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A company records how much you like each of 
N products in its database, and wants to 

predict what else you’ll like. 



Your insurance 
company asks you N 

questions about 
yourself and family. 

Based on your 
responses and 

history, they want to 
predict how much 

you’ll cost the 
insurance company. 



An N-pixel image is a 
single point in RN. 



We record N genes for each 
person in a population. Only a 

few people have a given 
genetic disease.  



•  In many such settings, we have a small number of points in 
RN, where N can be very high. 

•  We also have a prediction task (e.g. regression/function 
estimation, classification, approximation, clustering, 
optimization) 

•  If we want to perform that task with accuracy ε, then we need 
 O[(1/ε)N]  

data points or observations, which are unavailable in real-
world settings or create massive run times. 

Modeling and approximation are mathematically and 
computationally formidable. 





Experiments and 
measurements are 
noisy, corrupted, or 
unreliable. 

Information processing 
and decision making 

must be robust to 
uncertainty. 



We need to learn and analyze the structure of networks 



We can’t observe/sense everything all 
the time; incomplete, missing, or indirect 
data are the norm 



Signals can require 
significant storage 
space (111 kB) 

We need to minimize 
storage space utilized 

(12 kB) 



We need to process huge amounts of streaming data 



•  Imaging computing the Fourier transform of a length-
N signal, where N is HUGE. 

•  If we use naïve matrix multiplication, this takes 
 O(N2) ���

operations. 

•  If we use the Fast Fourier Transform, this takes  
 O(N log N) ���

operations. 

•  Can we do even better? 



We need to improve Analog-to-Digital converters 
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We need to improve 
Analog-to-Digital 
converters 

This is what you 
would get with a 

typical low-resolution 
camera. Can we do 

better? 



We need to reduce power consumption in sensor networks 



We need to solve inverse problems 

Sinogram data Brain slice  

�f(y)
Reconstruction 

from data 

image data noise 

Tomographic 
projections 

y = Af + �



Diversity: data come from disparate sources; we must integrate 
info from different sensors, experiments, people, etc. 



Sparsity Compu-
tation 
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Most elements are zero-valued; only ~10% are non-zero. 



Most pixels are zero-valued (black) 



This image is not 
sparse… 

but it’s Fourier 
Transform is. 



The collection of links/edges connecting people is sparse 



First some initial insight… 



•  On the shelf you have 10 identical bottles of identical pills 
(let’s say there’s one pill in each bottle). However, one of 
those 10 bottles contains a cheap knockoff pill. (sparsity) 

•  The only way to differentiate fake pills from real pills is the 
weight - while real pills weigh 1 g each, the knockoff pills are 
only 0.9 g.  

•  You have one scale that  
shows the exact weight 
(down to the mg) of  
whatever is weighed. 

•  How can you tell which  
bottle contains fake pills 
with as few weighings  
as possible? 



•  On the shelf you have 10 identical bottles of identical pills 
(let’s say there’s one hundred pills in each bottle). However, 
one of those 10 bottles contains cheap knockoff pills. 
(sparsity) 

•  The only way to differentiate fake pills from real pills is the 
weight - while real pills weigh 1 g each, the knockoff pills are 
only 0.9 g.  

•  You have one scale that  
shows the exact weight 
(down to the mg) of  
whatever is weighed. 

•  How can you tell which  
bottle contains fake pills 
with just 1 weighing? 



M = 6, N = 32 M = 6, N = 256 

Say we make noisy measurements of a parametric signal:

yn = fn + �n, n = 1, . . . , N,

where, for instance,

fn = a0 + a1n+ a2n
2 + · · ·+ aM−1n

M−1.

We want to estimate f
�
= [f1, . . . , fN ] from y

�
= [y1, . . . , yN ].



In general, the best possible mean squared error (MSE)
decays as we collect more data (i.e. as N increases)
like

MSE
�
=

�f − �f�22
N

=
1

N

N�

n=1
(fn − �fn)2 �

M

N
.



With parametric signals, we have M degrees of free-

dom – M different parameters to estimate. However,

in many real-world problems we don’t have access to

a good parametric model.

Without a parametric model, we have M ≈ N de-

grees of freedom, and without additional assumptions

our MSE is O(1) – i.e. our error does not go down as

we collect more data.



M = 9, N = 32, K = 1 

This is a high degree 
polynomial, but sparse in 

the Chebyshev polynomial 
basis. 

With sparse signals, we assume that
only K of the N possible degrees of
freedom are significant or non-zero.

Most techniques which exploit spar-
sity have two components:
(a) determining which K-sparse model
is best, and
(b) using that best sparse model as a
parametric model.

The amazing part is that, with the right
tools, we can often do almost as well
as if we knew a parametric model in
advance (e.g. MSE = O(K/N)).





Definition: A signal f is K-sparse if K or fewer ele-
ments of f are non-zero.

K
�
= #{n : fn �= 0, n = 1, . . . , N}

This image has
N = 4002 pixels

and is 344-sparse.



Histogram of pixel values 

Original image 

Sorted pixel intensities 



In some cases, our signal is not exactly K-

sparse.

However, it may have a K-sparse approxima-

tion which is very accurate. We then say the

signal is compressible.

Specifically, we can define the K-sparse ap-

proximation as follows. Let σK be the value

of the Kth largest (in magnitude) element of

f , and set

fK,i
�
=





fi |fi| ≥ σK
0 otherwise

fK
�
= [fK,1, . . . , fK,N ]



Ideally, the approximation fK obeys

�f − fK�22
N

≡
1

N

N�

i=1

(fi − fK,i)2 � K−β

for some β > 0. This bound tells us how well the sparse signal
fK approximates the original signal f . Bigger β suggests we
can get a highly accurate representation of with a very sparse
approximation.



Original 

Sparse approximation Approximation error 





Approximation error decay 

Original image 

Sorted pixel intensities Fourier transform 



f = Ψθ =
N�

i=1
θiψi

Signal Basis 
matrix 

Basis 
coefficients 

Weights Sinusoidal 
basis 

function 
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Approximation error decay 

Original image 

Sorted pixel intensities Fourier transform 



Approximation error decay 

Original image 

Sorted Fourier 
coeff. intensities 



Original image 

Approximation error decay Sorted Fourier 
coeff. intensities 

Wavelet 
transform 



f = Ψθ =
N�

i=1
θiψi

Signal Basis 
matrix 

Basis 
coefficients 

Weights Wavelet 
basis 

function 

Just like the Fourier transform,  
but with different basis functions 



•  The Dirac or canonical basis is restrictive; only a small 
fraction of signals of interest are sparse here, and it is difficult 
to model scene structure. 

•  The Fourier basis if good for smooth signals, but as soon as 
a single discontinuity is introduced, the signal is no longer 
sparse in the Fourier basis. 

•  A wavelet basis gives a sparse representation of piecewise-
smooth signals. 



•  Wavelet basis functions 
correspond to a single 
“mother wavelet” at various 
scales and shifts. 

•  They form an orthonormal 
basis. 

•  They decompose signals 
into an initial course 
approximation followed by 
successive levels of 
refinement. 

ψ4

ψ120

ψ100

ψ19
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Original image 

Approximation error decay Sorted Fourier 
coeff. intensities 

Wavelet 
transform 



Wavelet coefficients Original image 



Original image 

Approximation error decay Sorted wavelet 
coeff. intensities 



Wavelets yield sparse 
approximations of broad classes of 

signals and images.  

For instance, all functions in a 
“Besov space” have a sparse 

wavelet approximation. 



•  Now that we can represent signals using sparse 
approximations, how can we use this to solve real-world 
problems? 

•  Can we use sparsity to reduce the amount of data we need to 
collect? 

•  Can we get better sparse approximations than what we see 
with Fourier or wavelet bases? 


