} x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{1} x_{2}$
MAJORITY $\left(x_{1}, x_{2}, x_{3}\right)$	$\frac{1}{2} x_{1}+\frac{1}{2} x_{2}+\frac{1}{2} x_{3}-\frac{1}{2} x_{1} x_{2} x_{3}$

Parseval Equality

Parseval Equality

Let $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$. Then

$$
\langle f, f\rangle=\sum_{S \subseteq[n]} \hat{f}(S)^{2}
$$

Proof:
By Fourier Expansion Theorem

$$
\begin{aligned}
\langle f, f\rangle & =\left\langle\sum_{S \subseteq[n]} \hat{f}(S) \chi_{S}, \sum_{T \subseteq[n]} \hat{f}(T) \chi_{T}\right\rangle \\
& =\sum_{S} \sum_{T} \hat{f}(S) \hat{f}(T)\left\langle\chi_{S}, \chi_{T}\right\rangle
\end{aligned}
$$

By orthonormality of χ_{s} 's

$$
=\sum_{S} \hat{f}(S)^{2}
$$

Parseval Equality

Parseval Equality for Boolean Functions

Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$. Then

$$
\langle f, f\rangle=\sum_{S \subseteq[n]} \hat{f}(S)^{2}=1
$$

Proof:
By definition of inner product

$$
\begin{array}{rlr}
\langle f, f\rangle & =\underset{x \in\{-1,1\}^{n}}{\mathrm{E}}\left[f(\boldsymbol{x})^{2}\right] & \\
& =1 & \text { Since } f \text { is Boolean } \\
& =1
\end{array}
$$

BLR Test in \{-1,1\} notation

BLR Test (f, ε)

1. Pick \boldsymbol{x} and \boldsymbol{y} independently and uniformly at random from $\{-1,1\}^{n}$.
2. Set $\boldsymbol{z}=\boldsymbol{x} \circ \boldsymbol{y}$ and query f on $\boldsymbol{x}, \boldsymbol{y}$, and \boldsymbol{z}. Accept iff $f(\boldsymbol{x}) f(\boldsymbol{y}) f(\boldsymbol{z})=1$.

Vector product notation: $\boldsymbol{x} \circ \boldsymbol{y}=\left(x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{n} y_{n}\right)$
Sum-Of-Cubes Lemma. $\quad \operatorname{Pr}_{\mathbf{x}, \mathbf{y} \in\{-1,1\}^{n}}[\operatorname{BLR}(f)$ accepts $]=\frac{1}{2}+\frac{1}{2} \sum_{S \subseteq[n]} \hat{f}(S)^{3}$
Proof: Indicator variable $\mathbb{1}_{B L R}=\left\{\begin{array}{ll}1 & \text { if BLR accepts } \\ 0 & \text { otherwise }\end{array} \Rightarrow \mathbb{1}_{B L R}=\frac{1}{2}+\frac{1}{2} f(\boldsymbol{x}) f(\boldsymbol{y}) f(\mathbf{z})\right.$.

$$
\begin{aligned}
& \operatorname{Pr}_{x, y \in\{-1,1\}^{n}}[\operatorname{BLR}(f) \text { accepts }]={\underset{x}{x}, \mathbf{y} \in\{-1,1\}^{n}}_{\mathrm{E}}\left[\mathbb{1}_{B L R}\right]=\frac{1}{2}+\frac{1}{2} \underset{\mathbf{x}, \mathbf{y} \in\{-1,1\}^{n}}{\mathrm{E}}[f(\boldsymbol{x}) f(\boldsymbol{y}) f(\mathbf{z})] \\
& \uparrow \\
& \text { By linearity of expectation }
\end{aligned}
$$

Proof of Sum-Of-Cubes Lemma

So far: $\operatorname{Pr}_{\mathbf{x}, \mathbf{y} \in\{-1,1\}^{n}}[\operatorname{BLR}(f)$ accepts $]=\frac{1}{2}+\frac{1}{2} \underset{\mathbf{x}, \mathbf{y} \in\{-1,1\}^{n}}{\mathrm{E}}[f(\boldsymbol{x}) f(\boldsymbol{y}) f(\mathbf{z})]$
Next:

$$
\begin{aligned}
& \underset{\mathrm{x}, \mathrm{y} \in\{-1,1\}^{n}}{\mathrm{E}}[f(x) f(y) f(\mathrm{z})] \quad \\
= & \text { By Fourier Expansion Theorem }_{\mathrm{x}, \mathrm{y} \in\{-1,1\}^{n}}^{\mathrm{E}}\left[\left(\sum_{S \subseteq[n]} \hat{f}(S) \chi_{S}(x)\right)\left(\sum_{T \subseteq[n]} \hat{f}(T) \chi_{T}(y)\right)\left(\sum_{U \subseteq[n]} \hat{f}(U) \chi_{U}(\mathbf{z})\right)\right] \\
= & \operatorname{Distributing~out~the~product~of~sums~}_{\mathrm{E}}^{\mathrm{E}, \mathrm{y} \in\{-1,1\}^{n}}\left[\left(\sum_{S, T, U \subseteq[n]} \hat{f}(S) \hat{f}(T) \hat{f}(U) \chi_{S}(x) \chi_{T}(y) \chi_{U}(\mathbf{z})\right)\right] \\
= & \sum_{S, T, U \subseteq[n]} \hat{f}(S) \hat{f}(T) \hat{f}(U)_{\mathrm{x}, \mathrm{y} \in\{-1,1\}^{n}}^{\mathrm{E}}\left[\chi_{S}(x) \chi_{T}(y) \chi_{U}(\mathrm{z})\right]
\end{aligned}
$$

Proof of Sum-Of-Cubes Lemma (Continued)

$$
\operatorname{Pr}_{\mathrm{x}, \mathrm{y} \in\{-1,1\}^{n}}[\operatorname{BLR}(f) \text { accepts }]=\frac{1}{2}+\frac{1}{2} \sum_{S, T, U \subseteq[n]} \hat{f}(S) \hat{f}(T) \hat{f}(U){\left.\underset{\mathrm{x}, \mathrm{y} \in\{-1,1\}^{n}}{\mathrm{E}}\left[\chi_{S}(x) \chi_{T}(y) \chi_{U}(z)\right],{ }^{(z)}\right]}
$$

Claim. $\underset{\mathrm{x}, \mathrm{y} \in\{-1,1\}^{n}}{\mathrm{E}}\left[\chi_{S}(x) \chi_{T}(y) \chi_{U}(\mathrm{z})\right]$ is 1 if $S=T=U$ and 0 otherwise.

- Let $S \Delta T$ denote symmetric difference of sets S and T

$$
\underset{\mathrm{x}, \mathrm{y} \in\{-1,1\}^{n}}{\mathrm{E}}\left[\chi_{S}(x) \chi_{T}(y) \chi_{U}(z)\right] \quad=\underset{\mathrm{x}, \mathrm{y} \in\{-1,1\}^{n}}{\mathrm{E}}\left[\prod_{i \in S} x_{i} \prod_{i \in T} y_{i} \prod_{i \in U} z_{i}\right]
$$

$$
=\underset{\mathrm{x}, \mathrm{y} \in\{-1,1\}^{n}}{\mathrm{E}}\left[\prod_{i \in S} x_{i} \prod_{i \in T} y_{i} \prod_{i \in U} x_{i} y_{i}\right]
$$

$$
\text { Since } \mathbf{z}=\mathbf{x} \circ \mathbf{y}
$$

$$
=\underset{\mathrm{x}, \mathrm{y} \in\{-1,1\}^{n}}{\mathrm{E}}\left[\prod_{i \in S \Delta U} x_{i} \prod_{i \in T \Delta U} y_{i}\right]
$$

$$
=\underset{\mathrm{x} \in\{-1,1\}^{n}}{\mathrm{E}}\left[\prod_{i \in S \Delta U} x_{i}\right] \cdot \underset{\mathbf{y} \in\{-1,1\}^{n}}{\mathrm{E}}\left[\prod_{i \in S \Delta U} y_{i}\right]
$$

$$
=\prod_{i \in S \Delta U} \underset{\mathrm{x} \in\{-1,1\}^{n}}{\mathrm{E}}\left[x_{i}\right] \cdot \prod_{i \in T \Delta U} \underset{\mathrm{y} \in\{-1,1\}^{n}}{\mathrm{E}}\left[y_{i}\right]
$$

$$
=\prod_{i \in S \Delta U} \underset{x_{i} \in\{-1,1\}}{\mathrm{E}}\left[x_{i}\right] \cdot \prod_{i \in T \Delta U} \underset{y_{i} \in\{-1,1\}}{\mathrm{E}}\left[y_{i}\right]
$$

$$
= \begin{cases}1 & \text { when } S \Delta U=\emptyset \text { and } T \Delta U=\emptyset \\ 0 & \text { otherwise }\end{cases}
$$

Proof of Sum-Of-Cubes Lemma (Done)

$\operatorname{Pr}_{x, y \in\{-1,1]^{n}}[\operatorname{BLR}(f)$ accepts $\left.]=\frac{1}{2}+\frac{1}{2} \sum_{S, T, U \subseteq[n]} \hat{f}(S) \hat{f}(T) \hat{f}(U)\right)_{x, y \in\{-1,1]^{n}} \mathrm{E}^{[}\left[\chi_{S}(x) \chi_{T}(y) \chi_{U}(z)\right]$

$$
=\frac{1}{2}+\frac{1}{2} \sum_{S \subseteq[n]} \hat{f}(S)^{3}
$$

Sum-Of-Cubes Lemma. $\quad \operatorname{Pr}_{\mathrm{x}, \mathrm{y} \in\{-1,1\}^{n}}[\operatorname{BLR}(f)$ accepts $]=\frac{1}{2}+\frac{1}{2} \sum_{S \subseteq[n]} \hat{f}(S)^{3}$

Proof of Correctness Theorem

Correctness Theorem (restated)

If f is ε-far from linear then $\operatorname{Pr}[\operatorname{BLR}(f)$ accepts $] \leq 1-\varepsilon$.
Proof: Suppose to the contrary that

$$
\begin{array}{rlr}
1-\varepsilon & <\operatorname{Pr}_{\mathbf{x}, \mathbf{y} \in\{-1,1\}^{n}}[\operatorname{BLR}(f) \text { accepts }] \\
& =\frac{1}{2}+\frac{1}{2} \sum_{S \subseteq[n]} \hat{f}(S)^{3} & \text { By Sum-Of-Cubes L } \\
& \leq \frac{1}{2}+\frac{1}{2} \cdot\left(\max _{S \subseteq[n]} \hat{f}(S)\right) \cdot \sum_{S \subseteq[n]} \hat{f}(S)^{2} \\
& =\frac{1}{2}+\frac{1}{2} \cdot\left(\max _{S \subseteq[n]} \hat{f}(S)\right) & \text { Since } \hat{f}(S)^{2} \geq 0
\end{array}
$$

- Then $\max _{S \subseteq[n]} \hat{f}(S)>1-2 \varepsilon$. That is, $\hat{f}(T)>1-2 \varepsilon$ for some $T \subseteq[n]$.
- But $\hat{f}(T)=\left\langle f, \chi_{T}\right\rangle=1-2 \cdot\left(\right.$ fraction of disagreements between f and χ_{T})
- f disagrees with a linear function χ_{T} on $<\varepsilon$ fraction of values.

Summary

BLR tests whether a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is
linear or ε-far from linear
($\geq \varepsilon 2^{n}$ values need to be changed to make it linear) in $O\left(\frac{1}{\varepsilon}\right)$ time.

