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HIGH-DIMENSIONAL DATA



CONSUMER PREFERENCES

Instant Queue NETFLIX

A company records how much you like each of
N products in its database, and wants to
predict what else you'll like.




ACTUARIAL SCIENCE

Your insurance
company asks you N
guestions about
yourself and family.
Based on your

responses and
history, they want to
predict how much
you'll cost the
Insurance company.
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“He’s 104. He always comes back on his birthday -
| worked out he'd be gone at 69.”



IMAGE PROCESSING AND ANALYSIS

An N-pixel image is a
single point in R,




GENETIC ANALYSIS

We record N genes for each
person in a population. Only a

few people have a given

genetic disease.

DID My GENETIC
TESTS COME. BACK?

( Yeru. STDouN.

IS IT BAD NEWS?
WHAT ARE MY
RISK FACTORS?
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WE CANT BE SURE AROUT
THIS, BUT WEVE ANALYZED
GENES ON SEVERAL OF YOUR
CHROMOSOMES, AND IT'S HARD
To AVOID THE CONCLUSION:

&

AT SOME POINT, YOUR
PARENTS HAD SEX.

OH Gob!

STAY CALM! ITS

POSSIBLE. IT WAS

JUST ONCE!
I... T NEED

§> To BE ALONE.
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Tﬂ# FURSE OF MIMENSIONALITY

In many such settings, we have a small number of points in
RY, where N can be very high.

® We also have a prediction task (e.g. regression/function
estimation, classification, approximation, clustering,
optimization)

® If we want to perform that task with accuracy ¢, then we need

O[(1/e)"]

data points or observations, which are unavailable in real-
world settings or create massive run times.

Modeling and approximation are mathematically and




SIGNIFICANT DATA-PROCESSING

CHALLENGES



Experiments and
measurements are
noisy, corrupted, or
unreliable.

Information processing
and decision making
must be robust to
uncertainty.




We need to learn and analyze the structure of networks




We can’t observe/sense everything all

the time; incomplete, missing, or indirect
data are the norm

Raobcore v1.4 Radiosonde Temperature Anomalies
(850 hPa, °C) December 2005

Latitude

Longitude



Signals can require
significant storage
space (111 kB)

We need to minimize
storage space utilized
(12 kB)
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We need to process huge amounts of streaming data :
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FAST COMPUTATIONS ON STREAMING DATA

® Imaging computing the Fourier transform of a length-
N signal, where N is HUGE.

® If we use naive matrix multiplication, this takes
O(N?)
operations.

®* If we use the Fast Fourier Transform, this takes
O(N log N)
operations.

® Can we do even better?



We need to improve Analog-to-Digital converters

Analog

Amplitude

Digital Signal



This is what you
would get with a
typical low-resolution
camera. Can we do
better?

We need to improve
Analog-to-Digital
converters




We need to reduce power consumption in sensor networks




We need to solve inverse problems

y=Af t+e f(y)

data image  noise
Reconstruction

from data

Tomographic
projections



Diversity: data come from disparate sources; we must integrate
info from different sensors, experiments, people, etc.
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WHAT IS SPARSITY?




0.4} ° & . E .
@
¢ o lo

01 g lo . ‘

|

o © & o

o
o L ©

| | | | | | | 19 & I
100 200 300 400 500 600 700 800 900 1000

Most elements are zero-valued; only ~10% are non-zero.




Most pixels are zero-valued (black)
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but it's Fourier
Transform is.

This image is not
sparse...
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The collection of links/edges connecting people is sparse




WHY SHOULD SPARSITY HELP?

First some initial insight...




PILL WEIGHING PROBLEM

® On the shelf you have 10 identical bottles of identical pills
(let’s say there’s one pill in each bottle). However, one of
those 10 bottles contains a cheap knockoff pill. (sparsity)

® The only way to differentiate fake pills from real pills is the
weight - while real pills weigh 1 g each, the knockoff pills are
only 0.9 g.

® You have one scale that
shows the exact weight
(down to the mg) of
whatever is weighed.

® How can you tell which
bottle contains fake pills /
with as few weighings
as possible?



PILL WEIGHING PROBLEM

® On the shelf you have 10 identical bottles of identical pills
(let’s say there’s one hundred pills in each bottle). However,
one of those 10 bottles contains cheap knockoff pills.
(sparsity)

®* The only way to differentiate fake pills from real pills is the
weight - while real pills weigh 1 g each, the knockoff pills are
only 0.9 g.

® You have one scale that
shows the exact weight

(down to the mg) of
whatever is weighed.

* How can you tell which /
bottle contains fake pills
with just 1 weighing?



PARAMETRIC SIGNALS

Say we make noisy measurements of a parametric signal:

Yn = fn+ €, n=1,..., N,
where, for instance,

2 M—-1
fn=a0+ain+an“+---+ay_1n :

We want to estimate f = [f1,..., fnv] fromy = [y1,. .., yn].

5 10 15 20 25 30 ) 50 100 150 200 250



PARAMETRIC SIGNALS
In general, the best possible mean squared error (MSE)
decays as we collect more data (i.e. as IV increases)

like
N N = Y= N
10”4 ——
— M=10 |
—M =100

MSE




NON-PARAMETRIC SIGNALS

With parametric signals, we have M degrees of free-
dom — M different parameters to estimate. However,
In many real-world problems we don’t have access to
a good parametric model.

Without a parametric model, we have M = N de-
grees of freedom, and without additional assumptions
our MSE is O(1) —i.e. our error does not go down as
we collect more data.



SPARSE SIGNALS

With sparse signals, we assume that
only K of the N possible degrees of
freedom are significant or non-zero.

Most techniques which exploit spar-
sity have two components:

(a) determining which K-sparse model
is best, and

(b) using that best sparse model as a
parametric model.

The amazing part is that, with the right
tools, we can often do almost as well
as if we knew a parametric model in
advance (e.g. MSE = O(K/N)).

M=9,N=32,K="1

This is a high degree
polynomial, but sparse in

the Chebyshev polynomial
basis.



SPARSITY AND COMPRESSIBILITY




Definition: A signal f is K-sparse if K or fewer ele-
ments of f are non-zero.

K=#{n:fnx0n=1,..., N}

This image has
N = 4002 pixels

and is 344-sparse.




pixel count

Original image

Histogram of pixel values = ~__ Sorted pixel intensities
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COMPRESSIBLE SIGNALS

In some cases, our signal is not exactly K-
sparse.

However, it may have a K-sparse approxima-
tion which is very accurate. We then say the
signal is compressible.

Specifically, we can define the K-sparse ap-
proximation as follows. Let o be the value
of the K" largest (in magnitude) element of
f, and set
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APPROXIMATION ERROR DECAY RATE

|deally, the approximation fx obeys

If = fkll3
N

LN
N Y (fi— fri)? S K P
i=1

for some 5 > 0. This bound tells us how well the sparse signal
fr approximates the original signal f. Bigger 5 suggests we
can get a highly accurate representation of with a very sparse

approximation.
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APPROXIMATION EXAMPLE
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——sparse approximation
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Sparse approximation Approximation error




OF COURSE, IN THE REAL WORLD

MOST SIGNALS AREN’T IMMEDIATELY
SPARSE OR COMPRESSIBLE
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FOURIER TRANSFORM

f=WQ=Z Wi

/ \ iz:l&\

Signal Basis Basis Weights Sinusoidal
matrix coefficients basis
function




EXAMPLE: 1-D
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EXAMPLE: 2-D
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coefficient magnitude
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pixel intensity
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WAVELET TRANSFORM

f=WQ=Z Wi

Signal Basis Basis Weights Wavelet
matrix coefficients basis
function

Just like the Fourier transform,

but with different basis functions




WAVELETS

® The Dirac or canonical basis is restrictive; only a small
fraction of signals of interest are sparse here, and it is difficult
to model scene structure.

® The Fourier basis if good for smooth signals, but as soon as
a single discontinuity is introduced, the signal is no longer
sparse in the Fourier basis.

® A wavelet basis gives a sparse representation of piecewise-
smooth signals.



WAVELETS

Wavelet basis functions
correspond to a single
“mother wavelet” at various
scales and shifts.

They form an orthonormal
basis.

They decompose signals
Into an initial course
approximation followed by
successive levels of
refinement.
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EXAMPLE: 1-D
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EXAMPLE: 2-D

Ziescaleg 0;; Ziescale3 0;1;

+.+-+.

Ziesca|e4 0;1; Ziesca|e5 01,
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Original image Wavelet coefficients
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coefficient magnitude

Sorted wavelet
coeff. intensities
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Wavelets yield sparse
approximations of broad classes of
signals and images.

For instance, all functions in a
“‘Besov space” have a sparse
wavelet approximation.




COMING NEXT...

® Now that we can represent signals using sparse
approximations, how can we use this to solve real-world

problems?
® Can we use sparsity to reduce the amount of data we need to
collect?

® Can we get better sparse approximations than what we see
with Fourier or wavelet bases?



